
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Semantic Cache System

¶(12pt)
Munir Ahmad, Muhammad Abdul Qadir, Tariq Ali,

Muhammad Azeem Abbas and Muhammad Tanvir Afzal
Centre for Distributed and Semantic Computing,

Faculty of Computing,
Mohammad Ali Jinnah University Islamabad,

Pakistan

1. Introduction

One of the economical ways to develop a very large scale database is to distribute it among
multiple server nodes. Main problem in these types of systems is retrieval of data within
significant time; especially when network or server load is high. This task becomes more
critical when data is to be retrieved from the database against frequent queries. Cache is
used to increase the retrieval performance of mobile computing and distributed database
systems. Whenever data is found locally from the cache it is termed as cache hit. Percentage
of user posed queries that can be processed (partially or fully) locally from cache is called hit
ratio. So, the cache system should be designed in a way that will increase the hit ratio.
Improvement in hit ratio ensures efficient reuse of stored data. Due to efficient reuse of
stored data, lesser amount of data is required to be retrieved from remote location.

Typically, cache is organized in three ways, as page, tuple, and semantic. Unit of transfer in
page cache is page (multiple tuples) and in tuple cache is a tuple. In page cache irrelevant
tuples may be retrieved for a user query. Retrieval of irrelevant data causes to wastage of
valuable resources. Tuple cache overcomes this problem by stopping the retrieval of
irrelevant tuples. Major problem (retrieving portion of tuple instead of complete tuple) still
exists which cannot be handled using both (page & tuple) of these caching models. These
caching schemes (page & tuple) are not able to identify whether the answer is contained in
the cache in case of query not fully matched (partial matched). In page and tuple cache
schemes all of the data is retrieved from remote site even in the presence of partial data on
cache. In simple words portion of page or portion of tuple cannot be reused in the presences
of page or tuple caching. As a result hit ratio is not up to that extent to which it should be.

To answer the queries partially from local site concept of semantic cache is introduced.
Semantic cache has an ability to increase the hit ratio up to possible extent. Semantic cache
provides better performance than page and tuple cache and this system is referred as
semantic caching. Semantic caching provides the significance workload reduction in
distributed systems, especially in mobile computing as well as improves the performance.

In semantic caching the semantic descriptions of processed query with actual contents are
stored. Next posed query is processed for stored semantic descriptions of data in the cache

www.intechopen.com

Semantics in Action – Applications and Scenarios

88

and posed query is divided into probe (portion available at cache) and remainder (portion
that is not available at cache and have to retrieved from cache) queries. In this context we
can say that there are two major activities query processing and cache management are
involved in semantic caching. So, efficiency of the semantic caching will depends on these
two major activities (query processing and cache management). Query processing is the
process which returns the result against user posed query. In semantic cache query
processing is done by dividing the user query into probe and remainder queries on the base
of query matching. In fact, efficiency of query processing will depend on the efficiency of
division process (query trimming) of user query into sub queries (probe and remainder) as
well as on retrieval time against both probe and remainder queries. However, efficiency of
query trimming will depends on the semantic indexing. In fact, semantic indexing at cache
is a major activity of cache management. In this context we can say that efficient semantic
caching system demands efficient query processing and indexing scheme. In this chapter we
have discussed the state of art query processing techniques and semantic indexing scheme.
We also have presented a query processing scheme sCacheQP and its complete working.
Working of sCacheQP is explained with the help of case study.

2. Definitions

This section presents some definitions that are used in rest of the chapter.

Definition 1: Given a user query Qu = πAσP(R); where ‘A’ is set of attributes required by user,
‘P’ is a condition (WHERE clause) of the user query, and ‘R’ is a relation. User Query’s
Semantics will be 3-tupple <QS, QF, QW> where QS is a set of required attributes, QF is a
relation, and QW is a condition.

Definition 2: Given a database D = {Ri} and its attributes set A = UARi, 1 ≤ i ≤n, Semantic
Enabled Schema will be 6-tupple <D, R, A, SA, P, C> where ‘D’ is the name of database, ‘R’
is name of relation, ‘A’ is a set of attributes, is a status of attributes, ‘P’ is predicate
(condition) on which data has been retrieved and cached, and ‘C’ is the refrence of contents.

Definition 3: Given a user query Qu = πAσP(R) and QC having semantics <D, R, A, SA, P, C>;
Data Set Du and Dc will be retrieved rows in the result of execution of Qu and QC
respectively.

Definition 4: Given a user query QU and cached query QC with semantics < QS, QF, QW> and
<D, R, A, SA, P, C> respectively; Probe Query (pq) will be Du ∩ Dc.

Definition 5: Given a user query QU and cached query QC with semantics < QS, QF, QW> and
<D, R, A, SA, P, C> respectively; Remainder Query (rq) will be (Du - Dc).

Definition 6: Given a user query QU and cached query QC with semantics < QS, QF, QW> and
<D, R, A, SA, P, C> respectively; Query Matching is a process in which user query’s
semantics <QS, QF, QW> are matched with semantic enabled schema <D, R, A, SA, P, C>. It is
further divided into two processes; attribute and predicate matching.

Definition 7: Given a user query QU and cached query QC with semantics < QS, QF, QW> and
<D, R, A, SA, P, C> respectively; Attribute Matching is a process in which user query’s
attributes <QS> are matched with attributes indexed by semantic enabled schema <A>.
Common attributes (CA) QS ∩ A and difference attributes (DA) QS - A are calculated for probe
and remainder queries respectively.

www.intechopen.com

Semantic Cache System

89

Definition 8: Given a user query QU and cached query QC with semantics < QS, QF, QW> and
<D, R, A, SA, P, C> respectively; Predicate Matching is a process in which user query’s
condition <QW> is matched with condition indexed by semantic enabled schema <P>.

Definition 9: Given a user query QU and cached query QC with semantics < QS, QF, QW, PA>
and <D, R, A, SA, P, C>; Query Trimming is a process in which user query (QU) is divided
into probe and remainder query.

Definition 10: Given a user predicate QW and cached predicate P; Predicate Implication
(QW→P) holds if and only if QW completely overlapped with P.

Definition 11: Given a user predicate QW and cached predicate P; Predicate Satisfiablity
holds if and only if QW partially overlapped with P.

Definition 12: Given a user predicate QW and cached predicate P; Predicate Unsatisfiablity
holds if and only if QW is not overlapped with P.

Definition 13: Given a user query QU and cached query QC with semantics < QS, QF, QW,
PA> and <D, R, A, SA, P, C>; Query Implications holds if and only if QS A as well as
predicate implication holds.

Definition 14: Given a user query QU and cached query QC with semantics < QS, QF, QW,
PA> and <D, R, A, SA, P, C>; Query Satisfiability holds if and only if QS ∩ A != Φ as well as
predicate implication/satisfiability holds.

Definition 15: Given a user query QU and cached query QC with semantics < QS, QF, QW,
PA> and <D, R, A, SA, P, C>; Query Unsatisfiaility holds either QS ∩ A = Φ or predicate
implication/satisfiability does not holds.

3. State of the art

This section presents the brief related work to semantic caching in the context of semantic
indexing and query (SELECT and PROJECT) processing for relational databases. For detail
work survey done by Ahmad et al. (Ahmad et al, 2008) can be considered and for aggregate
queries is discussed by Cai et al (Cai et al, 2005). Semantic caching is extensively studied by
researchers in both relational and XML databases. In fact, query processing and cache
management are two main areas of semantic cache system. In this section we have described
the state of the art query processing as well as semantic indexing schemes.

Results of already executed queries are cached to generate more efficient query plans for
centralized systems (Roussopoulosl, 1991). Some strategies are defined for cache to
prefecth the data by using semantics (Kang et al, 2006). Query refinement technique is
introduced to enhance the response time in multimedia databases (Chakrabarti et al,
2000). A predicate based scheme for cache is presented by Keller et al. for client server
applications (Keller and Basu, 1996). A scheme with the name of Intelligent Cache
Management (Chen et al, 1994) and its extensions are introduced (Ahmed et al, 2005,
Altinel et al, 2003, Bashir and Qadir, 2007) to reduce the overhead of page and tuple
cache. To answer the queries partially from local site; concept of semantic cache on the
base of implication (Sun et al, 1989) and the base of description logic (Ali et al, 2010, Ali
and Qadir, 2010) is introduced to increase the hit ratio up to possible extent (Bashir and
Qadir 2007, Ahmad et al, 2008a). Idea of amending query is introduced to increase the hit

www.intechopen.com

Semantics in Action – Applications and Scenarios

90

ratio (Ren et al, 2003), graph based query trimming to enhance efficiency (Abbas et al,
2010) and 112 rules (Bashir and Qadir, 2007b) are defined to reduce query processing time
by efficient query matching. Rules (112) are only applicable for simple queries (excluding
the disjunct or conjunct operator). Jonsson and colleagues presents query matching
scheme by using predicate of query (Jonsson et al, 2006). This scheme is not able to handle
the SELECT CLAUSE of SQL queries. Query matching algorithm that reduces query
processing time in the domain of relational database is also studied in our previous work
(Ahmad et al, 2008a, Ahmad et al, 2008, Ahmad et al, 2009]. Work in semantic cache in
other domains like web [Lee et al, 1995, Luo et al, 2003] and XML (Chen et al, 2002,
Sanaullah et al, 2008) also studied in literature. Importance of semantic cache and
disadvantages of page and tuple cache is presented [Ren et al, 2003, Dar et al, 1996] by
providing comparisons of semantic cache with page and tuple cache.

There are different structures used to index the semantic description like; flat structure (Dar

et al, 1996), 3-level hierarchal (Sumalatha et al, 2007a, 2007b, 2007c) segments (Ren et al,

2003), and 4-HiSIS (Bashir and Qadir, 2007). When semantics of queries are store in a flat

structure (Dar et al, 1996) the query matching process is very expensive (time consuming)

(Godfrey et al, 1997, Ahmad et al, 2008, Ahmad et al, 2009). Cache is divided into segments

(Ren et al, 2003) and chunks (Deshpande et al, 1998) to reduce the cost. Runtime complexity

and caching efficiency is improved by division of cache into segments and chunks. List of

chunks is build on the base of previous queries and then this list of chunks is used to split

the user posed (new) queries into two portions; one answered locally from cache and the

second computed remotely (Deshpande et al, 1998). 4-level hierarchal semantic indexing

scheme (4-HiSIS) is introduced to accelerate the semantic matching (Bashir and Qadir, 2006).

In 4-HiSIS; semantic matching accomplished in four steps. At first; database name is

matched. After successful matching of the database name; the relation name is matched in

the second step. At third, attributes are matched at successful matching of relation match. In

the final step predicate matching is performed on the based of successful matching of first

three steps. There is a limitation of 4-HiSIS in the context of incompleteness; because there is

no refrence of actual contents of cache is stored in 4-HiSIS. This limitation is overcomed by

the graph based semantic indexing scheme (Ahmad et al, 2010) by storing the refrence of

actual contents. In graph based semantic indexing scheme the matching procedure is

performed in five steps. At the state of art graph based indexing is most efficient semantic

indexing scheme. It also have a limitation; it has no ability to process the “ Select *“ type and

incorrect queries in cache system.

State of the art semantic cache system has limitation in both areas (query processing and

cache management i.e semantic indexing schemes). In this chapter we have presented the

new scheme for semantic cache query processing. We named this system as sCacheQP.

sCacheQP has an ability to overcome the limitaion in the context of query processing which

is the main area of the semantic cahce system.

4. Semantic Cache Query Processing (sCacheQP)

This section presents the sCacheQP which is a complete procedure of query processing that
overcomes the limitaions of the previous systems. Working and main driver algorithm of
the sCacheQP is given in Figure 1 and Figure 2 respectively.

www.intechopen.com

Semantic Cache System

91

Fig. 1. Working of sCacheQP.

Fig. 2. Main Algorithm of sCacheQP.

Algrithm1: sCacheQP
INPUT: QU (User query)
OUTPUT: FR (Result against QU)
PROCEDURE:

1. Initialization:
pq:=NULL
rq1:=NULL
rq2:=NULL

2. PORTIONS := SPLIT_QUERY (QU)
3. Reject := CHECK_REJECTION (PORTIONS)
4. if (Reject =false) goto step 5 otherwise Reject query and goto step 15
5. CA, DA :=1st_Level_Query_Rewriter (QS)

6. If(DA != empty) goto step 7 otherwise goto step 8

7. rq1 := πDAσQP(QR)

8. If (CA !=empty) goto step 9 otherwise goto step 14.

9. MC, NMCC, NMCU, Dvc, Dvu ,Opc, Opu, Coc, Cou:=Semantic_Extraction(QW, SW)

10. C1, NC1:= ExplicitySemanticMatching(MC, Dvc, Dvu ,Opc, Opu)

11. C2, NC2:= ImplicitSemanticMatching(Mc, NMCC, NMCU, C1, NC1)

12. pq, rq2:=PredicateMerging (C2, NC2, Coc, Cou)

13. aq :=GEN_AMEND_QUERY()

14. FR:= Rebuilder(pq,rq1,rq2)

15. Exit.

www.intechopen.com

Semantics in Action – Applications and Scenarios

92

4.1 Query matching

In semantic cache, user posed query is matched with the stored semantics on cache. In this
process the decision is taken place either data is available at cache or not. Query matching
process is accomplished in two sub process splitter and rejecter. Splitter will accept the user
query QU from the user interface and splits the query on the base of three clauses (SELECT,
FROM, WHERE) of the query. These three portions are called QS (SELECT: projected attributes
in the user query), QF (FROM: Relation) and QW (WHERE: selected rows/tupples on specific
condition); and send to the rejecter for initial level checking. QW will be empty if there is no
condition on user posed query (Ahmad et al, 2009). Algorithm for splitting the user query is
presented by Ahmad et al. (Ahmad et al, 2009) and given in figure 3.

Fig. 3. Algorithm to Split Query.

Responsibility of rejecter is to checks the validity of user posed query by sending the list of
selected attributes (QS), relation (QF) and predicate attributes (PA) on the schema based
indexing semantics. Predicate attribute is extracted by rejecter from QW and included in the
list. If attributes list of QS, QF and PA matched with stored schema then processing will be
continued otherwise query will be rejected and processing will be stopped. Rejecter also
builds QS in the case of ‘*’ by retrieving all attributes from schema as a list if predicate
attribute exist in schema (Ahmad et al, 2009). Algorithm to validate the user query is
presented by Ahmad et al. (Ahmad et al, 2009) and given in figure 4.

Fig. 4. Algorithm to Reject Incorrect Queries.

Algorithm 2: SPLIT_QUERY()
INPUT: QU (User query)
OUTPUT: QS, QW, QF
PROCEDURE:
 QS := SELECT CLAUSE
 QW := WHERE CLAUSE
 QF := FROM CLAUSE
 Return QS, QW, QF.

Algorithm 4: CHECK_REJECTION (QS, QF, PA)

INPUT: QS, QF, PA

OUTPUT: True/False(

PROCEDURE:

1. If all attributes of QS present in schema

If relation of QF present in schema

If PA is present in schema

 If(Qs=’*’)

return false and build Qs from schema

Else return true

 Else return true

 Else return true

Else return true

www.intechopen.com

Semantic Cache System

93

4.2 Query trimming

When it has been decided that data is available at cache then second step of sCacheQP is
performed. In this step query is divided into two sub queries called probe and remainder
queries called query trimming. This process accomplished in two stages. At first stage
vertical partition takes place and the attributes that are not available (DA) at cache directly
sent to the server as rq1 (remainder query) with original predicate. We called it 1st level
query rewriter (Ahmad et al, 2009) and its algorithm is given in figure 5. The query rq1 will
be computed as follow:

rq1 = πDAσQP(QR)

Fig. 5. Algorithm for 1st Level Query Rewriter.

Rest of attributes; that are common in both user and cached query forwarded to the
predicate processor which worked at second stage. Predicate processor consists of four sub
modules; semantic extractor, Explicit Semantic Matcher, Implicit Semantic Matcher, and
Predicate Merger. At this stage predicate is simplified by just separating the portions of it on
the base of conjunct and disjunct operators. Then semantics of user’s query predicate with
respect to the cached predicate is extracted in the form of matching columns (Mc- similar in
both user query predicate and cached predicate), non-matching columns of cache (NMc-
columns in cached query that are not matched with user query) and non-matching columns
of user query (NMu- columns in user query that are not matched with cached query). Some
other information like; data value of cache predicate (DVc), data value of user predicate,
(DVu), comparison operator in cache predicate (Opc), comparison operator in user predicate
(Opu). Algorithm to extract the semantics of predicate is given below in figure 6.

Fig. 6. Algorithm to Extract Semantics from User Query.

Algorithm 6: Semantics Extractor
Input: QW ,SW
Output:
{Coc[n], Cou[n], MC[n],, NMCC[n],, NMCU[n], Opc[n], Opu[n], Dvc[n], Dvu[n]}
Procedure:

1. MC [n]:= List of Columns Present in both QW , SW
2. NMCC[n] := List of Columns Present in SW but not in QW
3. NMCU [n]:= List of columns present in QW but not in SW
4. Opc[n] := operator set of SW
5. Opu[n] := Operator present set of QW
6. Dvc[n] := Data values in SW
7. Dvu[n] := Data values in QW
8. Coc[n]:= Connective Operators in Sw
9. Cou[n]:= Connective Operators in Qw
10. return Coc[n], Cou[n], MC[n],, NMCC[n],, NMCU[n], Opc[n], Opu[n],

Dvc[n], Dvu[n]

Algorithm 5: 1st_Level_Query_Rewritter (QS)
INPUT: QS (SELECT Clause)
OUTPUT: rq1, CA
PROCEDURE:
 CA:= Attributes exist in both Qs and Schema

DA:= Attributes exist in Qs but not in Schema
 Return CA, DA

www.intechopen.com

Semantics in Action – Applications and Scenarios

94

Fig. 7. Algorithm to Evaluate Predicate.

After extraction of semantics Mc, DVc, DVu, Opc, and Opu sent to the Explicit Semantic

Matcher. Explicit Semantic Matcher trims the predicate into two portions; one for remainder

(C1) and other for probe query (NC1). Explicit Semantic Matching algorithm is based on the

boundary values as well as on the nature of comparison operators. There are 112 rules

defined on the base of boundary values and basic comparison operators (<, <=, >, >=, = =,

!=). Algorithm 7 given in figure 7 is used to match and trims the predicate. The output of

predicate matching algorithm is predicate that is available at cache (C1) and predicate that is

not available at cache (NC1). Working of the algorithm is explained above.

Algorithm 7: ExplicitSemanticMatching
Input:{Mc[n], OPc[n], OPu[n], DVc[n], DVu[n], CC[n i], CU[n]}
Output: {C1[n], NC1[n]}
Method:
Initilaize: C1[n]:=Null, NC1[n]:=Null, i:=0
Repeat from i to n
If(DVc[i] < DVu[i])

If((OPc[i] є{!=, >,>=}Λ OPu[i] є{>, >=,=}))
 C1[i]←CC[i] OPc[i] DVc[i]
 NC1[i]←Null
else if(OPu[i] є{<, <=, !=})
 C1[i] ←CC [i]OPc[i] DVc[i]

NC1[i]←(CU[i] OPu[i]DVu[i])∧(CC[i]Rev(OPc[i]) DVc[i])
 else

 C1[i] ←Null
 NC1[i]←(CU[i] OPu[i] DVu[i])
else if(DVc[i] >DVu[i])
 if((OPc[i]є{!=,<,<=}ΛOPu[i]є{<,<=,=}))

 C1[i] ←CC[i] OPc [i]DVc[i]
 NC1[i]←Null

 else if(((OPc[i] є{!=, >, =, <=, <}ΛOPu[i]є{>, >=, !=}))
 C1[i] ←CC[i] OPc[i] DVc[i]
 NC1[i]←(CU[i] OPu[i] DVu[i])∧(CC[i]Rev(OPc[i]) DVc[i])
else
 C1[i] ←Null
 NC1[i]←(CU[i] OPu[i]DVu[i])

else if((DVc[i] = DVu[i])
 if(((OPc[i]є{>=}Λ(OPu[i] є{ >, =}))
 V (OPc[i] = OPu[i])V((OPc[i] є{<=})Λ (OPu[i] є{<,=}))
 V (OPc[i] є{!=}Λ OPu[i]є{<,>}))

C1 ←CC OPc DVc
NC1←Null

 else if(((OPc[i] є{>, <=}Λ OPu[i] є{ >=, !=})
 V (OPc[i]є{<, >=}ΛOPu[i]є{<=, !=})
 V (OPc[i]є{!=,=}ΛOPu[i]є{<=, >=}))

C1[i] ←CC[i] OPc [i]DVc[i]
 NC1[i]←(CU[i] OPu[i] DVu[i])∧(CC[i] Rev(OPc[i]) DVc[i])

 else
 C1[i] ←Null

 NC1[i]←(CU[i] OPu[i] DVu[i])
else if((DVc[i]!= DVu[i]) Λ ((OPc[i] є{=, !=}Λ OPu[i] є{!=}))

C1[i] ←CC[i] OPc[i] DVc[i]
 NC1[i]←(CU[i] OPu[i] DVu[i])∧(CC[i] Rev(OPc[i]) DVc[i])

else
 C1[i] ←Null

NC1←(CU[i] OPu[i] DVu[i])

www.intechopen.com

Semantic Cache System

95

As we have discussed that Explicit Semantic Matching algorithm is based on the boundary
value and basic comparison operator. On the base of boundary value and comparison
operators; algorithm 7 will trim the predicate into probe and remainder queries.

Remember that predicate matching algorithm having better time complexity is an
alternative of satisfiability/implication (Guo et al, 1996) used to help process query in the
literature (Ren et al, 2003, Jonsson et al, 2006). Computed values C1, NC1 and NMu sent to
the Implicit Semantic Matching algorithm to remove the additional information. Algorithm
8 is used to perform this job that is given below in figure 8.

Fig. 8. Algorithm for Implicit Matching.

Fig. 9. Algorithm to Merge the Predicate.

Algorithm 8: ImplicitSemanticMatching
Input:
 Mc[n], NMCC[n], NMCU[n], C1[n], NC1[n]
Output:
 C2, NC2
Procedure:
Initiliaze C2:=Null, NC2:=Null,i:=Null
Repeat from i to n

1. If (NMCC[i] = null) and (NMCU[i] = null) then
a. C2:= C1[i]
b. NC2 := NC1[i]

2. Else If (NMCC[i] !=null) and (NMCU[i] = null) then
a. C2:= (C1[i]) + (NMCC[i])
b. NC2 := ((C1[i]+ R (NMCC[i]))V(NC1[i])

3. Else If (NMCC[i] = null) and (NMCU[i] != null) then
a. C2:= (C1[i]) + (NMCU[i])
b. NC2 := NC1[i] + NMCU[i]

4. Else If (NMCC[i] != null) and (NMCU[i] != null) then
a. C2:= (C1[i]) + (NMCU[i]) + (NMc[i])
b.NC2:=((C1[i])+R(NMCC[i])+NMCU[i])V((NC1[i])+(NMCU[i]))

5. Else If (Mc[i] = = null) then
a. C2:= (NMCC[i]) + (NMCU[i])
b. NC2 := NMCU[i] + R(NMCC[i])

Algorithm 9: PredicateMerging
Input:
 C2, NC2, Coc, Cou
Output:
 Cached, N-Cached
Procedure:
If (Coc &Cou)є Λ
 Cached = ΛCi
 N-Cached= V(Ci ΛNCj) where 1<i,j<n and i!=j
If(Coc &Cou)єV

Cached = VCi where 1<i<n
N-Cached= VNCi where 1<i<n

If(Coc єV &CouєΛ)
Cached = ΛCi
N-Cached= V(Ci ΛNCj) where 1<i,j<n and i!=j

If(Cou єV &CocєΛ)
Cached = ΛCi
N-Cached= V((Ci ΛNCj) V(UiΛR(Uj))

 wher1<i,j<n and i!=j

www.intechopen.com

Semantics in Action – Applications and Scenarios

96

Generated cached (C2) and non-cached (NC2) predicates by the Implicit Semantic Matcher
are combined by predicate merger. Algorithm to merge the predicate is given in figure 9.

The computed predicates are then sent to the 2nd level query rewriter. Finally, probe and
remainder queries will be computed by the 2nd level query rewriter as follow:

pq = SELECT CA From QF WHERE Ccache
rq2 = SELECT CA FROM QF WHERE N-Cached

pq will be executed locally ad rq will sent to the server. Then result of both will be sent to
the rebuilder to combine the result.

4.3 Query rebuilding

Rebuilder receives the result form server (SR) which is retrieved across remainder queries
(rq1 and rq2) and results from cache (CR) across probe query (pq) combines both as a final
result FR. Final result is viewed to the user and also updated in the cache contents if
required.

5. Case study

To validate our proposed semantic indexing and query processing, we consider the case
study of university.

Figure 10 presents the schema of university with two relations employee and students
having 4 and 3 fields respectively.

Fig. 10. Schema for University.

For the above given schema of university; there are 15 and 7 segments possible across
employee and students relations respectively according to previous work (Ren et al., 2003).
In simple words, we can say that there are 15 queries are possible against employee and
similarly 7 for students as given in table 1.

In the above example there are 22 possible queries that make separate segments. So the
formula to calculate possible segments across a single relation over ‘n’ attributes is “2n-1”.
Then add segments across each relation. As in example 15+7 =22: (24-1=15 &23-1=7). Hence,
22 segments are to be visited to check availability of data on cache in the worst case which
increases the response time drastically.

www.intechopen.com

Semantic Cache System

97

SR S SA SP SC

em
p

lo
y

ee

S1 e_ID P1 1

S2 eName P1 2

S3 Sal P1 3

S4 Age P1 4

S5 e_ID, eName P3 5

S6 e_ID, Sal P4 6

S7 e_ID, Age P5 7

S8 e_ID, eName Sal
Age

P6 8

S9 e_ID Sal Age P7 9

S10 e_ID, eName
Age

P8 10

S11 eName Sal P9 11

S12 eName Age P10 12

S13 Sal Age,eName P11 13

S14 e_ID, eName, Sal P12 14

S15 Sal, Age P3 15

st
u

d
en

ts

S16 sName P21 16

S17 Grade P21 17

S18 Gender P21 18

S19 Gender, Grade P22 19

S20 Gender, sName P23 20

S21 sName, Grade P24 21

S22 sName, Grade,
Gender

P25 22

Table 1. Possible segments for Given Database.

Schema based hierarchal scheme reduces the number of comparisons to find out whether
data is available at cache or not. Only ‘n’ comparisons are required to check availability of
data on cache. Table 1 can be rearranged according to our proposed schema based semantic
indexing scheme as in Table 2.

DB
Name

Table
Names

Fields Status Condition Content

University

Employee

eName True P1 1

Age false Null Null

Sal True P2 2

e_ID True P3 1

Students

Gender false Null Null

Grade false Null Null

sName false Null Null

Table 2. Schema Based Indexing.

www.intechopen.com

Semantics in Action – Applications and Scenarios

98

Table 2 represents structure of schema based semantic indexing instead of actual contents.
There is only need to compare/match 4 and 3 fields instead of 15 and 7 segments
respectively according to previous work. Also it has the ability to reject invalid queries at
initial level instead of further processing.

For detailed discussion and simplicity, we consider only employee table of university
database. Let us consider there is employee table on server with 4 fields defined in
university schema in Figure 10. Employee table on server is given in table 3 below.

e_ID eName Age Sal

110 Asad 20 25000

111 Ali 22 22000

112 Kashif 25 25000

113 Abid 30 15000

114 Adeel 31 42000

115 Komal 37 17000

116 Mahreen 39 30450

117 Tabinda 39 28850

118 Yaseen 40 24450

119 Anees 45 30000

120 Komal 50 30000

Table 3. Employee Table on Database.

Now we divide our case study into five cases in such a way that one can easily understand
our contribution and novelty of our approach. For simplicity, each of five cases is discussed
standalone and not linked with other. Each case should be considered separately. We have
considered that cache is managed from initial for each case.

Case-I: In this case we will take an example that covers the query rejection at initial level.

Let us consider that user has already posed the following query and result has been stored
in cache.

Data on cache will be as given in table 4.

SELECT * FROM employee WHERE age>30

www.intechopen.com

Semantic Cache System

99

e_ID eName Age Sal

114 Adeel 31 42000

115 Komal 37 17000

116 Mahreen 39 30450

117 Tabinda 39 28850

118 Yaseen 40 24450

119 Anees 45 30000

120 Komal 50 30000

Table 4. Contents on cache in case-I.

Now let us consider user is going to pose following three queries.

All of three queries should be rejected at initial level; but according to all of previous work
query will be posted on server due to unavailability of data on cache.

It is a beauty of our proposed schema based indexing scheme that all of three queries will be
rejected and query processing time will be saved. According to our proposed semantic
caching architecture list of projected attributes (eName, Age in first query), relation
(emMloyee in first query) and predicate attribute is checked from schema based indexing
scheme; and query will be rejected due to unavailability of “emMloyee” relation in schema.
Similarly, query 2 and 3 will be rejected due to unavailability of “gpa” and “rollno” in
employee table respectively and there will be no probe and remainder.

By rejecting query at initial stage; query processing can be saved. In this context our
proposed semantic caching scheme has better performance than previous.

Case-II: In this case we will take an example that covers the handling of queries having * in
SELECT CLAUSE.

Let us consider that user has already posed the following query and result has been stored
in cache.

Data for above query will be retrieved and stored on cache will be as given in table 5.

1.SELECT eName, Age FROM emMloyee WHERE age>30
(relation is incorrect)
2.SELECT eName, Age FROM employee WHERE gpa>3.0
(predicate attribute is incorrect)
3.SELECT ename, rollno FROM employee WHERE age>30
 (Projected attribute is incorrect)

SELECT eName, Age FROM employee WHERE age>30

www.intechopen.com

Semantics in Action – Applications and Scenarios

100

e_ID eName Age

114 Adeel 31

115 Komal 37

116 Mahreen 39

117 Tabinda 39

118 Yaseen 40

119 Anees 45

120 Komal 50

Table 5. Contents on cache in case-II.

Note that e_ID is not required but retrieved. It is due to the requirement of key-contained

(Ren et al., 2003) contents. Now let us assume that user has posed the following query.

Now all of the fields of employee required; but according to previous work common set will

be calculated (intersection of cached attributes and user’s query attributes). There is no way

defined to calculate the common set of ‘*’ and some attributes. Here we can say that all of

the cached attributes for employee are required, but how can it be decided which of the

attributes are not in cache and should retrieved from server.

Here again we need schema at cache (first we need schema for zero level query rejection). If

schema is available at cache then SELECT CLAUSE with ‘*’ can be handled easily. By this hit

ratio is improved. Splitter splits the query and sent it to the rejecter. Rejecter checks the list

of fields with relation and predicate attribute from schema based indexing semantics. Query

will not be rejected due to availability of all member of list at schema. Common and

difference set of attributes will be computed and sent to the 1st level query matcher. i.e. CA

and DA will be computed. Remainder query (rq1) with difference attributes (here is only one

difference attribute that is ‘Sal’) will be generated by 1st level query matcher like below.

Common attributes (e_ID, Age, eName) will be sent to the Query Generator (QG). Query
Generator will generate probe and remainder query on the base of predicate matching.
Conditioned attribute (Age) is already retrieved; so there is no need of amending query in
this case.

SELECT * FROM employee WHERE age>30

rq1 = SELECT Sal FROM employee WHERE Age>30

www.intechopen.com

Semantic Cache System

101

First of semantics of predicate will be computed by semantic extractor as follow.

After computation of predicate semantics, predicate for probe and remainder query will be

computed by using predicate matching algorithm (actually 112 rules are used here). At first,

main class of algorithm is selected, here data value of user (DVu=30) is equal to the data

value of cache (DVc = 30). So, class 3 of predicate matching will be selected then priority of

relational operator will be computed. Relational operator in both queries is ‘>’; it is low

priority (defined in previous work; (Bashir and Qadir, 2007a)) operator. So, following porton

of the algorithm will be executed. given below.

Here, Cc is Age, operator is ‘>’ and DVc is 30.

So predicate for probe and remainder will be computed we say it C1 (for cached) and NC1

(for non-cached).

Due to simple predicate rules defined for complex queries will not be applied. Finally

subtraction algorithm will be applied to generate final predicate for probe and remainder

queries. As it is computed that NMc and NMu both are Null. So, first case of subtraction

algorithm will be applied.

So, there will be no change in predicate of probe and remainder query. Then, probe query

(pq) and second remainder query (rq2) will be generated as below.

In the last step result of rq1, pq and rq2 is combined by rebuilder.

Case-III: In this case generation of amending query is elaborated.

MC = Age
NMC = NULL
NMU = NULL

If((OPc є{!=, >,>=}Λ OPu є{>, >=,=}))
 C1 ←CC OPc DVc

 NC1←Null

1. If (NMc = null) and (NMu = null)
then
a. C2 := C1
b. NC2 := NC1

pq = SELECT eName, Age FROM employee WHERE Age>30
rq2 = Null

C1 =Age>30
NC1 = Null

www.intechopen.com

Semantics in Action – Applications and Scenarios

102

Let us consider that user has already posed the following query and result has been stored
in cache.

Data for above query will be retrieved and stored on cache will be as given in table 6.

E_ID eName Sal

114 Adeel 42000

115 Komal 17000

116 Mahreen 30450

117 Tabinda 28850

118 Yaseen 24450

119 Anees 30000

120 Komal 30000

Table 6. Contents on cache in case-III.

Note that e_ID is not required but retrieved. It is due to the requirement of key-contained
(Ren et al., 2003) contents. Now let us assume that user has posed the following query.

Here, generation of amending query is discussed. Remaining procedure will be same as
discussed in case-II.

Note that data across eName and Sal is present on cache, but predicate attribute (Age) is not
on cache. Now some one cannot select the data from cache due to absence of predicate
attribute; because some one cannot decide which of the data satisfy the selection criteria
(Age>35). To solve this problem, another query called amending query (Ren et al., 2003) to
retrieve primary attribute from server on user select criteria as below.

Then retrieved primary keys will be mapped with keys on cache and data will be presented
to user. By this hit ratio is increased.

Case-IV: In this case efficient predicate matching to improve hit ratio by using subtraction
algorithm is elaborated with example.

SELECT eName, Sal FROM employee WHERE age>30

SELECT eName, Sal FROM employee WHERE age>35

aq = SELECT e_ID FROM employee WHERE Age>35

www.intechopen.com

Semantic Cache System

103

Let us consider that user has already posed the following query and result has been stored
in cache.

Data for above query will be retrieved and stored on cache will be as given in table 7.

e_ID eName Age

114 Adeel 31

115 Komal 37

116 Mahreen 39

117 Tabinda 39

118 Yaseen 40

119 Anees 45

120 Komal 50

Table 7. Contents on cache in case-IV.

Note that e_ID is not required but retrieved. It is due to the requirement of key-contained
(Ren et al., 2003) contents. Now let us assume that user has posed the following query.

Now all of the required fields are matched with cached query. Splitter splits the query and

sent it to the rejecter. Rejecter checks the list of fields with relation and predicate attribute

from schema based indexing semantics. Query will not be rejected due to availability of all

member of list at schema. Common and difference set of attributes will be computed and

sent to the 1st level query matcher. i.e. CA and DA will be computed. Remainder query (rq1)

will be null due to empty set of difference attributes (All required attributes are exist on

cache). So, remainder query by 1st level query matcher will be like below.

Common attributes (Age, eName) will be sent to the Query Generator (QG). Query
Generator will generate probe and remainder query on the base of predicate matching.
Conditioned attribute (Age) is already retrieved; so there is no need of amending query in
this case.

First of semantics of predicate will be computed by semantic extractor as follow.

SELECT eName, Age FROM employee WHERE Age>30

SELECT eName, Age FROM employee
WHERE eName = ‘Komal’

rq1 = Null

www.intechopen.com

Semantics in Action – Applications and Scenarios

104

After computation of predicate semantics, predicate for probe and remainder query will be
computed by using predicate matching algorithm (actually 112 rules are used here). Probe
and remainder query will be on the base of these rules like:

i.e.

Due to simple predicate rules defined for complex queries will not be applied. Finally
subtraction algorithm will be applied to generate final predicate for probe and remainder
queries. As it is computed, that NMc and NMu both are not null. So, fourth case of
subtraction algorithm will be applied.

So, predicate for probe and remainder query will be like below.

Then, probe query (pq) and second remainder query (rq2) will be generated as below.

In the last step result of rq1, pq and rq2 is combined by rebuilder.

6. Conclusion

Caching proved very helpful to reduce the data access latency for distributed and large scale
database systems by storing the data against already executed queries. Main problem in
caching is to identify the overlapping of required data with stored data. Page and tuple cache
are not able to identify the partial overlapping. Semantic cache is capable to answer the

MC = Null
NMC = Age
NMU = eName

CC-QM ← Null
CNC-QM ← Null

C1 =Null
NC1 = Null

4. Else If (NMc != null) and (NMu != null) then
a. C2 := (C1) + (NMu) + (NMc)
b. NC2 := ((C1) + R (NMc)+NMu)V((NC1)+(NMu))

C2 := (Age>30) and (eName = ‘Komal’)
NC2 := (Age<=30) and (eName = ‘Komal’)

pq = SELECT eName, Age FROM employee
 WHERE (Age>30) and (eName = ‘Komal’)
rq2 = SELECT eName, Age FROM employee
 WHERE (Age<=30) and (eName = ‘Komal’)

www.intechopen.com

Semantic Cache System

105

overlapped (partially & fully) queries locally. The major challenges of semantic caching are
efficient query processing and cache management. For efficient query processing we have
proposed and demonstrated the working of sCacheQP system. We have provided complete
working and algorithms of sCacheQP. Case study is given to elaborate the sCacheQP. In
future, we have a plan to implement the system for data mining and data warehousing.

7. References

Abbas, M.A., Qadir, M.A., Ahmad, M., Ali, T., Sajid, N.A, (2011) “Graph Based Query
Trimming of Conjunctive Queries in Semantic Caching”, IEEE International Conference
on Emerging Technologies (ICET 2011), Islamabad, Pakistan, September 5-6, 2011.

Ali, T., Qadir, M.A., Ahmad, M. (2010) “Translation of relational queries into Description
Logic for semantic cache query processing" Information and Emerging Technologies
(ICIET) 2010, Karachi Pakistan, 14-16 June 2010

Ali, T., Qadir, M.A., (2010) “DL based Subsumption Analysis for Relational Semantic Cache
Query Processing and Management”10th International Conference on Knowledge
Management and Knowledge Technologies, Messe Congress Graz, Austria. 1–3
September 2010

Ahmad, M., Asghar, A., Qadir, M.A., Ali, T. (2010) “Graph Based Query Trimming Algorithm
for Relational Data Semantic Cache”, The International Conference on Management of
Emergent Digital EcoSystem, MEDES10, Bangkok, Thailand, October 2010.

Ahmad, M., Qadir, M.A., Razzaque, A., and Sanaullah, M. (2008a), “Efficient Query
Processing over Semantic Cache”. Intelligent Systems and Agents, ISA 2008, indexed
by IADIS digital library (www.iadis.net/dl). Held within IADIS Multi Conference
on Computer Science and Information Systems (MCCSIS 2008), Amsterdam,
Netherland. 22-27 July 2008

Ahmad, M., Qadir, M.A., and Sanaullah, M. (2008b) , “Query Processing over Relational
Databases with Semantic Cache: A Survey”. 12th IEEE International Multitopic
Conference, INMIC 2008, IEEE, Karachi, Pakistan, December 2008.

Ahmad, M., Qadir, M.A., and Sanaullah, M. (2009) “An Efficient Query Matching Algorithm
for Relational Data Semantic Cache”. 2nd IEEE conference on computer, control and
communication, IC409, 2009.

Ahmed, M.U, Zaheer, R.A, and Qadir, M.A., (2005). “Intelligent cache management for data
grid”; In Proceedings of the Australasian Workshop on Grid Computing and E-Research,
New South Wales, Australia, 2005.

Altınel, M., Bornhövd, C., Krishnamurthy, C., Mohan, C., Pirahesh, H., and Reinwald, B.,
(2003)., “Cache Tables: Paving the Way for an Adaptive Database Cache”, Proceedings
of the 29th VLDB Conference, VLDB Endowment, Berlin, Germany, pp. 718-729.

Bashir, M.F and Qadir, M.A., (2006). “HiSIS: 4–Level Hierarchical Semantic Indexing for
Efficient Content Matching over Semantic Cache”. INMIC, IEEE, Islamabad,
Pakistan, pp. 211-214.

Bashir, M.F and Qadir, M.A., (2007). “ProQ – Query Processing Over Semantic Cache For
Data Grid”, Center for Distributed and Semantic Computing, Mohammad Ali Jinnah
University, Islamabad, Pakistan 2007.

Bashir, M.F., Zaheer, R.A., Shams, Z.M. and Qadir, M.A., (2007). “SCAM: Semantic Caching
Architecture for Efficient Content Matching over Data Grid”. AWIC,Springer
Heidelberg, Berlin, 2007. pp. 41-46.

Chakrabarti, K., Porkaew. K., and Mehrotra, S., (2000). “Efficient Query Refinement in
Multimedia Databases”, 16th International conference on Data Engineering, IEEE, 2000.

www.intechopen.com

Semantics in Action – Applications and Scenarios

106

Cai, J., Jia, Y., Yang, S., and Zou, P., (2005) “A Method of Aggregate Query Matching in
Semantic Cache for Massive Database Applications”. Springer-Verlag, Berlin
Heidelberg 2005, pp. 435-442.

Chen, C.M. and Roussopoulos, N., (1994). “The Implementation and Performance
Evaluation of the ADMS Query Optimizer: Integrating Query Result Caching and
Matching,” Proc. Int’l Conf. Extending Database Technology, pp. 323-336.

Chen, L., Rundesteiner, E.A., Wang, S., (2002). “XCache -A Semantic Caching System for
XML Queries”. In Proceedings of the 2002 ACM SIGMOD international Conference on
Management of Data, ACM Press, New York, pp. 618-618.

Dar, S., Franklin, M.J., Jonnson, B.T., (1996). “Semantic Data Caching and Replacement,”
Proceeding of VLDB Conference, VLDB, pp. 330-341.

Deshpande, P.M. Ramasamy, K., and Shukla, A., (1998). “Caching Multidimensional
Queries Using Chunks”, ICMD, ACM, New York, USA, 1998, pp. 259-270.

Godfrey, P. and Gryz, J., (1997). “Semantic Query Caching for Heterogeneous Databases,”
In Proc. 4th KRDB Workshop "Intelligent Access to Heterogeneous Information", Athens,
Greece, pp.61-66.

Guo, S., Sun, W., and Weiss, M.A., (1996). “Solving Satisfiability and Implication Problems
in Database Systems,” Database Systems, ACM, pp. 270-293.

Jonsson, B. T., Arinbjarnar, M., Thorsson, B., Franklin, M., and Srivastava, D., (2006).
“Performance and overhead of semantic cache management”, Internet Technology,
ACM, New York, USA pp. 302–331.

Kang, S.W., Kim, J., Im, S., Jung, H., and Hwang, C.S., (2006). “Cache Strategies for
Semantic Prefetching Data”, Proceedings of the Seventh International Conference on
Web-Age Information Management Workshops, IEEE, 2006.

Keller, A.M. and Basu, J., (1996). “A Predicate-Based Caching Scheme for Client-Server
Database Architectures”, International Journal on Very Large Database, Springer,
Heidelberg, Berlin, , pp. 35-47.

Lee, D. and Chu, W.W., (1999). “Semantic Caching via Query Matching for Web Sources,”
Proc. CIKM, ACM, Kansas City, USA, pp. 77-85.

Luo, Q., Naughton, J. F., Krishnamurthy, R., Cao, P., and Li, Y., (2000). “Active Query
Caching for Database Web Servers”, Third International Workshop WebDB on The
World Wide Web and Databases Springer, London, UK, pp. 92-104.

Ren, Q., Dunham, M.H., and Kumar, V., (2003). “Semantic Caching and Query Processing”.
Knowledge and Data Engineering, IEEE Computer Society, 2003, pp. 192-210.

Roussopoulos, N. An incremental Access Method for View Cache: Concept, Algorithms, and
Cost Analysis,” ACM Trans.Database Systems, vol. 16, no. 3, 1991, 535-563.

Sanaullah, M., Qadir, M.A., and Ahmad, M., (2008) “SCAD-XML: Semantic Cache Architecture
for XML Data Files using XPath with Cases and Rules ”. 12th IEEE International
Multitopic Conference, INMIC 2008, IEEE, Karachi, Pakistan, December 2008.

Sumalatha, M.R., Vaidehi, V., Kannen, A., Rajasekar, M., Karthigaiselven, M., (2007). “Hash
Mapping Strategy for Improving Retrieval Effectiveness in Semantic Cache
System”, ICSCN, IEEE, Chennai, India, pp. 233-237.

Sumalatha, M.R., Vaidehi, V., Kannen, A., Rajasekar, M., Karthigaiselven, M., (2007).
“Dynamic Rule Set Mapping Strategy for the Design of Effective Semantic Cache”,
ICACT, IEEE, Gangwon-Do, Korea, pp. 1952-1957.

Sumalatha, M.R., Vaidehi, V., Kannen, A., Rajasekar, M., Karthigaiselven, M., (2007). “Xml
Query Processing – Semantic Cache System”. IJCSNS, pp. 164-169.

Sun, X., Kamel, N.N., and Ni, L.M., (1989). “Processing Implication on Queries”, Software
Engineering, IEEE, Piscataway, USA, pp. 1168-1175.

www.intechopen.com

Semantics in Action - Applications and Scenarios

Edited by Dr. Muhammad Tanvir Afzal

ISBN 978-953-51-0536-7

Hard cover, 266 pages

Publisher InTech

Published online 25, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The current book is a combination of number of great ideas, applications, case studies, and practical systems

in the domain of Semantics. The book has been divided into two volumes. The current one is the second

volume which highlights the state-of-the-art application areas in the domain of Semantics. This volume has

been divided into four sections and ten chapters. The sections include: 1) Software Engineering, 2)

Applications: Semantic Cache, E-Health, Sport Video Browsing, and Power Grids, 3) Visualization, and 4)

Natural Language Disambiguation. Authors across the World have contributed to debate on state-of-the-art

systems, theories, models, applications areas, case studies in the domain of Semantics. Furthermore, authors

have proposed new approaches to solve real life problems ranging from e-Health to power grids, video

browsing to program semantics, semantic cache systems to natural language disambiguation, and public

debate to software engineering.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Munir Ahmad, Muhammad Abdul Qadir, Tariq Ali, Muhammad Azeem Abbas and Muhammad Tanvir Afzal

(2012). Semantic Cache System, Semantics in Action - Applications and Scenarios, Dr. Muhammad Tanvir

Afzal (Ed.), ISBN: 978-953-51-0536-7, InTech, Available from: http://www.intechopen.com/books/semantics-in-

action-applications-and-scenarios/semantic-cache-system

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

