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1. Introduction 

A program slice consists of those statements of a program that may directly or indirectly 
affect the variables computed at a given program point (Weiser, 1984). The program point p 
and the variable set V, denoted by <p, V>, is called a slicing criterion. Program slicing has 
applications in software testing and debugging, measurement, re-engineering, program 
comprehension and so on (Kamkar, 1995; Tip, 1995; Harman, 2001; Binkley, 1996; Gallagher, 
1991). 

Program slicing algorithms can be roughly classified as static slicing and dynamic slicing 
methods, according to whether they only use statically available information or compute 
those statements that influence the value of a variable occurrence for a specific program 
input. Most of the existing slicing algorithms rely on relation graphs such as system 
dependence graphs (SDG) or program dependence graphs (PDG). These slicing methods are 
incremental, sequential, not combinatorial or not parallelizable easily for multi-core systems. 
However modern programming languages support modularized programming and 
programs might consist of a set of modules. So the program analysis should reflect this 
design technology, and their methods (including program slicing) should be flexible, 
combinable, and parallelizable for improving the efficiency. 

As the behavior of a program is determined by the semantics of the language, it is 
reasonable to expect an approach for program slicing based on formal semantics of a 
program. On the basis of this view, this paper proposes an approach for program slicing 
based on modular monadic semantics, called modular monadic slicing. It can compute slices 
directly on abstract syntax, without explicit construction of intermediate structures such as 
dependence graphs. 

The program slicing methods focused on the semantics of programs can be found in ref. 
(Hausler, 1989; Ouarbya, 2002; Venkatesh, 1991). These methods are based on the standard 
denotational semantics of a program language. As mentioned in ref. (Moggi, 1991; Liang & 
Hudak, 1996; Wansbrough, 1997; Mosses, 1998; Zhang & Xu, 2004), traditional denotational 
semantics lack modularity and reusability. A better solution was to use monads (Moggi, 
1991) to structure denotational semantics, with the help of monad transformers (Moggi, 1991; 
Wadler, 1992; Espinosa, 1995) which can transform a given monad into a new one with new 
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operations. S.Liang et al. used monads and monad transformers to specify the semantics of 
programming language; called it modular monadic semantics. In this paper, we will employ it 
in our program slicing algorithm.  

In our previous work (Zhang et al, 2004, 2005, 2006; Zhang & Xu, 2005; Wu et al. 2006), we 
abstracted the computation of program slicing as a simple slice monad transformer, which 
took only the label set L as its parameter, without reflecting explicitly the change of the slice 
table Slices. In ref. (Zhang, 2007), we presented theoretical foundation for our previous work. 
Based on these theories of the monadic slicing and from the view of the practical 
implementation, this paper will redesign the static slice monad transformer. The 
extensibility and reusability of our monadic method will be showed by easily introducing a 
new program feature (such as pointers) to slicing analysis. 

The rest of the paper is organized as follows: In Section 2, we briefly introduce and illustrate 
the concepts of modular monadic semantics through a simple example language. The 
computation of program slicing is abstracted as slice monad transformer in Section 3. In 
Section 4, we discuss and illustrate our static slicing algorithm in detail. In Section 5, we 
show how our slicing algorithm can be readily adapted to an extension for the example 
language with pointers. In Section 6 and 7, we address the implementation, the time and 
space complexity analysis. We conclude this paper with directions for future work in 
Section 8. 

Along the paper, the presentation follows the monadic semantics style. We use Haskell1 
notation with some freedom in the use of mathematical symbols and declarations. For 
brevity and convenience, we will omit the type constructors in some definitions.  

2. Modular monadic semantics 

In this section, we briefly review the theory of monads (Wadler & Thiemann, 2003; Moggi, 
1989), monad transformers and modular monadic semantics (Liang, 1998). Readers familiar 
with these topics may skip the section, except for the last three paragraphs (about the syntax 
and monadic semantics of an example language). 

2.1 Monads and monad transformers 

Monads, originally coming from philosophy, were discovered in category theory in the 
1950s and introduced to the semantics community by Moggi in 1990s (Moggi, 1989). After 
this work, Wadler popularized Moggi’s ideas in the functional programming community 
(esp. in Haskell) (Wadler, 1995). In the monad-based view of computation, a monad is a way 
to structure computations in terms of values and sequences of computations using those 
values (Newbern, 2002). The monad determines how combined computations form a new 
computation and frees the programmer from having to code the combination manually each 
time it is required. From this view, a monad can be thought as a strategy for combining 
computations into more complex computations.  

In Haskell, monads are implemented as a type constructor class with two member 
operations/functions. 

                                                 
1 Haskell is an advanced purely functional programming language. Please visit its official website 
(http://www.haskell.org or http://haskell.org) for more information. 
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class Monad m where 

return :: a  m a 

(>>=) :: m a  (a  m b)  m b 

Here, return is the Haskell name for the unit and >>= (pronounced “bind”) is the extension 
operation of the monad. The above definition of the monad class means: a parameterized 
type m (which may think of as a function from types to types) is a monad if it supports the 
two operations return and >>= with the types given. Using the combinator analogy, a 
monad m is a combinator that can apply to different values. m a is a combinator applying to 
a value of type a. The return operation puts a value into a monadic combinator. The >>= 
operation takes the value from a monadic combinator and passes it to a function to produce 
a monadic combinator containing a new value, possibly of a different type. The >>= 
operation is known as "bind" because it binds the value in a monadic combinator to the first 
argument of an operation.  

To be a proper monadic combinators, the return and >>= operations must work together 
according to some simple laws. Monads laws state in essence that >>= operation (sequential 
composition) is associative, and return is its unit/identity. Failure to satisfy these laws will 
result in monads that do not behave properly and may cause subtle problems when using 
the do-notation2. 

A monad (call it m) therefore defines a type of computation. The nature of the computation 
is captured by the choice of the type m. The return operation constructs a trivial computation 
that just renders its argument as its result. The >>= operation combines two computations 
together to make more complex computations of that type.  

To make the use of monads more convenient, we adopt the following syntactic sugar (which 
is similar to S. Liang’s notation and the do-notation in Haskell as well): 

{e}            e 

{m; e}m        m >>= \ _  {e} 

{x  m; e}m    m >>= \ x  {e} 

{let exp; e}     let exp in {e} 

In practice, the computations can’t be performed in isolation. In this case, we need a monad 

that combines the features of the two monads into a single computation. It is impossible in 

general to combine two monads to form a new monad. Moreover, it is inefficient and poor 

practice to write a new monad instance with the required characteristics each time a new 

combination is desired. Instead, there is the technique, called monad transformers (Liang, 

1998), which can transform a given monad into a new one that has both the new operations 

and maintains those of the former monad. The concept of monad transformers was 

rediscovered by D.Espinosa in Moggi’s original work. He developed a system, Semantic Lego, 

which implemented Moggi’s original monad constructors to give a modular semantics for 

languages. 

                                                 
2 Do notation is an expressive shorthand for building up monadic computations. In short, the do 
notation allows us to write monadic computations using a pseudo-imperative style with named 

variables. The result of a monadic computation can be “assigned” to a variable using a left arrow  
operator. 
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In Haskell, a monad transformer can be defined as any type constructor t such that if m is a 
monad, so is “t m”, by using the two parameter constructor class MonadTrans: 

class (Monad m, Monad t m)  MonadTrans t m where 

                         lift :: m a  t m a 

The member function lift lifts a monadic computation in the inner monad m into the 
combined monad “t m”. Furthermore, we expect a monad transformer to add features, 
without changing the nature of an existing computation. This can be obtained by the 
properties of lift function above (also called monad transformer laws). The monad transformer 
laws guarantee the basic lifting property that any program, which does not use the added 
features, should behave in the same way after a monad transformer is applied. Intuitively, 
these laws say that lifting a null computation brings about a null computation, and that 
lifting a sequence of computations is equivalent to first lifting them individually, and then 
combining them in the lifted monad. 

For example, Figure 1 gives the environment monad transformer, EnvT, which can be used 
to add environment reading functionality to other monads. In Figure 1, the functions rdEnv 
and inEnv, return the current environment and perform a computation in a given 
environment, respecitively. 

 

Fig. 1. Environment monad transformer EnvT(Liang,1998). 

2.2 Modular monadic semantics 

Modular monadic semantics specifies the semantics of a programming language by 

mapping terms to computations, where the details of the environment, store, etc. are hidden 

within a monad. This is difference from traditional denotational semantics, which maps a 

term (an environment or a continuation) to an answer. The modular monadic semantics is 

composed of two parts: modular semantic building blocks and monad transformers. Semantic 

building blocks define the monadic semantics of individual source language features. They 

are independent of each other.  

Monad transformers define the kernel-level operations in a modular way. Multiple monad 
transformers can be composed to form the underlying monad used by all the semantic 

newtype EnvT r m a = EnvT {runEnvT :: r  m a} 

instance (Monad m)  Monad (EnvT r m) where 

    return a = EnvT (\_ return a) 

    m >>= k  = EnvT (\r {a  runEnvT m r; runEnvT (k a) r} ) 

instance MonadTrans (EnvT r) where 

lift m = EnvT (\_ m) 

class (Monad m)  EnvMonad r m where 

inEnv :: r  m a  m a 

rdEnv :: m r 

instance (Monad m)  EnvMonad r (EnvT r m) where 

inEnv r m = EnvT (\_ runEnvT m r) 

rdEnv = EnvT (\r return r) 
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building blocks. The crucial property of modular monadic semantics is the division of the 
monad m into a series of monad transformers, each representing a computation. As 
mentioned in the previous section, monad transformers provide the power to represent the 
abstract notion of programming language features, but still allow us to access low-level 
semantic details. The concept of lifting allows us to consider the interactions between 
various features. In some sense, monad transformers can be designed once and for all (Liang, 
1998), since they are entirely independent of the language being described. From this view, 
we can draw the computation of program slicing as an entity that is independent of the 
language being analyzed. This will be discussed in the next section. Before doing it, we 
illustrate the modular monadic semantic description of a very simple imperative 
programming language W. 

The W language considered in this paper is very similar to the language described in ref. 

(Slonneger & Kurtz, 1995).The abstract syntax and semantic building blocks of the W 

language are provided in Figure 2 and 3 respectively. In Figure 3, the identifier Fix 

denotes a fixpoint operator; xtdEnv and lkpEnv are the updating and lookup operators of 

environments Env, respectively; updSto and alloc are the updating and allocation functions 

of stores Loc, respectively; rdEnv and inEnv are the basic operators of the enviornment 

monad EnvMonad (given in Figure 1); putValue and getValue are the writting and reading 

functions of I/O actions, respectively. Following Venkatesh’s assumption for expressions 

in ref. (Venkatesh, 1990), we also assume that the labeled expressions have no side-effects. 

The expressions, whose syntax is left unspecified for the sake of generality, consist of 

operations over identifiers and are uniquely labeled. The label is for the entire  

expression.  

 

Fig. 2. Abstract syntax of the W language.  

In modular monadic semantics, the monad definition is simply a composition of the 
corresponding monad transformers, applied to a base monad. In this paper, we use the 

Domains: 

arg: Arg (Arguments);   b: Blk (Blocks);       c: Cmd (Commands);       

d: Dec (Declarations);   e: Exp (Expressions);   ide: Ide (Identifiers);     

l: Label (Labels);       p: Prg (Programs);     t: Type (Types)  

  
Abstract Syntax: 

p :: = program ide is b 

b :: = d begin c end 

d :: = const ide = l.e | var ide : t | d1; d2  

c :: = ide := l.e | c1; c2| skip | read ide | write l.e 

|while l.e do c endwhile | if l.e then c1 else c2 endif 

www.intechopen.com



 
Semantics in Action – Applications and Scenarios 

 

46

input/output monad IO as the base monad. We then select some monad transformers, say 
StateT and EnvT, and apply them to the base monad IO, forming the combined monad 
ComptM: 

ComptM  (EnvT  StateT) IO 

The environment monad transformer adds an environment to the given monad. The return 
function ignores the environment, while >>= passes the inherited environment to both sub-
computations. Equipped with the monad transformers, the resulting monad ComptM can 
support all of the semantic building blocks in Figure 3, which gives the formal semantic 
description we expected. 

 

Fig. 3. Semantic building blocks of the W language.  

3. Static slice monad transformer 

As mentioned above, each monad transformer represents a single notion of computation. 
Since static program slicing can be viewed as a computation, we can abstract it as a 
language-independent notion of a computation by using a static slice-monad transformer 

Domains: 

r: Env (Environments);  loc: Loc (Stores);  s: State (States);  v: Value (Values) 

Semantics Functions: 

M :: Prg  ComptM () 

M program ide is b  = B b  

B :: Blk  ComptM () 

B d begin c end  = {r  D d ; inEnv r C c } 

D :: Dec  ComptM Env ;   E :: Exp  ComptM Value 

D const ide = l.e  = {v  E l.e ; r  rdEnv; xtdEnv (ide, v, r) } 

D var ide : t  = {loc  alloc; r  rdEnv; xtdEnv (ide, loc, r)} 

D d1; d2  = {r rdEnv; rinEnv r D d1 ; inEnv r D d2 )} 

C :: Cmd  ComptM () 

C ide := l.e  = {v  E l.e ; r  rdEnv; loc  lkpEnv(ide, r); updSto(loc, v)} 

C c1; c2  = {C c1 ; C c2 } 

C skip  = return () 

C if l.e then c1 else c2 endif  = {v  E l.e ; case v of  TRUE  C c1   

FALSE  C c2} 

C while l.e do c endwhile  = Fix (\ f  {v  E l.e ;  

case v of  TRUE  f  C c  

FALSE  return () } )      

C read ide  = {loc  lkpEnv(ide, rdEnv); v  getValue; updSto(loc, return v)} 

C write l.e  = { v  E l.e ; putValue v } 
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SliceT. Its definition is given in Figure 4, where l denotes a set of labels of expressions that 
were required to compute the current statement; st denotes a slice table Slices whose data 
structure is defined as follows: 

type Var = String 

type Labels = [Int] 

type Slices = [(Var, Labels)] 

lkpSli :: Var  Slices  ComptM Labels 

updSli :: (Var, ComptM Labels) Slices ComptM () 

mrgSli :: Slices  Slices  ComptM Slices 

Here, [] denotes a table data structure. The three operators, lkpSli, updSli and mrgSli, represent 
to lookup the slice of a variable in a given Slices table, to update a table Slices through a 
variable with its slice, and to merge two given slice tables into a new one, respectively. 

In the similar way as ref. (Zhang, 2005, 2007), the following theorems are straightforward. 
These theorems guarantee the correctness of the definition of the slice monad transformer in 
Figure 4. 

Theorem 1. SliceT l st m is a monad. 

Theorem 2. SliceT l st is a monad transformer. 

A static slice-monad transformer SliceT l st, taking an initial set of labels and a slice table, 

returns a computation of a pair of the resulting value and the new slice table. The operator 

return returns the given value with the unchanged slice table. The operator >>= takes a 

monad m and a function k. It passes the initial set of labels l and slice table st to the monad 

m; this yields a value a paired with an intermediate slice table st; function k is applied to the 

value a, yielding a monad (k a); this yields in l and st the final result paired with the final 

slice table. 

The lifting function lift says that a computation in the monad m behaves identically in the 
monad SliceT l st m and makes no changes to the slice table. The operation rdLabel/inLabel 
and getSli/setSli support reading/setting of the parameter l and st in the static slice-monad 
SliceMonad, respectively. 

With the use of the transformer SliceT, other monads can be easily transformed into the 
static slice-monad SliceMonad. For instance, we can lift respectively the basic operators of 
monads StateMonad and EnvMonad through SliceT as shown in Figure 4. 

4. A monadic static slicing algorithm 

The static slice for a variable in a program is the collection of all possible computations of 
values of that variable. In this section, we only consider end slicing for a single variable, i.e. 
the slicing criterion is <p, v>, where v the variable of interest, and p the end program point. 
One can easily generalize this to a set of points and a set of variables at each point by taking 
the union of the individual slices (Binkley, 1996). 

The main idea of monadic static slicing algorithms can be briefly stated as follows: for 
obtaining a static slice, we firstly apply the slice transformer SliceT to semantic building 
blocks of the program analyzed. It makes the resulting semantic description include  
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Fig. 4. Static slice-monad transformer SliceT. 

program slice semantic feature. According to the semantic description, we then compute 

static slices of each statement in sequence. Finally we will obtain the static slices of all single 

variables in the program. In fact, with the process of analyzing a program, the Slices table, 

which includes the current individual program slices for all variables of this program, is 

modified steadily according to the monadic slicing algorithm.  

Concretely, with respect to the example program W mentioned in Section 2, Figure 5 gives 

the main part of our monadic static algorithm. Figure 5 gives the rules of when and how to 

modify the current slice table. It adds the computation of static slicing into program analysis 

modularly, with the help of the monad transformers SliceT given in Section 3. SliceT can be 

composed with other transformers such as EnvT and StateT as follows, and apply them to 

monad IO, forming the underlying monad ComptM: 

ComptM  (SliceT  StateT  EnvT) IO 

In Figure 5 (or the monadic slicing algorithm in a sense), for each computation of a labeled 

expression l.e, there is an intermediate set L as follows: 

L = {l}  L 
(l.e)

( , )
x Refs

lkpSli x T

           

where T represents the current slice table before analyzing the expression l.e; Refs(l.e) 
denotes the set of variables appeared in l.e. The relation above means that after an 

newtype SliceT l st m a = SliceT {runSliceT :: (l, st)  m (a, st)} 

instance (Monad m)  Monad (SliceT l st m) where 

    return a = SliceT (\(_, st) return (a, st) ) 

m >>= k  = SliceT (\(l, st) {(a, st)  runSliceT m (l, st);  

runSliceT (k a) (l, st)} ) 

instance MonadTrans (SliceT l st) where 

lift m = SliceT (\(_, st) {a  m; return (a, st)} ) 

class (Monad m)  SliceMonad l st m where 

rdLabel :: m l 

inLabel :: l  m a  m a 

getSli :: m st 

setSli :: st  m st 

instance (Monad m)  SliceMonad l st (SliceT l st m) where 

rdLabel     = SliceT return 

inLabel l m  = SliceT (\(_, st) runSliceT m (l, st) ) 

getSli     = SliceT (\(_, st) return (st, st) ) 

setSli  st  = SliceT (\(l, _) return (l, st) ) 

instance (EnvMonad r m, MonadTrans (SliceT l st) m)  

 EnvMonad r (SliceT l st m) where 

inEnv r (SliceT l st m) = SliceT (\(l,st) inEnv r (runSliceT m (l,st)) ) 

rdEnv = lift rdEnv 

instance (StateMonad s m, MonadTrans (SliceT l st) m)  

 StateMonad s (SliceT l st m) where 

update = lift . update 
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expression l.e included in the current expression is computed, the initial set L should be 
transformered by adding the label of expression l.e, i.e., label l, and all sets of labels of 
expressions influenced by the variables of the expression l.e. 

In addition, the updSli operation of the Slices type is applied to record the result of the static 
slicing in program analysis. In case of the language W, only when describe the semantics of 
assignment statement and initial assignment statement within a variable declaration, the 
corresponding operator updSli should be added in as shown in Figure 5. 

A static slice includes the statements that possibly affect the variable in the slicing criterion. 
Therefore, for capturing these possible statements, in Figure 5 we ought to add the operator 
mrgSli into semantic descriptions of conditional statement and loop statement. 

After the last statement of a program is analyzed, we could obtain, from the result Slices 
table, the static slice of each single variable (say var) of the program, which is the set of 
labels of all expressions influenced on the var variable: 

 L = lkpSli (var, getSli) 

For getting the final result of the static slices, i.e., a syntactically valid subprogram, we --
following Venkatesh (Venkatesh, 1990) -- define Syn(s, L) for language W in Figure 6, where s is 
a W-program analyzed. It guides us how to construct a syntactically valid subprogram of s 
from the set L. It just gives a strategy for returning the final result/subprogram from a given 
set L, so it could be changed to cater to different people’s need. For example, if one does not 
consider variable declaration as part of slices, then one might change the corresponding term 
in Figure 6 as follows: 

                       “var ide : t ” :  “skip” 

The correctness proofs of our monadic static slicing algorithms can refer to their termination 
theorem and their consistency with PDG-based slicing algorithms, given in ref. (Zhang, 

2007). In fact, the term L and 
( l.e )

( , )
x Refs

lkpSli x T

 in the above definition of L can accurately 

capture control dependences and data dependences related, respectively. 

For more about the algorithm, we now illustrate to use the rules in Figure 5 to compute the 
static slice w.r.t. <8, sum> of an example W program in Figure 7. Its each expression is 
uniquely labeled through the label (marked in source program) of the place where the 
expression presences. So the fourth expression is “i := 1”.  

According to the rule/semantics of assignment statements in Figure 5, after the third 

expression (i.e. “sum := 0”) is analyzed, its intermediate set L (whose initial value is ) is 

changed to L: 

L = {3}  L  lkpSli (sum, T) = {3}     = {3} 

Where T is the current slice table, including the static slices of the “i" and “sum” variables, 
written briefly as L(i) and L(sum), respectively. Since this expression is an assignment one, 

the related data in Slices need to update through updSli, i.e. L(sum) = L = {3}. Similarly, after 
the 4th expression is analyzed, we have 

L = {4}  L  lkpSli (i, T) = {4};  L(i) = {4} 
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And keep going for the 5th-7th expressions, we obtain 

5th:  L = {5}    L(i) = {4, 5} 

6th:  L = {6}  L  (L(sum)  L(i)) = {3, 4, 5, 6}; L(sum) = {3, 4, 5, 6} 

7th:  L = {7}  L  L(i) = {4, 5, 7};  L(i) = {4, 5, 7} 

 
 
 
 

 
 

 

Fig. 5. Monadic semantics of static slicing for W programs. 

M :: Prg  ComptM () 

M program ide is b  = return () 

B :: Blk  ComptM () 

B d begin c end  = return () 

D :: Dec  ComptM Env   E :: Exp  ComptM Value 

D const ide = l.e  = { L  rdLabels; T  getSli;  

L  {l}  L 
( l.e )

( , )
x Refs

lkpSli x T

 ; updSli(ide, L, T ) }                     

D var ide : t  = return () 

D d1; d2  = return () 

C :: Cmd  ComptM () 

C ide := l.e  = { L  rdLabels; T  getSli;  

L  {l}  L 
( l.e )

( , )
x Refs

lkpSli x T

 ; updSli(ide, L, T ) } 

C c1; c2  = {C c1 ; C c2 } 

C skip  = return () 

C if l.e then c1 else c2 endif  = { L  rdLabels; T  getSli;  

L  {l}  L 
( l.e )

( , )
x Refs

lkpSli x T

 ; 

inLabels L C c1 ; T1  getSli; setSli(T); 

inLabels L C c2 ; T2  getSli; mrgSli(T1, T2) } 

C while l.e do c endwhile  = Fix (f. {L rdLabels; T  getSli;  

L{l}L 
( l.e )

( , )
x Refs

lkpSli x T

 ; 

f  {inLabels L C c ; T getSli; mrgSli(T, T )}}) 

C read l.ide  = {L  rdLabels; T  getSli; L  {l}  L; updSli(ide, L, T)} 

C write l.e  = return () 
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Fig. 7. An example program. 

Because of the loop of While statement, the 5th-7th expressions are analyzed again: 

5th:  L = {5}  L  L(i) = {4, 5, 7} 

6th:  L = {6} L  (L(sum)  L(i)) = {3, 4, 5, 6, 7}; 

L(sum) = {3, 4, 5, 6, 7} 

7th:  L = {7}  L  L(i) = {4, 5, 7}; L(i) = {4, 5, 7} 

Now, if the whole loop body is analyzed over again in this way, the slice L(sum) and L(i) 
will not be changed again, reaching their fixpoint. So after finishing the analysis of the last 
statement (8h), we obtain the final table Slices as follows: 

L(i) = {4, 5, 7};  L(sum) = {3, 4, 5, 6, 7} 

According the rules of Syn(s, L) in Figure 6, we can obtain the final result of static slice w.r.t. 
<8, sum> of the example program. 

5. Extending W language with pointers 

The modular monadic approach mentioned previously is flexible enough that we can easily 

introduce a new program feature to analysis. In this section, we will illustrate this power by 

considering an extension of the language W with pointers. We shall show how to adapt the 

implementation to this extension, with a small change in our existing monadic slice 

algorithm. 

The introduction of a pointer will lead to aliasing problems (Horwitz, 1989; Hind, 1999) (i.e. 
multiple variables access the same memory location), so we need pointer analysis to obtain 
the corresponding data dependency information. In order to represent the unbounded data 

     program Example is 

1     var sum 

2     var i 

      begin 

3      sum := 0 ; 

4      i := 1; 

5      while i < 11 do 

6         sum := sum + i; 

7         i := i + 1  

endwhile; 

8      write sum 

end 
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Fig. 6. The definition of Syn(s, L), where L = lkpSli(var, getDSli). 

structures in a finite way for the presence of pointers, we consider that all point in the same 

procedure applied to form an array of heap space, and will deal with this array as a whole. 

The extended algorithm combines the point-to analysis by data-flow iteration with forward 

monad slicing. With the illumination of this idea, the key issue to be addressed is the 

solution to assignments. The other statements (such as conditional statements, loop 

statements, etc.) could be resolved by adding point-to computation to the existing slicing 

methods. Before going on, we introduce a data structure for point-to analysis. 

Similar to the Slices datatype in Section 3, we design an abstract datatype PT for point-to 
analysis: 

type Var = String  

type PtSet = [Var] 

type PT = [(Var, PtSet)] 

getPT :: ComptM PT 

setPT :: PT  ComptM PT 

lkpPT :: Var  PT  ComptM PtSet 

Syn(s, L) = case s of  

“program ide is b ” : if Syn(b, L) = “skip” then “skip”  else “program ide is b” 

“d begin c end ” : if Syn(d, L)=Syn(c, L)=“skip” then “skip” else “d begin c 

end” 

“const ide = l.e ” : if l  L then “const ide = l.e”  else “skip” 

“var ide : t “ :        if ide  {var}  
L

fsRe
l

)l.e( then “var ide : t ” else “skip” 

“d1; d2 ” : Syn(d1, L); Syn(d2, L) 

“ide := l.e ” : if l  L then “ide := l.e”  else “skip” 

“c1; c2 ” : Syn(c1, L); Syn(c2, L) 

“skip ” :        “skip” 

“read ide ” : if ide  {var}  
L

fsRe
l

)l.e( then “read ide”  else “skip” 

“write l.e ” :   “skip” 

“if l.e then c1 else c2 endif ”: if (Syn(c1, L) = Syn(c2, L) = “skip”)  (l  L) then 

“skip”  

else “if l.e then Syn(c1, L) else Syn(c2, L) endif ” 

“while l.e do c endwhile ” : if (Syn(c, L) = “skip”)  (l  L) then “skip”   

else “while l.e do Syn(c, L) endwhile” 
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updPT :: Var  PtSet  PT  ComptM () 

mrgPT :: PT  PT  ComptM PT 

The point-to table, PT, is a table of pairs of a single variable and its associated point-to set (a 

set of variables). It has five operators getPT, setPT, lkpPT, updPT and mrgPT, which return 

and set the current table of point-to sets, lookup a point-to set corresponding to a variable in 

a given table of point-to sets, update some point-to sets corresponding to a list of variables 

in a given table of point-to sets, and merge two table of point-to sets into one table, 

respectively. 

With the pointers, we sometimes need to update the slices or the point-to sets of some 

variables at the same time, so we extend the operator xtdSli for Slices datatype, and the 

operator xtdPT for PT datatype as follows: 

xtdSli :: [Var]  Labels  Slices  ComptM () 

xtdPT :: [Var]  PtSet  PT  ComptM () 

Now we can study in depth the assignment statements with pointers. For simplicity, we 

only consider single dereference of a pointer (e.g. *x), since multi-dereference (e.g. **x) can 

be divided into multiple single dereferences. We decompose an assignment into a left-value 

expression (such as x or *x), and a right-value expression (also notated as l.e, but may 

contain *y or &y). So we need to expand the definition of Refs(l.e) in Section 4. The variables 

appeared in a right-value expression can be divided into three categories: reference 

variables, dereference variables and address variables. So we have 

  Refs(l.e) = {x | x is a reference variable}  {y | y is a dereference variable} 

 {z | z  lkpPT(y, getPT), where y is a dereference variable} 

The detail algorithm of Refs(l.e) is shown in Figure 8, where the PtInfo(l.e) function can 
obtain the point-to information generated by l.e.  

The algorithm in Figure 8 addresses the issues of the reference and point-to information of a 

right-value expression, and hence facilitates the expansion of the existing slicing algorithm 

in Figure 5. The final expansion for the static slices of a W program with pointers is shown 

in Figure 9, which is generated by adding the bold and blue terms in Figure 5. 

By introducing point-to analysis to our previous monadic slicing, we presented (in Figure 9) 

an approach of monadic slicing for a program with pointers. This approach obtained the 

point-to information through the data-flow iteration. Being different from the traditional 

methods where the point-to information and slicing are analyzed in two different phases, 

they are computed in the same phase in our method, by combining the forward monad 

slicing with data-flow iteration. Instead of recording point-to information for every 

statement, we only need to record the information for current analysis statements. So our 

method saves space without losing the precision. In addition, our approach also reserves the 

excellent properties of compositionality and language-flexibility from the original monadic 

slicing method. 
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Fig. 8. The algorithm for the reference set and the point-to set of an expression. 

6. Implementation and complexity analysis 

In this section, we will implement the monadic slicing algorithms, and analyze its 
complexity as well. 

Because of the use of monad transformers, modular denotational semantics achieves a high 
level of modularity and extensibility. Despite this, it is still executable: there is a clear 
operational interpretation of the semantics (Wadler, 1995). In ref. (Liang, 1995, 1998; Wadler, 
1995), some modular compilers/interpreters using monad transformers were constructed. 
On the basis of these works, our monadic approach for static program slicing is feasible. Based 
on Labra’s language prototyping system LPS (Labra et al, 2001), we developed a simple 
monadic slice prototype MSlicer (for more, see ref. (Zhang, 2007) or its website: 
https://sourceforge.net/projects/ lps). Its implementation language is Haskell, which is a 
purely functional language with lazy evaluation. The beauty of laziness allows Haskell to 
deal with infinite data, because Haskell will only load the data as it is needed, and because 
the garbage collector will throw out the data after it has been processed. Using higher-order 

Input:   an expression (e.g. e) 

Output:  the reference set, Refs, and the point-to set, PtInfo, of the expression 

Algorithm:  

case e of  

  e is the expression of the form &y    

Refs(e) =  ;   PtInfo(e) = {y} 

  e is the expression of the form *y     

Let ys = lkpPT(y, getPT) where ys is the current point-to set of y;  

Refs(e) = {y}  ys;  PtInfo(e) = v

v  ys

( , )



lkpPT getPT  

  e is a pure variable such as y      

Let ys = lkpPT(y, getPT);  

Refs(e) = {y};  PtInfo(e) = ys 

e is the compound expression with two sub-expressions e1 and e2   

Refs(e) = Refs(e1)  Refs(e2);  PtInfo(e) = PtInfo(e1)  PtInfo(e2) 

  e is a constant of a value type      

Refs(e) =  ;   PtInfo(e) =  

end case; 
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Fig. 9. Monadic slicing semantics for the W language with pointers. 

M :: Prg  ComptM () 

M program ide is b  = return () 

B :: Blk  ComptM () 

B d begin c end  = return () 

D :: Dec  ComptM Env   E :: Exp  ComptM Value 

D const ide = l.e  =  

{ L  rdLabels; T  getSli; P  getPT; ps = PtInfo(l.e); xs = lkpPT (ide, P); 

if (ide is of the form *x) then 

L  {l}  L 
( l.e ) { x }

( , )

r Refs

lkpSli r T

 
 ; xtdSli (xs, L, T); xtdPT (xs, ps, P); 

else   

L  {l}  L 
( l.e )

( , )
x Refs

lkpSli x T

 ; updSli(ide, L, T ); updPT (ide, ps, 

P)}                     

D var ide : t  = return () 

D d1; d2  = return () 

C :: Cmd  ComptM () 

C ide := l.e  =  

{ L  rdLabels; T  getSli; P  getPT; ps = PtInfo(l.e); xs = lkpPT (ide, P); 

if (ide is of the form *x) then 

L  {l}  L 
( l.e ) { x }

( , )

r Refs

lkpSli r T

 
 ; xtdSli (xs, L, T); xtdPT (xs, ps, P); 

else   

L  {l}  L 
( l.e )

( , )
x Refs

lkpSli x T

 ; updSli(ide, L, T ); updPT (ide, ps, P)} 

C c1; c2  = {C c1 ; C c2 } 

C skip  = return () 

C if l.e then c1 else c2 endif  =  

{ L  rdLabels; T  getSli; P  getPT; L  {l}  L 
( l.e )

( , )
x Refs

lkpSli x T

 ; 

inLabels L C c1 ; T1  getSli; P1  getPT; setSli(T); setPT(P); 

inLabels L C c2 ; T2  getSli; P2  getPT; mrgSli(T1,T2); mrgPT(P1, P2)} 

C while l.e do c endwhile  =  

Fix(f. {LrdLabels; TgetSli; L{l}L 
( l.e )

( , )
x Refs

lkpSli x T

 ; P 

getPT; 

f  {inLabels L C c ; TgetSli; P getPT; mrgSli(T, T ); mrgPT(P, P ) }}) 

C read l.ide  = { L  rdLabels; T  getSli; L  {l}  L; P  getPT; 

if (ide is of the form *x) then xtdSli(lkpPT(x, P), L, T) 

else updSli(ide, L, T) } 

C write l.e = return ()
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 functions from the libraries, Haskell modules can be written to concisely describe each 
language feature (Peterson et al, 1997; Thompson, 1996). Features such as arbitrary precision 
integer arithmetic, list comprehensions, infinite lists, all come in handy for the effective 
monadic slicing of a large program. 

 

Fig. 10. The framework of the prototype MSlicer. 

 

Fig. 11. The slice results of the sample program in Figure 7 from our MSlicer. 

 

Fig. 12. A loop sample with l while statements. 

statements 

var v1 = 1;             

⋮ 

var v5 = 5;              

while (1 < 2) do               

            ⋱   

          while (1 < 2) do        

             v1 := v2;             

             ⋮ 

             v5 := v1             

          endwhile; 

m 

1 

 

5 

6 

 

5+l 

6+l 

 

10+l 
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Figure 10 gives the framework of the monadic slicer MSlicer. Figure 11 gives the static slice 
results for the example program in Figure 7 from our current monadic slicer. The final 
results also include the output value, analysis trace, static slice table and CPU time. 

In practice, in order to obtain good performance, we choice the Haskell type IntSet instead 
of the original set type of Labels (i.e. [Int]) in Section 3. The implementation of IntSet is 
based on big-Endian Patricia trees (Okasaki & Gill, 1998; Morrison, 1968). This data 
structure performs especially well on binary operations like union and intersection. Many 
operations have a worst-case complexity of O(min(n,W)), where n is the number of 
elements; W is the number of bits in an Int (32 or 64). This means that the operation can 
become linear in the number of elements with a maximum of W. 

The measures of system size used below are those associated with the data structure of 
program slice Slices (which is a Hash table). 

In a modular compiler/interpreter, our slice monad transformer could be modularly and 

safely combined into the semantic buildings, so the complexity analysis is restricted to L 
and Syn(s, L) of a concrete programming language. In the case of our example language W, 

the intermediate label set L can be determined in worst-case time O(v  m), where v refers to 
the number of single variables in the program analyzed; and m is the number of labeled 
expressions in the program. To determine the Syn(s, L) shown in Figure 6 may cost 
O(min(m,W)). Therefore the time cost of the predominant part of program slicing in the 

monadic slicing algorithm is bounded by O(v  m  n), where n is the number of all labeled 
expressions appeared (perhaps repeatly) in the sequence of analyzing the program. In 

addition, an extra time cost O(v  min(m,W)) needs to get the executable slices of all single 

variables. Now we can see that the worst-case time of the whole static slice is O(v  m  n). 
Since we finally obtain the static slices of all variables after the last statement is analyzed, the 

program slice of each variable, on the average, costs O(m  n). In fact, n = O(m2) at worst, for 
more see the following loop statement shown in Figure 12. So all of its static slices will cost 
the worst-case time O(m3). 

To analyze the space complexity of the algorithms, we pay our attention to the constructions 

Refs(l.e), Slices, L and L. We need space O(v  v) and O(v  m) to save Refs(l.e) and Slices, 

respectively. According to the definition of slice monad transformer SliceT in Figure 4, we 

need more intermediate labels when SliceT is applied to loop statements (e.g. while 

statements). So it takes the space O(k  m) to save intermediate labels, where k refers to the 

maximal times of analyzing the loop statements in the program (until the slice stabilizes) . 

The label set L will cost the space O(m). Therefore, the total space cost is O(v  v  v  m  k  

m). 

By analyzing the complexity of algorithms in Figure 8 and 9, we find that the cost of point-to 

analysis is less than the cost of slicing. So our expansion algorithm to pointers has no 

additional complexity. 

We have tested the complexity analysis of our monadic static algorithms by using the 
program with l while loop statements shown in Figure 12, which is similar to the while 
program in ref. (Binkley & Gallagher, 1996). From the results given in Figure 13, we can see 
that n = O(m2) at worst. This shows that the prototype monadic slicer MSlicer without 
optimization (such as BDD or SEQUITUR (Zhang et al, 2003) for the slice and trace tables) 
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can compute slices for large analysis histories in reasonable time and space. (The 
experiments run on a Pentium Willamette (0.18) Windows PC system with 1GB RAM). 

 
(a)  t vs. n                                                          (b)   n vs. m 

Fig. 13. The relations between CPU time, t, and the number of all labeled expressions 
analyzed in practice, n, or the number of labeled expressions in the program, m. 

7. Related work and comparisons 

The original program slicing method was expressed as a sequence of data flow analysis 

problems (Weiser, 1984). An alternative approach was relied on program dependence 

graphs (PDG) (Ottenstein & Ottenstein, 1984). Most of the existing slicing methods were 

evolved from the two approaches. A few program slicing methods focused on the semantics 

of programs. 

G.Canfora et al.’s conditioned slicing (Canfora et al, 1998) adds a condition in a slicing 

criterion. Statements that do not satisfy the condition are deleted from the slice. M.Harman 

et al.’s amorphous slicing (Harman & Danicic, 1997) allows for any simplifying 

transformations which preserve this semantic projection. These two methods are not really 

based on formal semantics of a program. P.A.Hauser et.al ’s denotational slicing (Hausler, 

1989; Ouarbya et al, 2002) employs the functional semantics of a program language in the 

denotational (and static) program slicer. G.A.Venkatesh (Venkatesh, 1991) also took account 

of denotational slicing with formal slicing algorithms including dynamic and static. This 

approach is indeed based on the standard denotational semantics of a program language. 

The language Venkatesh considered is a very simply one without pointers. We have extended 

it in this paper to a more realistic programming language containing pointers, but take an 

entirely different approach called modular monadic slicing.  

Compared with the existing static slicing algorithms, the monadic static-slice algorithm has 

excellent flexibility, combinability and parallelizability properties, because it has abstracted 

the computation of static slicing as an independent entity, static slice-monad transformer. Our 

algorithm has allowed that static slices could be computed directly on abstract syntax, with 

no needs to explicitly construct intermediate structures such as dependence graphs. 

In respect of accuracy, in Section 4 or in ref. (Zhang, 2007) we have stated that the slice results 

of monadic static slicing algorithm are not less precise than PDG-based ones. This is because 
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the term L and 
)l.e(

),( 
fsRer

getSlirlkpSli


in the definition of L can accurately capture control 

dependences and data dependences respectively, which are the base of PDG-based 

algorithms.  

According to the complexity analysis (in Sections 6) for monadic slicing algorithms, their time 
complexity of each variable is averagely O(m3) time. While the intra-procedural slicing 

algorithms based on dataflow equations can compute a slice in O(v  n  e) time, or 

averagely in O(n  e) time for each variable, where n is the number of vertices in the control 
flow graph (CFG) and e the number of edges in CFG (Weiser, 1984). Although the PDG-
based algorithms extract slices in linear time (i.e. O(V + E), where V and E are the number of 
vertices and edges in the slice, respectively) after the PDG has been computed, a PDG can be 

constructed in O(n  e + n  d) time, where d is the number of definitions in the program 

(Tip, 1995). Here V, n, e and d are the same complexity level of m, so the whole time of PDG-
based algorithms (including the PDG-construct time) is also O(m3) nearly. 

8. Conclusions and future work 

In this paper, we have proposed a new approach for program slicing. We have called it 
modular monadic program slicing as it is based on modular monadic semantics. We have 
abstracted the computation of program slicing as a language-independence object, slice 
monad transformer. Therefore, the modular monadic slicing has excellent flexibility and 
reusability properties comparing with the existing program slicing algorithms. The modular 
monadic slicing algorithm has allowed that program slices could be computed directly on 
abstract syntax, with no needs to explicitly construct intermediate structures such as data 
flow graphs or dependence graphs. 

As the behavior of a program is determined by the semantics of the language, it is 
reasonable to present the modular monadic program slicing. Furthermore, it is feasible, 
because modular monadic semantics is executable and some modular 
compilers/interpreters have already been existed.  

For our future work, we will analyze slicing for programs with special features such as 
concurrent, object-oriented, exceptions and side-effects, by combining slice monad 
transformer with existing ones such as concurrent (Papaspyrou, 2001), object-oriented 
(Labra, 2002), non-determination, exceptions and side-effects (Moggi, 1991; Wadler, 1992, 
2003). At the same time, we will improve our prototype of monadic slicers and give more 
comparisons with other slicing methods in experiments. 
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