
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

2

Program Slicing Based on Monadic Semantics

Yingzhou Zhang1,2,3
1College of Computer, Nanjing University of Posts and Telecomm., Nanjing
2Jiangsu High Technology Research Key Lab. for Wireless Sensor Networks,

3Key Lab of Broadband Wireless Communication and Sensor Network Technology,
Ministry of Education Jiangsu Province, Nanjing,

China

1. Introduction

A program slice consists of those statements of a program that may directly or indirectly
affect the variables computed at a given program point (Weiser, 1984). The program point p
and the variable set V, denoted by <p, V>, is called a slicing criterion. Program slicing has
applications in software testing and debugging, measurement, re-engineering, program
comprehension and so on (Kamkar, 1995; Tip, 1995; Harman, 2001; Binkley, 1996; Gallagher,
1991).

Program slicing algorithms can be roughly classified as static slicing and dynamic slicing
methods, according to whether they only use statically available information or compute
those statements that influence the value of a variable occurrence for a specific program
input. Most of the existing slicing algorithms rely on relation graphs such as system
dependence graphs (SDG) or program dependence graphs (PDG). These slicing methods are
incremental, sequential, not combinatorial or not parallelizable easily for multi-core systems.
However modern programming languages support modularized programming and
programs might consist of a set of modules. So the program analysis should reflect this
design technology, and their methods (including program slicing) should be flexible,
combinable, and parallelizable for improving the efficiency.

As the behavior of a program is determined by the semantics of the language, it is
reasonable to expect an approach for program slicing based on formal semantics of a
program. On the basis of this view, this paper proposes an approach for program slicing
based on modular monadic semantics, called modular monadic slicing. It can compute slices
directly on abstract syntax, without explicit construction of intermediate structures such as
dependence graphs.

The program slicing methods focused on the semantics of programs can be found in ref.
(Hausler, 1989; Ouarbya, 2002; Venkatesh, 1991). These methods are based on the standard
denotational semantics of a program language. As mentioned in ref. (Moggi, 1991; Liang &
Hudak, 1996; Wansbrough, 1997; Mosses, 1998; Zhang & Xu, 2004), traditional denotational
semantics lack modularity and reusability. A better solution was to use monads (Moggi,
1991) to structure denotational semantics, with the help of monad transformers (Moggi, 1991;
Wadler, 1992; Espinosa, 1995) which can transform a given monad into a new one with new

www.intechopen.com

Semantics in Action – Applications and Scenarios

42

operations. S.Liang et al. used monads and monad transformers to specify the semantics of
programming language; called it modular monadic semantics. In this paper, we will employ it
in our program slicing algorithm.

In our previous work (Zhang et al, 2004, 2005, 2006; Zhang & Xu, 2005; Wu et al. 2006), we
abstracted the computation of program slicing as a simple slice monad transformer, which
took only the label set L as its parameter, without reflecting explicitly the change of the slice
table Slices. In ref. (Zhang, 2007), we presented theoretical foundation for our previous work.
Based on these theories of the monadic slicing and from the view of the practical
implementation, this paper will redesign the static slice monad transformer. The
extensibility and reusability of our monadic method will be showed by easily introducing a
new program feature (such as pointers) to slicing analysis.

The rest of the paper is organized as follows: In Section 2, we briefly introduce and illustrate
the concepts of modular monadic semantics through a simple example language. The
computation of program slicing is abstracted as slice monad transformer in Section 3. In
Section 4, we discuss and illustrate our static slicing algorithm in detail. In Section 5, we
show how our slicing algorithm can be readily adapted to an extension for the example
language with pointers. In Section 6 and 7, we address the implementation, the time and
space complexity analysis. We conclude this paper with directions for future work in
Section 8.

Along the paper, the presentation follows the monadic semantics style. We use Haskell1
notation with some freedom in the use of mathematical symbols and declarations. For
brevity and convenience, we will omit the type constructors in some definitions.

2. Modular monadic semantics

In this section, we briefly review the theory of monads (Wadler & Thiemann, 2003; Moggi,
1989), monad transformers and modular monadic semantics (Liang, 1998). Readers familiar
with these topics may skip the section, except for the last three paragraphs (about the syntax
and monadic semantics of an example language).

2.1 Monads and monad transformers

Monads, originally coming from philosophy, were discovered in category theory in the
1950s and introduced to the semantics community by Moggi in 1990s (Moggi, 1989). After
this work, Wadler popularized Moggi’s ideas in the functional programming community
(esp. in Haskell) (Wadler, 1995). In the monad-based view of computation, a monad is a way
to structure computations in terms of values and sequences of computations using those
values (Newbern, 2002). The monad determines how combined computations form a new
computation and frees the programmer from having to code the combination manually each
time it is required. From this view, a monad can be thought as a strategy for combining
computations into more complex computations.

In Haskell, monads are implemented as a type constructor class with two member
operations/functions.

1 Haskell is an advanced purely functional programming language. Please visit its official website
(http://www.haskell.org or http://haskell.org) for more information.

www.intechopen.com

Program Slicing Based on Monadic Semantics

43

class Monad m where

return :: a  m a

(>>=) :: m a  (a  m b)  m b

Here, return is the Haskell name for the unit and >>= (pronounced “bind”) is the extension
operation of the monad. The above definition of the monad class means: a parameterized
type m (which may think of as a function from types to types) is a monad if it supports the
two operations return and >>= with the types given. Using the combinator analogy, a
monad m is a combinator that can apply to different values. m a is a combinator applying to
a value of type a. The return operation puts a value into a monadic combinator. The >>=
operation takes the value from a monadic combinator and passes it to a function to produce
a monadic combinator containing a new value, possibly of a different type. The >>=
operation is known as "bind" because it binds the value in a monadic combinator to the first
argument of an operation.

To be a proper monadic combinators, the return and >>= operations must work together
according to some simple laws. Monads laws state in essence that >>= operation (sequential
composition) is associative, and return is its unit/identity. Failure to satisfy these laws will
result in monads that do not behave properly and may cause subtle problems when using
the do-notation2.

A monad (call it m) therefore defines a type of computation. The nature of the computation
is captured by the choice of the type m. The return operation constructs a trivial computation
that just renders its argument as its result. The >>= operation combines two computations
together to make more complex computations of that type.

To make the use of monads more convenient, we adopt the following syntactic sugar (which
is similar to S. Liang’s notation and the do-notation in Haskell as well):

{e}  e

{m; e}m  m >>= \ _  {e}

{x  m; e}m  m >>= \ x  {e}

{let exp; e}  let exp in {e}

In practice, the computations can’t be performed in isolation. In this case, we need a monad

that combines the features of the two monads into a single computation. It is impossible in

general to combine two monads to form a new monad. Moreover, it is inefficient and poor

practice to write a new monad instance with the required characteristics each time a new

combination is desired. Instead, there is the technique, called monad transformers (Liang,

1998), which can transform a given monad into a new one that has both the new operations

and maintains those of the former monad. The concept of monad transformers was

rediscovered by D.Espinosa in Moggi’s original work. He developed a system, Semantic Lego,

which implemented Moggi’s original monad constructors to give a modular semantics for

languages.

2 Do notation is an expressive shorthand for building up monadic computations. In short, the do
notation allows us to write monadic computations using a pseudo-imperative style with named

variables. The result of a monadic computation can be “assigned” to a variable using a left arrow 
operator.

www.intechopen.com

Semantics in Action – Applications and Scenarios

44

In Haskell, a monad transformer can be defined as any type constructor t such that if m is a
monad, so is “t m”, by using the two parameter constructor class MonadTrans:

class (Monad m, Monad t m)  MonadTrans t m where

 lift :: m a  t m a

The member function lift lifts a monadic computation in the inner monad m into the
combined monad “t m”. Furthermore, we expect a monad transformer to add features,
without changing the nature of an existing computation. This can be obtained by the
properties of lift function above (also called monad transformer laws). The monad transformer
laws guarantee the basic lifting property that any program, which does not use the added
features, should behave in the same way after a monad transformer is applied. Intuitively,
these laws say that lifting a null computation brings about a null computation, and that
lifting a sequence of computations is equivalent to first lifting them individually, and then
combining them in the lifted monad.

For example, Figure 1 gives the environment monad transformer, EnvT, which can be used
to add environment reading functionality to other monads. In Figure 1, the functions rdEnv
and inEnv, return the current environment and perform a computation in a given
environment, respecitively.

Fig. 1. Environment monad transformer EnvT(Liang,1998).

2.2 Modular monadic semantics

Modular monadic semantics specifies the semantics of a programming language by

mapping terms to computations, where the details of the environment, store, etc. are hidden

within a monad. This is difference from traditional denotational semantics, which maps a

term (an environment or a continuation) to an answer. The modular monadic semantics is

composed of two parts: modular semantic building blocks and monad transformers. Semantic

building blocks define the monadic semantics of individual source language features. They

are independent of each other.

Monad transformers define the kernel-level operations in a modular way. Multiple monad
transformers can be composed to form the underlying monad used by all the semantic

newtype EnvT r m a = EnvT {runEnvT :: r  m a}

instance (Monad m)  Monad (EnvT r m) where

 return a = EnvT (_ return a)

 m >>= k = EnvT (\r {a  runEnvT m r; runEnvT (k a) r})

instance MonadTrans (EnvT r) where

lift m = EnvT (_ m)

class (Monad m)  EnvMonad r m where

inEnv :: r  m a  m a

rdEnv :: m r

instance (Monad m)  EnvMonad r (EnvT r m) where

inEnv r m = EnvT (_ runEnvT m r)

rdEnv = EnvT (\r return r)

www.intechopen.com

Program Slicing Based on Monadic Semantics

45

building blocks. The crucial property of modular monadic semantics is the division of the
monad m into a series of monad transformers, each representing a computation. As
mentioned in the previous section, monad transformers provide the power to represent the
abstract notion of programming language features, but still allow us to access low-level
semantic details. The concept of lifting allows us to consider the interactions between
various features. In some sense, monad transformers can be designed once and for all (Liang,
1998), since they are entirely independent of the language being described. From this view,
we can draw the computation of program slicing as an entity that is independent of the
language being analyzed. This will be discussed in the next section. Before doing it, we
illustrate the modular monadic semantic description of a very simple imperative
programming language W.

The W language considered in this paper is very similar to the language described in ref.

(Slonneger & Kurtz, 1995).The abstract syntax and semantic building blocks of the W

language are provided in Figure 2 and 3 respectively. In Figure 3, the identifier Fix

denotes a fixpoint operator; xtdEnv and lkpEnv are the updating and lookup operators of

environments Env, respectively; updSto and alloc are the updating and allocation functions

of stores Loc, respectively; rdEnv and inEnv are the basic operators of the enviornment

monad EnvMonad (given in Figure 1); putValue and getValue are the writting and reading

functions of I/O actions, respectively. Following Venkatesh’s assumption for expressions

in ref. (Venkatesh, 1990), we also assume that the labeled expressions have no side-effects.

The expressions, whose syntax is left unspecified for the sake of generality, consist of

operations over identifiers and are uniquely labeled. The label is for the entire

expression.

Fig. 2. Abstract syntax of the W language.

In modular monadic semantics, the monad definition is simply a composition of the
corresponding monad transformers, applied to a base monad. In this paper, we use the

Domains:

arg: Arg (Arguments); b: Blk (Blocks); c: Cmd (Commands);

d: Dec (Declarations); e: Exp (Expressions); ide: Ide (Identifiers);

l: Label (Labels); p: Prg (Programs); t: Type (Types)

Abstract Syntax:

p :: = program ide is b

b :: = d begin c end

d :: = const ide = l.e | var ide : t | d1; d2

c :: = ide := l.e | c1; c2| skip | read ide | write l.e

|while l.e do c endwhile | if l.e then c1 else c2 endif

www.intechopen.com

Semantics in Action – Applications and Scenarios

46

input/output monad IO as the base monad. We then select some monad transformers, say
StateT and EnvT, and apply them to the base monad IO, forming the combined monad
ComptM:

ComptM  (EnvT  StateT) IO

The environment monad transformer adds an environment to the given monad. The return
function ignores the environment, while >>= passes the inherited environment to both sub-
computations. Equipped with the monad transformers, the resulting monad ComptM can
support all of the semantic building blocks in Figure 3, which gives the formal semantic
description we expected.

Fig. 3. Semantic building blocks of the W language.

3. Static slice monad transformer

As mentioned above, each monad transformer represents a single notion of computation.
Since static program slicing can be viewed as a computation, we can abstract it as a
language-independent notion of a computation by using a static slice-monad transformer

Domains:

r: Env (Environments); loc: Loc (Stores); s: State (States); v: Value (Values)

Semantics Functions:

M :: Prg  ComptM ()

M program ide is b = B b

B :: Blk  ComptM ()

B d begin c end = {r  D d ; inEnv r C c }

D :: Dec  ComptM Env ; E :: Exp  ComptM Value

D const ide = l.e = {v  E l.e ; r  rdEnv; xtdEnv (ide, v, r) }

D var ide : t = {loc  alloc; r  rdEnv; xtdEnv (ide, loc, r)}

D d1; d2 = {r rdEnv; rinEnv r D d1 ; inEnv r D d2)}

C :: Cmd  ComptM ()

C ide := l.e = {v  E l.e ; r  rdEnv; loc  lkpEnv(ide, r); updSto(loc, v)}

C c1; c2 = {C c1 ; C c2 }

C skip = return ()

C if l.e then c1 else c2 endif = {v  E l.e ; case v of TRUE  C c1

FALSE  C c2}

C while l.e do c endwhile = Fix (\ f  {v  E l.e ;

case v of TRUE  f  C c

FALSE  return () })

C read ide = {loc  lkpEnv(ide, rdEnv); v  getValue; updSto(loc, return v)}

C write l.e = { v  E l.e ; putValue v }

www.intechopen.com

Program Slicing Based on Monadic Semantics

47

SliceT. Its definition is given in Figure 4, where l denotes a set of labels of expressions that
were required to compute the current statement; st denotes a slice table Slices whose data
structure is defined as follows:

type Var = String

type Labels = [Int]

type Slices = [(Var, Labels)]

lkpSli :: Var  Slices  ComptM Labels

updSli :: (Var, ComptM Labels) Slices ComptM ()

mrgSli :: Slices  Slices  ComptM Slices

Here, [] denotes a table data structure. The three operators, lkpSli, updSli and mrgSli, represent
to lookup the slice of a variable in a given Slices table, to update a table Slices through a
variable with its slice, and to merge two given slice tables into a new one, respectively.

In the similar way as ref. (Zhang, 2005, 2007), the following theorems are straightforward.
These theorems guarantee the correctness of the definition of the slice monad transformer in
Figure 4.

Theorem 1. SliceT l st m is a monad.

Theorem 2. SliceT l st is a monad transformer.

A static slice-monad transformer SliceT l st, taking an initial set of labels and a slice table,

returns a computation of a pair of the resulting value and the new slice table. The operator

return returns the given value with the unchanged slice table. The operator >>= takes a

monad m and a function k. It passes the initial set of labels l and slice table st to the monad

m; this yields a value a paired with an intermediate slice table st; function k is applied to the

value a, yielding a monad (k a); this yields in l and st the final result paired with the final

slice table.

The lifting function lift says that a computation in the monad m behaves identically in the
monad SliceT l st m and makes no changes to the slice table. The operation rdLabel/inLabel
and getSli/setSli support reading/setting of the parameter l and st in the static slice-monad
SliceMonad, respectively.

With the use of the transformer SliceT, other monads can be easily transformed into the
static slice-monad SliceMonad. For instance, we can lift respectively the basic operators of
monads StateMonad and EnvMonad through SliceT as shown in Figure 4.

4. A monadic static slicing algorithm

The static slice for a variable in a program is the collection of all possible computations of
values of that variable. In this section, we only consider end slicing for a single variable, i.e.
the slicing criterion is <p, v>, where v the variable of interest, and p the end program point.
One can easily generalize this to a set of points and a set of variables at each point by taking
the union of the individual slices (Binkley, 1996).

The main idea of monadic static slicing algorithms can be briefly stated as follows: for
obtaining a static slice, we firstly apply the slice transformer SliceT to semantic building
blocks of the program analyzed. It makes the resulting semantic description include

www.intechopen.com

Semantics in Action – Applications and Scenarios

48

Fig. 4. Static slice-monad transformer SliceT.

program slice semantic feature. According to the semantic description, we then compute

static slices of each statement in sequence. Finally we will obtain the static slices of all single

variables in the program. In fact, with the process of analyzing a program, the Slices table,

which includes the current individual program slices for all variables of this program, is

modified steadily according to the monadic slicing algorithm.

Concretely, with respect to the example program W mentioned in Section 2, Figure 5 gives

the main part of our monadic static algorithm. Figure 5 gives the rules of when and how to

modify the current slice table. It adds the computation of static slicing into program analysis

modularly, with the help of the monad transformers SliceT given in Section 3. SliceT can be

composed with other transformers such as EnvT and StateT as follows, and apply them to

monad IO, forming the underlying monad ComptM:

ComptM  (SliceT  StateT  EnvT) IO

In Figure 5 (or the monadic slicing algorithm in a sense), for each computation of a labeled

expression l.e, there is an intermediate set L as follows:

L = {l}  L 
(l.e)

(,)
x Refs

lkpSli x T



where T represents the current slice table before analyzing the expression l.e; Refs(l.e)
denotes the set of variables appeared in l.e. The relation above means that after an

newtype SliceT l st m a = SliceT {runSliceT :: (l, st)  m (a, st)}

instance (Monad m)  Monad (SliceT l st m) where

 return a = SliceT (\(_, st) return (a, st))

m >>= k = SliceT (\(l, st) {(a, st)  runSliceT m (l, st);

runSliceT (k a) (l, st)})

instance MonadTrans (SliceT l st) where

lift m = SliceT (\(_, st) {a  m; return (a, st)})

class (Monad m)  SliceMonad l st m where

rdLabel :: m l

inLabel :: l  m a  m a

getSli :: m st

setSli :: st  m st

instance (Monad m)  SliceMonad l st (SliceT l st m) where

rdLabel = SliceT return

inLabel l m = SliceT (\(_, st) runSliceT m (l, st))

getSli = SliceT (\(_, st) return (st, st))

setSli st = SliceT (\(l, _) return (l, st))

instance (EnvMonad r m, MonadTrans (SliceT l st) m)

 EnvMonad r (SliceT l st m) where

inEnv r (SliceT l st m) = SliceT (\(l,st) inEnv r (runSliceT m (l,st)))

rdEnv = lift rdEnv

instance (StateMonad s m, MonadTrans (SliceT l st) m)

 StateMonad s (SliceT l st m) where

update = lift . update

www.intechopen.com

Program Slicing Based on Monadic Semantics

49

expression l.e included in the current expression is computed, the initial set L should be
transformered by adding the label of expression l.e, i.e., label l, and all sets of labels of
expressions influenced by the variables of the expression l.e.

In addition, the updSli operation of the Slices type is applied to record the result of the static
slicing in program analysis. In case of the language W, only when describe the semantics of
assignment statement and initial assignment statement within a variable declaration, the
corresponding operator updSli should be added in as shown in Figure 5.

A static slice includes the statements that possibly affect the variable in the slicing criterion.
Therefore, for capturing these possible statements, in Figure 5 we ought to add the operator
mrgSli into semantic descriptions of conditional statement and loop statement.

After the last statement of a program is analyzed, we could obtain, from the result Slices
table, the static slice of each single variable (say var) of the program, which is the set of
labels of all expressions influenced on the var variable:

 L = lkpSli (var, getSli)

For getting the final result of the static slices, i.e., a syntactically valid subprogram, we --
following Venkatesh (Venkatesh, 1990) -- define Syn(s, L) for language W in Figure 6, where s is
a W-program analyzed. It guides us how to construct a syntactically valid subprogram of s
from the set L. It just gives a strategy for returning the final result/subprogram from a given
set L, so it could be changed to cater to different people’s need. For example, if one does not
consider variable declaration as part of slices, then one might change the corresponding term
in Figure 6 as follows:

 “var ide : t ” : “skip”

The correctness proofs of our monadic static slicing algorithms can refer to their termination
theorem and their consistency with PDG-based slicing algorithms, given in ref. (Zhang,

2007). In fact, the term L and
(l.e)

(,)
x Refs

lkpSli x T

 in the above definition of L can accurately

capture control dependences and data dependences related, respectively.

For more about the algorithm, we now illustrate to use the rules in Figure 5 to compute the
static slice w.r.t. <8, sum> of an example W program in Figure 7. Its each expression is
uniquely labeled through the label (marked in source program) of the place where the
expression presences. So the fourth expression is “i := 1”.

According to the rule/semantics of assignment statements in Figure 5, after the third

expression (i.e. “sum := 0”) is analyzed, its intermediate set L (whose initial value is ) is

changed to L:

L = {3}  L  lkpSli (sum, T) = {3}     = {3}

Where T is the current slice table, including the static slices of the “i" and “sum” variables,
written briefly as L(i) and L(sum), respectively. Since this expression is an assignment one,

the related data in Slices need to update through updSli, i.e. L(sum) = L = {3}. Similarly, after
the 4th expression is analyzed, we have

L = {4}  L  lkpSli (i, T) = {4}; L(i) = {4}

www.intechopen.com

Semantics in Action – Applications and Scenarios

50

And keep going for the 5th-7th expressions, we obtain

5th: L = {5}    L(i) = {4, 5}

6th: L = {6}  L  (L(sum)  L(i)) = {3, 4, 5, 6}; L(sum) = {3, 4, 5, 6}

7th: L = {7}  L  L(i) = {4, 5, 7}; L(i) = {4, 5, 7}

Fig. 5. Monadic semantics of static slicing for W programs.

M :: Prg  ComptM ()

M program ide is b = return ()

B :: Blk  ComptM ()

B d begin c end = return ()

D :: Dec  ComptM Env E :: Exp  ComptM Value

D const ide = l.e = { L  rdLabels; T  getSli;

L  {l}  L 
(l.e)

(,)
x Refs

lkpSli x T

 ; updSli(ide, L, T) }

D var ide : t = return ()

D d1; d2 = return ()

C :: Cmd  ComptM ()

C ide := l.e = { L  rdLabels; T  getSli;

L  {l}  L 
(l.e)

(,)
x Refs

lkpSli x T

 ; updSli(ide, L, T) }

C c1; c2 = {C c1 ; C c2 }

C skip = return ()

C if l.e then c1 else c2 endif = { L  rdLabels; T  getSli;

L  {l}  L 
(l.e)

(,)
x Refs

lkpSli x T

 ;

inLabels L C c1 ; T1  getSli; setSli(T);

inLabels L C c2 ; T2  getSli; mrgSli(T1, T2) }

C while l.e do c endwhile = Fix (f. {L rdLabels; T  getSli;

L{l}L 
(l.e)

(,)
x Refs

lkpSli x T

 ;

f  {inLabels L C c ; T getSli; mrgSli(T, T)}})

C read l.ide = {L  rdLabels; T  getSli; L  {l}  L; updSli(ide, L, T)}

C write l.e = return ()

www.intechopen.com

Program Slicing Based on Monadic Semantics

51

Fig. 7. An example program.

Because of the loop of While statement, the 5th-7th expressions are analyzed again:

5th: L = {5}  L  L(i) = {4, 5, 7}

6th: L = {6} L  (L(sum)  L(i)) = {3, 4, 5, 6, 7};

L(sum) = {3, 4, 5, 6, 7}

7th: L = {7}  L  L(i) = {4, 5, 7}; L(i) = {4, 5, 7}

Now, if the whole loop body is analyzed over again in this way, the slice L(sum) and L(i)
will not be changed again, reaching their fixpoint. So after finishing the analysis of the last
statement (8h), we obtain the final table Slices as follows:

L(i) = {4, 5, 7}; L(sum) = {3, 4, 5, 6, 7}

According the rules of Syn(s, L) in Figure 6, we can obtain the final result of static slice w.r.t.
<8, sum> of the example program.

5. Extending W language with pointers

The modular monadic approach mentioned previously is flexible enough that we can easily

introduce a new program feature to analysis. In this section, we will illustrate this power by

considering an extension of the language W with pointers. We shall show how to adapt the

implementation to this extension, with a small change in our existing monadic slice

algorithm.

The introduction of a pointer will lead to aliasing problems (Horwitz, 1989; Hind, 1999) (i.e.
multiple variables access the same memory location), so we need pointer analysis to obtain
the corresponding data dependency information. In order to represent the unbounded data

 program Example is

1 var sum

2 var i

 begin

3 sum := 0 ;

4 i := 1;

5 while i < 11 do

6 sum := sum + i;

7 i := i + 1

endwhile;

8 write sum

end

www.intechopen.com

Semantics in Action – Applications and Scenarios

52

Fig. 6. The definition of Syn(s, L), where L = lkpSli(var, getDSli).

structures in a finite way for the presence of pointers, we consider that all point in the same

procedure applied to form an array of heap space, and will deal with this array as a whole.

The extended algorithm combines the point-to analysis by data-flow iteration with forward

monad slicing. With the illumination of this idea, the key issue to be addressed is the

solution to assignments. The other statements (such as conditional statements, loop

statements, etc.) could be resolved by adding point-to computation to the existing slicing

methods. Before going on, we introduce a data structure for point-to analysis.

Similar to the Slices datatype in Section 3, we design an abstract datatype PT for point-to
analysis:

type Var = String

type PtSet = [Var]

type PT = [(Var, PtSet)]

getPT :: ComptM PT

setPT :: PT  ComptM PT

lkpPT :: Var  PT  ComptM PtSet

Syn(s, L) = case s of

“program ide is b ” : if Syn(b, L) = “skip” then “skip” else “program ide is b”

“d begin c end ” : if Syn(d, L)=Syn(c, L)=“skip” then “skip” else “d begin c

end”

“const ide = l.e ” : if l  L then “const ide = l.e” else “skip”

“var ide : t “ : if ide  {var}  
L

fsRe
l

)l.e(then “var ide : t ” else “skip”

“d1; d2 ” : Syn(d1, L); Syn(d2, L)

“ide := l.e ” : if l  L then “ide := l.e” else “skip”

“c1; c2 ” : Syn(c1, L); Syn(c2, L)

“skip ” : “skip”

“read ide ” : if ide  {var}  
L

fsRe
l

)l.e(then “read ide” else “skip”

“write l.e ” : “skip”

“if l.e then c1 else c2 endif ”: if (Syn(c1, L) = Syn(c2, L) = “skip”)  (l  L) then

“skip”

else “if l.e then Syn(c1, L) else Syn(c2, L) endif ”

“while l.e do c endwhile ” : if (Syn(c, L) = “skip”)  (l  L) then “skip”

else “while l.e do Syn(c, L) endwhile”

www.intechopen.com

Program Slicing Based on Monadic Semantics

53

updPT :: Var  PtSet  PT  ComptM ()

mrgPT :: PT  PT  ComptM PT

The point-to table, PT, is a table of pairs of a single variable and its associated point-to set (a

set of variables). It has five operators getPT, setPT, lkpPT, updPT and mrgPT, which return

and set the current table of point-to sets, lookup a point-to set corresponding to a variable in

a given table of point-to sets, update some point-to sets corresponding to a list of variables

in a given table of point-to sets, and merge two table of point-to sets into one table,

respectively.

With the pointers, we sometimes need to update the slices or the point-to sets of some

variables at the same time, so we extend the operator xtdSli for Slices datatype, and the

operator xtdPT for PT datatype as follows:

xtdSli :: [Var]  Labels  Slices  ComptM ()

xtdPT :: [Var]  PtSet  PT  ComptM ()

Now we can study in depth the assignment statements with pointers. For simplicity, we

only consider single dereference of a pointer (e.g. *x), since multi-dereference (e.g. **x) can

be divided into multiple single dereferences. We decompose an assignment into a left-value

expression (such as x or *x), and a right-value expression (also notated as l.e, but may

contain *y or &y). So we need to expand the definition of Refs(l.e) in Section 4. The variables

appeared in a right-value expression can be divided into three categories: reference

variables, dereference variables and address variables. So we have

 Refs(l.e) = {x | x is a reference variable}  {y | y is a dereference variable}

 {z | z  lkpPT(y, getPT), where y is a dereference variable}

The detail algorithm of Refs(l.e) is shown in Figure 8, where the PtInfo(l.e) function can
obtain the point-to information generated by l.e.

The algorithm in Figure 8 addresses the issues of the reference and point-to information of a

right-value expression, and hence facilitates the expansion of the existing slicing algorithm

in Figure 5. The final expansion for the static slices of a W program with pointers is shown

in Figure 9, which is generated by adding the bold and blue terms in Figure 5.

By introducing point-to analysis to our previous monadic slicing, we presented (in Figure 9)

an approach of monadic slicing for a program with pointers. This approach obtained the

point-to information through the data-flow iteration. Being different from the traditional

methods where the point-to information and slicing are analyzed in two different phases,

they are computed in the same phase in our method, by combining the forward monad

slicing with data-flow iteration. Instead of recording point-to information for every

statement, we only need to record the information for current analysis statements. So our

method saves space without losing the precision. In addition, our approach also reserves the

excellent properties of compositionality and language-flexibility from the original monadic

slicing method.

www.intechopen.com

Semantics in Action – Applications and Scenarios

54

Fig. 8. The algorithm for the reference set and the point-to set of an expression.

6. Implementation and complexity analysis

In this section, we will implement the monadic slicing algorithms, and analyze its
complexity as well.

Because of the use of monad transformers, modular denotational semantics achieves a high
level of modularity and extensibility. Despite this, it is still executable: there is a clear
operational interpretation of the semantics (Wadler, 1995). In ref. (Liang, 1995, 1998; Wadler,
1995), some modular compilers/interpreters using monad transformers were constructed.
On the basis of these works, our monadic approach for static program slicing is feasible. Based
on Labra’s language prototyping system LPS (Labra et al, 2001), we developed a simple
monadic slice prototype MSlicer (for more, see ref. (Zhang, 2007) or its website:
https://sourceforge.net/projects/ lps). Its implementation language is Haskell, which is a
purely functional language with lazy evaluation. The beauty of laziness allows Haskell to
deal with infinite data, because Haskell will only load the data as it is needed, and because
the garbage collector will throw out the data after it has been processed. Using higher-order

Input: an expression (e.g. e)

Output: the reference set, Refs, and the point-to set, PtInfo, of the expression

Algorithm:

case e of

 e is the expression of the form &y 

Refs(e) =  ; PtInfo(e) = {y}

 e is the expression of the form *y 

Let ys = lkpPT(y, getPT) where ys is the current point-to set of y;

Refs(e) = {y}  ys; PtInfo(e) = v

v ys

(,)



lkpPT getPT

 e is a pure variable such as y 

Let ys = lkpPT(y, getPT);

Refs(e) = {y}; PtInfo(e) = ys

e is the compound expression with two sub-expressions e1 and e2 

Refs(e) = Refs(e1)  Refs(e2); PtInfo(e) = PtInfo(e1)  PtInfo(e2)

 e is a constant of a value type 

Refs(e) =  ; PtInfo(e) = 

end case;

www.intechopen.com

Program Slicing Based on Monadic Semantics

55

Fig. 9. Monadic slicing semantics for the W language with pointers.

M :: Prg  ComptM ()

M program ide is b = return ()

B :: Blk  ComptM ()

B d begin c end = return ()

D :: Dec  ComptM Env E :: Exp  ComptM Value

D const ide = l.e =

{ L  rdLabels; T  getSli; P  getPT; ps = PtInfo(l.e); xs = lkpPT (ide, P);

if (ide is of the form *x) then

L  {l}  L 
(l.e) { x }

(,)

r Refs

lkpSli r T

 
 ; xtdSli (xs, L, T); xtdPT (xs, ps, P);

else

L  {l}  L 
(l.e)

(,)
x Refs

lkpSli x T

 ; updSli(ide, L, T); updPT (ide, ps,

P)}

D var ide : t = return ()

D d1; d2 = return ()

C :: Cmd  ComptM ()

C ide := l.e =

{ L  rdLabels; T  getSli; P  getPT; ps = PtInfo(l.e); xs = lkpPT (ide, P);

if (ide is of the form *x) then

L  {l}  L 
(l.e) { x }

(,)

r Refs

lkpSli r T

 
 ; xtdSli (xs, L, T); xtdPT (xs, ps, P);

else

L  {l}  L 
(l.e)

(,)
x Refs

lkpSli x T

 ; updSli(ide, L, T); updPT (ide, ps, P)}

C c1; c2 = {C c1 ; C c2 }

C skip = return ()

C if l.e then c1 else c2 endif =

{ L  rdLabels; T  getSli; P  getPT; L  {l}  L 
(l.e)

(,)
x Refs

lkpSli x T

 ;

inLabels L C c1 ; T1  getSli; P1  getPT; setSli(T); setPT(P);

inLabels L C c2 ; T2  getSli; P2  getPT; mrgSli(T1,T2); mrgPT(P1, P2)}

C while l.e do c endwhile =

Fix(f. {LrdLabels; TgetSli; L{l}L 
(l.e)

(,)
x Refs

lkpSli x T

 ; P

getPT;

f  {inLabels L C c ; TgetSli; P getPT; mrgSli(T, T); mrgPT(P, P) }})

C read l.ide = { L  rdLabels; T  getSli; L  {l}  L; P  getPT;

if (ide is of the form *x) then xtdSli(lkpPT(x, P), L, T)

else updSli(ide, L, T) }

C write l.e = return ()

www.intechopen.com

Semantics in Action – Applications and Scenarios

56

 functions from the libraries, Haskell modules can be written to concisely describe each
language feature (Peterson et al, 1997; Thompson, 1996). Features such as arbitrary precision
integer arithmetic, list comprehensions, infinite lists, all come in handy for the effective
monadic slicing of a large program.

Fig. 10. The framework of the prototype MSlicer.

Fig. 11. The slice results of the sample program in Figure 7 from our MSlicer.

Fig. 12. A loop sample with l while statements.

statements

var v1 = 1;

⋮

var v5 = 5;

while (1 < 2) do

 ⋱

 while (1 < 2) do

 v1 := v2;

 ⋮

 v5 := v1

 endwhile;

m

1

5

6

5+l

6+l

10+l

www.intechopen.com

Program Slicing Based on Monadic Semantics

57

Figure 10 gives the framework of the monadic slicer MSlicer. Figure 11 gives the static slice
results for the example program in Figure 7 from our current monadic slicer. The final
results also include the output value, analysis trace, static slice table and CPU time.

In practice, in order to obtain good performance, we choice the Haskell type IntSet instead
of the original set type of Labels (i.e. [Int]) in Section 3. The implementation of IntSet is
based on big-Endian Patricia trees (Okasaki & Gill, 1998; Morrison, 1968). This data
structure performs especially well on binary operations like union and intersection. Many
operations have a worst-case complexity of O(min(n,W)), where n is the number of
elements; W is the number of bits in an Int (32 or 64). This means that the operation can
become linear in the number of elements with a maximum of W.

The measures of system size used below are those associated with the data structure of
program slice Slices (which is a Hash table).

In a modular compiler/interpreter, our slice monad transformer could be modularly and

safely combined into the semantic buildings, so the complexity analysis is restricted to L
and Syn(s, L) of a concrete programming language. In the case of our example language W,

the intermediate label set L can be determined in worst-case time O(v  m), where v refers to
the number of single variables in the program analyzed; and m is the number of labeled
expressions in the program. To determine the Syn(s, L) shown in Figure 6 may cost
O(min(m,W)). Therefore the time cost of the predominant part of program slicing in the

monadic slicing algorithm is bounded by O(v  m  n), where n is the number of all labeled
expressions appeared (perhaps repeatly) in the sequence of analyzing the program. In

addition, an extra time cost O(v  min(m,W)) needs to get the executable slices of all single

variables. Now we can see that the worst-case time of the whole static slice is O(v  m  n).
Since we finally obtain the static slices of all variables after the last statement is analyzed, the

program slice of each variable, on the average, costs O(m  n). In fact, n = O(m2) at worst, for
more see the following loop statement shown in Figure 12. So all of its static slices will cost
the worst-case time O(m3).

To analyze the space complexity of the algorithms, we pay our attention to the constructions

Refs(l.e), Slices, L and L. We need space O(v  v) and O(v  m) to save Refs(l.e) and Slices,

respectively. According to the definition of slice monad transformer SliceT in Figure 4, we

need more intermediate labels when SliceT is applied to loop statements (e.g. while

statements). So it takes the space O(k  m) to save intermediate labels, where k refers to the

maximal times of analyzing the loop statements in the program (until the slice stabilizes) .

The label set L will cost the space O(m). Therefore, the total space cost is O(v  v  v  m  k 

m).

By analyzing the complexity of algorithms in Figure 8 and 9, we find that the cost of point-to

analysis is less than the cost of slicing. So our expansion algorithm to pointers has no

additional complexity.

We have tested the complexity analysis of our monadic static algorithms by using the
program with l while loop statements shown in Figure 12, which is similar to the while
program in ref. (Binkley & Gallagher, 1996). From the results given in Figure 13, we can see
that n = O(m2) at worst. This shows that the prototype monadic slicer MSlicer without
optimization (such as BDD or SEQUITUR (Zhang et al, 2003) for the slice and trace tables)

www.intechopen.com

Semantics in Action – Applications and Scenarios

58

can compute slices for large analysis histories in reasonable time and space. (The
experiments run on a Pentium Willamette (0.18) Windows PC system with 1GB RAM).

(a) t vs. n (b) n vs. m

Fig. 13. The relations between CPU time, t, and the number of all labeled expressions
analyzed in practice, n, or the number of labeled expressions in the program, m.

7. Related work and comparisons

The original program slicing method was expressed as a sequence of data flow analysis

problems (Weiser, 1984). An alternative approach was relied on program dependence

graphs (PDG) (Ottenstein & Ottenstein, 1984). Most of the existing slicing methods were

evolved from the two approaches. A few program slicing methods focused on the semantics

of programs.

G.Canfora et al.’s conditioned slicing (Canfora et al, 1998) adds a condition in a slicing

criterion. Statements that do not satisfy the condition are deleted from the slice. M.Harman

et al.’s amorphous slicing (Harman & Danicic, 1997) allows for any simplifying

transformations which preserve this semantic projection. These two methods are not really

based on formal semantics of a program. P.A.Hauser et.al ’s denotational slicing (Hausler,

1989; Ouarbya et al, 2002) employs the functional semantics of a program language in the

denotational (and static) program slicer. G.A.Venkatesh (Venkatesh, 1991) also took account

of denotational slicing with formal slicing algorithms including dynamic and static. This

approach is indeed based on the standard denotational semantics of a program language.

The language Venkatesh considered is a very simply one without pointers. We have extended

it in this paper to a more realistic programming language containing pointers, but take an

entirely different approach called modular monadic slicing.

Compared with the existing static slicing algorithms, the monadic static-slice algorithm has

excellent flexibility, combinability and parallelizability properties, because it has abstracted

the computation of static slicing as an independent entity, static slice-monad transformer. Our

algorithm has allowed that static slices could be computed directly on abstract syntax, with

no needs to explicitly construct intermediate structures such as dependence graphs.

In respect of accuracy, in Section 4 or in ref. (Zhang, 2007) we have stated that the slice results

of monadic static slicing algorithm are not less precise than PDG-based ones. This is because

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

0 200 400 600 800 1,000 1,200

m
n

n vs. m

0

50

100

150

200

250

300

350

400

450

500

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

n

t
 (

se
c
.)

t vs. n

www.intechopen.com

Program Slicing Based on Monadic Semantics

59

the term L and 
)l.e(

),(
fsRer

getSlirlkpSli


in the definition of L can accurately capture control

dependences and data dependences respectively, which are the base of PDG-based

algorithms.

According to the complexity analysis (in Sections 6) for monadic slicing algorithms, their time
complexity of each variable is averagely O(m3) time. While the intra-procedural slicing

algorithms based on dataflow equations can compute a slice in O(v  n  e) time, or

averagely in O(n  e) time for each variable, where n is the number of vertices in the control
flow graph (CFG) and e the number of edges in CFG (Weiser, 1984). Although the PDG-
based algorithms extract slices in linear time (i.e. O(V + E), where V and E are the number of
vertices and edges in the slice, respectively) after the PDG has been computed, a PDG can be

constructed in O(n  e + n  d) time, where d is the number of definitions in the program

(Tip, 1995). Here V, n, e and d are the same complexity level of m, so the whole time of PDG-
based algorithms (including the PDG-construct time) is also O(m3) nearly.

8. Conclusions and future work

In this paper, we have proposed a new approach for program slicing. We have called it
modular monadic program slicing as it is based on modular monadic semantics. We have
abstracted the computation of program slicing as a language-independence object, slice
monad transformer. Therefore, the modular monadic slicing has excellent flexibility and
reusability properties comparing with the existing program slicing algorithms. The modular
monadic slicing algorithm has allowed that program slices could be computed directly on
abstract syntax, with no needs to explicitly construct intermediate structures such as data
flow graphs or dependence graphs.

As the behavior of a program is determined by the semantics of the language, it is
reasonable to present the modular monadic program slicing. Furthermore, it is feasible,
because modular monadic semantics is executable and some modular
compilers/interpreters have already been existed.

For our future work, we will analyze slicing for programs with special features such as
concurrent, object-oriented, exceptions and side-effects, by combining slice monad
transformer with existing ones such as concurrent (Papaspyrou, 2001), object-oriented
(Labra, 2002), non-determination, exceptions and side-effects (Moggi, 1991; Wadler, 1992,
2003). At the same time, we will improve our prototype of monadic slicers and give more
comparisons with other slicing methods in experiments.

9. Acknowledgments

We thank Dr. J.Labra for his cooperating with us in the implementation of the slicer. This
work was supported in part by the National Natural Science Foundation of China (60703086,
60903026, 60873049, 60973046), the Priority Academic Program Development of Jiangsu
Higher Education Institutions(PAPD), Qing Lan Project of Jiangsu Province, NSF of Jiangsu
Higher Education Institutions of China (10KJB520015),"Climbing"Program of Nanjing
University of Posts and Telecommunications of China (NY210009), Open Foundation of
Guangxi Key Laboratory of Trusted Software(Guilin University of Electronic Technology).

www.intechopen.com

Semantics in Action – Applications and Scenarios

60

10. References

Weiser M (1984). Program Slicing. IEEE Transaction on Software Engineering, vol. 16, no. 5, pp.
498-509.

Kamkar M (1995). An Overview and Comparative Classification of Program Slicing
Techniques. Journal of Systems and Software, vol. 31, no. 3, pp. 197-214.

Tip F (1995). A Survey of Program Slicing Techniques. Journal of Programming Languages,
vol.3, no.3, pp.121-189.

Harman M & Hierons R (2001). An Overview of Program Slicing. Software Focus, vol. 2, no.
3, pp. 85-92.

Binkley D & Gallagher K (1996). Program Slicing. Advances in Computers, vol. 43, pp. 1-50.
Gallagher K & Lyle J (1991). Using Program Slicing in Software Maintenance. IEEE

Transactions on Software Engineering, vol. 17, no. 8, pp. 751-761.
Hausler P (1989). Denotational Program Slicing. Proceeding of 22th Annual Hawaii

International Conference on System Sciences, vol. 2, pp. 486-495.
Ouarbya L; Danicic S & Daoudi M, et al (2002). A Denotational Interprocedural Program

Slicer. Proceeding of 9th IEEE Working Conference on Reverse Engineering, IEEE Press,
Virginia, pp. 181-189.

Venkatesh G (1991). The Semantic Approach to Program Slicing. ACM SIGPLAN Conference
on Programming Language Design and Implementation, Toronto, Canada, pp. 26-28.

Moggi E (1991). Notions of Computation and Monads. Information and Computation, vol. 93,
pp. 55-92.

Liang S & Hudak P (1996). Modular Denotational Semantics for Compiler Construction.
Proceeding of 6th European Synposium on Programming Languages and Systems,
ESOP’96. LNCS 1058, Springer-Verlag, Berlin, pp. 219-234.

Wansbrough K (1997). A Modular Monadic Action Semantics. Master thesis, University of
Auckland, Auckland.

Mosses P (1998). Semantics, Modularity, and Rewriting Logic. Proceeding of 2nd International
Workshop on Rewriting Logic and its Applications, ENTCS 15, Elesvier Press,
Netherlands.

Zhang Y Z & Xu B W (2004). A Survey of Semantic Description Frameworks for
Programming Languages. ACM SIGPLAN Notices, vol. 39, no. 3, pp.14-30.

Wadler P (1992). Comprehending monads. Mathematical Structures in Computer Science, vol.
2, pp. 461-493.

Espinosa D (1995), “Semantic Lego”, PhD dissertation, Columbia University, Columbia.
Liang S; Hudak P & M. Jones (1995). Monad Transformers and Modular Interpreters, 22nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’95, ACM Press, New York, pp. 333-343.

Zhang Y Z; Xu B W & Shi L, et al (2004). Modular Monadic Program Slicing, The 28th Annual
International Computer Software and Applications Conference, COMPSAC 2004, Hong
Kong, China, pp. 66-71.

Zhang Y Z; Xu B W & Labra G (2005). A Formal Method for Program Slicing, Australian
Software Engineering Conference, ASWEC’05, Australian, pp. 140-148.

Zhang Y Z & Xu B W (2005). A Slice Monad Transformer and Its Applications in Program
Slicing, The 10th IEEE International Conference on Engineering of Complex Computer
Systems, ICECCS’05, Shanghai, China, pp. 147-154.

www.intechopen.com

Program Slicing Based on Monadic Semantics

61

Wu Z Q; Zhang Y Z & Xu B W (2006). Modular Monadic Slicing in the Presence of Pointers,
In: Alexandrov V N, Albada G D, Sloot P M, et al, eds. 6th International Conference on
Computational Science. LNCS 3994. Reading: Springer-verlag, pp.748-756.

Zhang Y Z; Labra G & del R (2006). A Monadic Program Slicer, ACM SIGPLAN Notices, vol.
41, no. 5, pp. 30-38.

Zhang Y Z (2007). A Novel Formal Approach to Program Slicing, Science in China F:
Information Sciences, vol. 50, no. 5, pp. 657-670.

Wadler P & Thiemann P (2003). The Marriage of Effects and Monads, ACM Transactions on
Computational Logic, vol. 4, no. 1, pp. 1-32.

Moggi E (1989). An Abstract View of Programming Languages, LFCS Report, ECS-LFCS-90-
113, University of Edinburgh,

 http://www.lfcs.informatics.ed.ac.uk/reports/90/ECS-LFCS- 90-113/
Liang S (1998). Modular Monadic Semantics and Compilation, PhD dissertation, University

of Yale, Yale.
Wadler P (1995). Monads for Functional Programming, Lecture Notes on Advanced Functional

Programming Techniques, LNCS 925, Springer-Verlag, Berlin, pp. 24-52.
Newbern J (2002). All About Monads, http://www.haskell.org/all about_monads/html

/index.html
Slonneger K & Kurtz B (1995). Formal Syntax And Semantics of Programming Language: A Lab

Based Approach. Addison & Wesley.
Venkatesh G (1990). Semantics of Program Slicing, Bellcore TM-ARH-018561.
Horwitz S; Pfeiffer P & Reps T (1989). Dependence Analysis For Pointer Variables, In:

Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation, pp. 28-40.

Hind M; Burke M & Carini P, et al (1999). Interprocedural Pointer Alias Analysis, ACM
Transactions on Programming Languages and Systems, 21(4): 848~894.

Kahl W (2003). A Modular Interpreter Built with Monad Transformers, Course Lectures on
Functional Programming, CAS 781.

Labra G; Luengo D & Cueva L (2001). A Language Prototyping System Using Modular
Monadic Semantics, Workshop on Language Definitions, Tools and Applications,
LDTA’01, Netherlands.

Peterson J; Hammond K & Augustsson L, et al (1997). Report on the Programming
Language Haskell 1.4, A Non-strict Purely Functional Language, Yale University
Technical Report, YALEU/DCS /RR-1106.

Thompson S (1996). Haskell: The Craft of Functional Programming, Addison-Wesley, Harlow,
England.

Okasaki C & Gill A (1998). Fast Mergeable Integer Maps, Workshop on ML, September, pp.77-
86.

Morrison D (1968). PATRICIA-- Practical Algorithm To Retrieve Information Coded In
Alphanumeric, Journal of the ACM, vol. 15, no. 4, pp. 514-534.

Zhang X; Gupta R; Zhang Y (2003). Precise Dynamic Slicing Algorithms, Proceedings of the
25th International Conference on Software Engineering, IEEE CS Press, Washington
DC, pp. 319-329.

Ottenstein K & Ottenstein M (1984). The program dependence graph in a software
development environment, ACM SIGPLAN Notices, vol.19, no. 5, pp. 177-184.

www.intechopen.com

Semantics in Action – Applications and Scenarios

62

Canfora G; Cimitile & De L (1998). Conditioned Program Slicing, Information and Software
Technology, vol. 40, no. 11/12, pp. 595-607.

Harman M & Danicic S (1997). Amorphous Program Slicing, IEEE International Workshop on
Program Comprehesion, IWPC’97, IEEE CS Press, Los Alamitos, pp. 70-79.

Papaspyrou N (2001). A Resumption Monad Transformer and its Applications in the
Semantics of Concurrency, Technical Report CSD-SW-TR-2-01, National Technical
University of Athens, Software Engineering Laboratory.

Labra G; Luengo D & Cueva L, et al (2002). Reusable Monadic Semantics of Object Oriented
Programming Languages, Proceeding of 6th Brazilian Symposium on Programming
Languages, SBLP’02, PUC-Rio University, Brazil.

www.intechopen.com

Semantics in Action - Applications and Scenarios

Edited by Dr. Muhammad Tanvir Afzal

ISBN 978-953-51-0536-7

Hard cover, 266 pages

Publisher InTech

Published online 25, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The current book is a combination of number of great ideas, applications, case studies, and practical systems

in the domain of Semantics. The book has been divided into two volumes. The current one is the second

volume which highlights the state-of-the-art application areas in the domain of Semantics. This volume has

been divided into four sections and ten chapters. The sections include: 1) Software Engineering, 2)

Applications: Semantic Cache, E-Health, Sport Video Browsing, and Power Grids, 3) Visualization, and 4)

Natural Language Disambiguation. Authors across the World have contributed to debate on state-of-the-art

systems, theories, models, applications areas, case studies in the domain of Semantics. Furthermore, authors

have proposed new approaches to solve real life problems ranging from e-Health to power grids, video

browsing to program semantics, semantic cache systems to natural language disambiguation, and public

debate to software engineering.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yingzhou Zhang (2012). Program Slicing Based on Monadic Semantics, Semantics in Action - Applications and

Scenarios, Dr. Muhammad Tanvir Afzal (Ed.), ISBN: 978-953-51-0536-7, InTech, Available from:

http://www.intechopen.com/books/semantics-in-action-applications-and-scenarios/program-slicing-based-on-

monadic-semantics

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

