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1. Introduction 

Modern software systems are huge, complex, and greatly distributed. In order to design 
and model such systems, software architects are faced with the problem of cross-cutting 
concerns much earlier in the development process. At this level, cross-cutting concerns 
result in model elements that cross-cut the structural and behavioral views of the system.  
Research has shown that Aspect Oriented (AO) techniques can be applied to software 
design models. This can greatly help software architects and developers to isolate, reason, 
express, conceptualize, and work with cross-cutting concerns separately from the core 
functionality (Ajila et al., 2010; Petriu et al, 2007). This application of AO techniques much 
earlier in the development process has spawned a new field of study called Aspect-
Oriented Modeling (AOM). In AOM, the aspect that encapsulates the cross-cutting 
behavior or structure is a model, just like the base system model it cross-cuts. A system 
been modeled has several views including structural and behavioral views. Therefore, a 
definition of an aspect depends on the view of interest. Unified Modeling Language 
(UML) provides different diagrams to describe the different views. Class, Object, 
Composite Structure, Component, Package, and Deployment diagrams can be used to 
represent the structural view of a system or aspect. On the other hand, Activity, State 
Machine, and Interaction diagrams are used to model the behavioral view. Interaction 
diagrams include Sequence, Interaction Overview, Communication, and Timing 
diagrams. 

After reasoning and working with aspects in isolation, the aspect models eventually have to 
be combined with the base system model to produce an integrated system model. This 
merging of the aspect model with the base model is called Aspect Composition or Weaving. 
Several approaches have been proposed for aspect composition using different 
technologies/methodologies such as graph transformations (Wittle & Jayaraman, 2007), 
matching and merging of model elements (Fleury et al., 2007), weaving models (Didonet et 
al., 2006) and others. The goal of this research is to compose aspect models represented as 
UML sequence diagrams using transformation models written in Atlas Transformation 
Language (ATL).  

Composing behavioral models (views) represented as UML Sequence diagrams is more 
complex than composing structural views. Not only is the relationships between the 
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model elements important but the order is equally paramount. Several approaches have 
been proposed for composing behavioral aspects with core system behavior, and these 
include graphs transformations [Whittle et al., 2007] and generic weavers [Morin et al., 
2008]. In this research work we view composition as a form of model transformation. 
Aspect composition can be considered a model transformation since it transforms aspect 
and primary models to an integrated system model. Toward this end, we propose and 
focus on an approach that uses model transformations to compose both primary and 
aspect models represented as UML Sequence diagrams (SDs). SDs modeling the primary 
model and generic aspect models is created using Graphical UML modeling tools like 
Rational Software Architect (RSA). Model transformations are then used to instantiate the 
generic aspect models in the context of the application to produce context specific aspect 
models. Binding rules used for instantiating the generic aspect are represented as mark 
models that conform to a metamodel. Using other model transformations, the context 
specific aspect models are then composed with the primary model to produce an 
integrated system model.  Verification and validation is performed, not only to verify that 
composition was successful, but also to ensure that the composed model is a valid UML 
model that can be processed further and shared with other researchers. 

The rest of this chapter is structured as follows. Section two presents Model Driven 
approach, Aspect-Oriented techniques and technologies, and Atlas Transformation 
Language (ATL). We present our approach to model composition in section three starting 
with an example. We introduce our model composition semantics and definitions in section 
four – giving formal notions and three major algorithms (pointcut detection, advice 
composition, and complete composition) that define the basis of our work. Section five 
presents the design and implementation of our model composition using ATL semantics. 
We introduce and analyze a case study based on phone call features in section six. Section 
seven gives our conclusion, limitations, and future work. 

2. Model Driven Engineering/Development/Architecture (MDE/MDD/MDA) 

In Model Driven Engineering (MDE) everything is a model. A model refers to a simplified 

view of a real world system of interest; that is, an abstraction of a system. MDE considers 

models as the building blocks or first class entities (Didonet et al, 2006). A model conforms 

to a metamodel while a metamodel conforms to a metametamodel. MDE is mainly 

concerned with the evolution of models as a way of developing software by focusing on 

models. With this new paradigm of software development, the code will be generated 

automatically by model to code transformations. Model Driven Development (MDD) is 

copyrighted term by Object Management Group (OMG). One of the most important 

operations in MDE/MDD is model transformation. There are different kinds of model 

transformations including model to code, model to text, and model to model. Our interest in 

this paper is in model to model transformations. Figure 2.1 shows the process of model 

transformation. Since every artifact in MDE is a model, the model transformation is also a 

model that conforms to a metamodel. The transformation model defines how to generate 

models that conform to a particular metamodel from models that conform to another 

metamodel or the same metamodel.  In Figure 2.1, the transformation model Mt transforms 

Ma to Mb. Mt conforms to MMt while Ma and Mb conform to MMa and MMb respectively. 

The three metamodels conform to a common metametamodel MMM. 
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Fig. 2.1. Overview of Model Transformation Adopted from (ATL-User-Manual, 2009).  

OMG's Model-Driven Architecture (MDA) is a term copyrighted by OMG that describes an 
MDE approach supported by OMG standards; namely, UML, Meta-Object Facility (MOF), 
MOF-Query/View/Transformation (QVT), XML Metadata Interchange (XMI) and Common 
Warehouse Metamodel (CWM). MDA decouples the business and application logic from the 
underlying platform technology through the use of the Platform Independent Model (PIM), 
Platform Specific Model (PSM) and model transformations. The PIM describes a software 
system independently of the platform that supports it while PSM expresses how the core 
application functionality is realized on a specific platform. Given a specific platform, the 
PIM is transformed to PSM. Platform in this case refers to technological and engineering 
details that are independent of the core functionality of the application. For example, 
middleware (e.g., CORBA), operating system (e.g., Linux), hardware, etc. 

2.1 Aspect-Oriented (AO) techniques/technologies 

The size of modern software systems has increased tremendously. Software architects and 

developers have to design and develop systems that are not only enormous, but are more 

complex, and greatly distributed. These systems naturally have many cross-cutting concerns 

(requirements) whose solutions tend to cross-cut the base architecture and system behavior. 

Such concerns include security, persistence, system logging, new features in software 

product lines, and many others. Aspect-Oriented techniques allow software developers and 

architects to conceptualize and work with multiple concerns separately (Groher & Voelter, 

2007; Kienzle et al., 2009; Petriu et al., 2007). These techniques allow us to modularize 

concerns that we cannot easily modularize with current Object-Oriented (OO) techniques 

(Whittle & Jayaraman, 2007). The final system is then produced by weaving or composing 

solutions from separate concerns (Petriu et al., 2007). Klein et al. point out that dividing and 

conquering these cross-cutting concerns also allows us to better maintain and evolve 

software systems (Klein et al., 2007).   

Aspect Oriented Programming (AOP) applies AO techniques at code level (France et al., 
2004; Petriu et al., 2007). AOP was introduced to enhance Object-Oriented Programming to 
better handle cross-cutting concerns that cause code scattering and tangling, which leads to 
code that is very difficult to maintain and impossible to reuse or modify. AOP addresses 
these issues by introducing a class like programming construct called an aspect which is 
used to encapsulate cross-cutting concerns. Just like a class, an aspect has attributes (state) 
and methods (behavior). An aspect also introduces concepts well known to AO community; 
namely, join points, advice, and pointcut. Join points are points in the code where the cross-
cutting behavior is to be inserted. AspectJ (a popular AOP Java tool) supports join points for 
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method invocations, initializing of attributes, exception handling, etc (Colyer et al., 2004). A 
pointcut is used to describe a condition that matches join points, that is it is a way of defining 
join points of interest where we want to insert the cross-cutting functionality. This cross-
cutting behavior to be inserted at a join point is defined in the advice. AspectJ supports before, 
after, and around advices (Colyer et al., 2004).  

Recent work in AO has focused on applying AO techniques much earlier in the 
development process (Kienzle et al., 2009; Klein et al., 2007; Morin et al., 2008; Petriu et al., 
2007). In Aspect Oriented Modeling (AOM), Aspect-Oriented techniques are applied to 
models (unlike AOP). Whittle et al. define an AO model as “a model that cross-cuts other 
models at the same level of abstraction” (Whittle et al., 2006). Aspects are considered models as 
well; hence, it makes sense to define (or abstract) other concepts such as pointcuts and 
advices as models. However, the precise definition of a joint point, pointcut or advice 
depends on our modeling view. For example, in a structural view, such as a class diagram, 
an aspect is defined in terms of classes and operations/methods whereas in a behavioral 
view, such as a sequence diagram, an aspect is defined in terms of messages and lifelines. 
This has resulted in several approaches to AOM most of which have focused on separation 
and weaving (composition) of structural (class diagrams) and behavioral views (sequence, 
activity, and state diagrams) (Klein et al., 2007; Morin et al., 2008; Petriu et al., 2007). Several 
approaches have been proposed for composing aspects in AOM. These include using graph 
transformations (Gong, 2008; Whittle & Jayaraman, 2007), semantics (Klein et al., 2006), 
executable class diagrams (ECDs), weaving models (Didonet et al., 2006), generic 
approaches and frameworks (Fleury et al., 2008; Morin et al., 2008), etc. Composition 
primarily involves deciding what has to be composed, where to compose, and how to 
compose (Didonet et al., 2006). Aspect composition can either be symmetric or asymmetric. 
In symmetric composition, there is a clear distinction between the models to be composed; 
that is, one model plays the role of a base model while the other is declared an aspect model 
(Jeanneret et al, 2008). This distinction is absent in asymmetric composition. 

2.2 Atlas transformation language 

The Atlas Transformation Language (ATL) is a model transformation language from the 
ATLAS INRIA & LINA research group (ATL-User-Guide, 2009). The language is both 
declarative and imperative, and allows developers to transform a set of input models to a 
number of output target models. In ATL, source or input models can only be navigated but 
cannot be modified (Jouault & Kurtev, 2005) whereas target models are write-only and 
cannot be navigated. Figure 2.2 below shows an overview of an example of an ATL 
transformation (Family2Person) from [ATL_Examples] that transforms a Family model to a 
Person model. The Family model conforms to an MMFamily metamodel whereas the Person 
model  conforms to an MMPerson metamodel. The ATL, MMFamily, and MMPerson 
metamodels all conform to the Ecore metametamodel which is a metamodel for the Eclipse 
Modeling Framework. Families2Persons.atl is an ATL model or program that transforms a 
Family model to a Person model. 

ATL has three types of units that are defined on separate files (ATL-User-Guide, 2009); 
namely, ATL modules, queries and libraries. ATL has types and expressions that are based 
on the Object Constraint Language (OCL) from OMG. ATL has primitive types (Numeric, 
String, Boolean), collection type (sets, sequences and bags) and other types, all of which are  
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Fig. 2.2. Overview of the Family to Person ATL Transformation. 

sub-types of the OCLAny abstract super-type. An ATL module or program, like 
Families2Persons.atl in the previous example, defines a model to model transformation 
(Jouault & Kurtev, 2005). It consists of a header, helpers (attribute and operation helpers) 
and transformation rules (matched, called and lazy rules) (Jouault & Kurtev, 2005). The 
header defines the module's name, and the input and target models. ATL operation helpers 
are more like functions or Java methods, and can be invoked from rules and other helpers. 
Attribute helpers unlike operation helpers do not take any arguments. All helpers are, 
however, recursive and must have a return value. Rules define how input models are 
transformed to target models. They are the core construct in ATL (Jouault & Kurtev, 2005). 
ATL supports both declarative and imperative rules. Declarative rules include matched 
rules and lazy rules. Lazy rules are similar to matched rules but can only be invoked from 
other rules. A matched rule consists of source pattern and target pattern (Jouault & Kurtev, 
2005). A source pattern is defined as an OCL expression and defines what type of input 
elements will be matched (ATL-User-Guide, 2009).  An ATL model is compiled, and then 
executed on the ATL engine that has two model handlers; namely, EMF (Eclipse Modeling 
framework) and MDR (Meta Data repository) (ATL-User-Guide, 2009). Model handlers 
provide a programming interface for developers to manipulate models (Jouault & Kurtev, 
2005). The EMF handler allows for manipulation of Ecore models while MDR allows the 
ATL engine to handle models that conform to the MOF 1.4 (Meta Object Facility) 
metametamodel (ATL-User-Guide, 2009). For example, the ATL transformation in Figure 4.1 
would require an EMF model handler since the metamodels conform to Ecore. 

 

Fig. 3.1. Our AOM Composition Approach. 
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3. Our approach to model composition 

Our approach shown in the Figure 3.1 is an adaptation of the approach proposed by Petriu 
et al. in (Petriu et al., 2007). Using a UML modeling tool, like RSA (Rational Software 
Architect) from IBM, the primary and generic aspect models are modeled in UML and then 
exported to a UML 2.1 (.uml) format file. The mark model is created in an XMI file. The 
Instantiate and Compose operations in Figure 3.1 are defined as ATL model transformations.  
We first instantiate a generic aspect model to the context of the application by using a model 
transformation that takes the primary, generic aspect and mark models as input, and 
transforms them to a context specific aspect model. We then invoke a second transformation 
that will take as input the newly created context specific aspect model and the primary 
model, and then output a composed target model. 

3.1 Example 

Let us introduce a simple example to provide a better view of our approach and the 
definitions of the various concepts used in the approach. This example is adapted from 
Klein et al. (Klein et al., 2007). It illustrates the weaving of a simple security aspect into a 
primary model.  The primary model consists of a single scenario. In fact, our composition 
approach assumes that the primary model has only one sequence diagram (SD) and models 
a particular instance of a use case. This example consists of a login scenario shown in Figure 
3.2 below. The model shows a simple iteration between instances of Server and Customer. 
The Customer attempts to log into the Server by sending a login message. The Customer's 
login details are incorrect; hence, the Server sends a try_again message to the Customer to 
attempt another login. The Customer then sends a login message with the correct details this 
time and the Server responds with an ok message. 

The primary model does not have any security features. So, we want to add some security 
mechanism to the scenario so that when a customer attempts login and fails, the system should 
do something about that exception. We can model this security mechanism as a Security 
Aspect model that will detect a presence of a message from the Customer to the Server, and a 
reply from the Server back to the Customer. The presence of this sequence of messages is 
defined in the aspect's pointcut. The new behavior we want to add to the primary model in 
order to enhance security is defined in the aspect's advice. However, to make the aspect 
reusable and more useful, it has to be generic but not specific to our example or situation. This 
way we can reuse the aspect and in different situations and scenarios.  

 

Fig. 3.2. The Primary Model - A Login Scenario for a Security Aspect Example. 
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To create a generic aspect we adopt the use of template parameters used by France et al. 
(France et al., 2004) and others (Kienzle et al., 2009; Petriu et al., 2007) to define generic roles 
played by the participants and messages in the generic aspect model. These generic roles are 
then bound to specific roles (names) when the generic aspect is instantiated. Figure 3.3 
shows the pointcut and advice that make up our generic security aspect model. It should be 
noted that in case of multiple aspects, each aspect will be modeled separately. The lifelines 
(participants) and messages in the model are made generic. The pointcut in Figure 3.3a 
defines that the aspect detects any sequence of messages between a lifeline that plays the 
role of |client and lifeline that plays the role of |server such that |client sends a message 
tied to the role |operation and |server responds with |retry. During instantiation these 
template parameters (roles) will be set (bound) to concrete names of appropriate lifelines 
and messages.  

As already mentioned, the advice represents the new or additional behavior we want 
executed if the pointcut matches, that is, if we find the sequence of messages defined in the 
pointcut in our primary model. The advice in Figure 3.3b declares that we want |server to 
invoke a self call after receiving |operation and before sending |retry to |client. So our 
advice in this case adds new behavior (the |handle_error self call). The idea is that during 
composition, as we shall see later, we replace whatever was matched by pointcut with what 
is defined in the advice.  

Before an aspect can be composed with the primary model, the generic aspect model must 
first be instantiated to the context of the application to produce a Context Specific Aspect 
Model. This is achieved by “binding” the template parameters to application specific values. 
For example, we want to bind “customer” to |client because in our primary model, 
customer plays the role of |client. 

Instantiating our generic aspect model using the bindings in Table 1, we obtain the context 
specific aspect model shown in Figure 3.4. The pointcut from the context specific aspect will 
then match the sending of a login message from customer to server and a try_again message 
from server back to customer, which is what we want. Its advice declares that the 
save_bad_attempt self call will be added to the server hopefully for the server to do 
something useful and security related. 

  
       (a) pointcut        (b)  Advice 

Fig. 3.3. Generic Aspect Model. 
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Parameter Binding value Comment 

|client customer Lifeline object name. 
|server server Lifeline object name. 
|Client Customer The name of the type for the lifeline object. 
|Server Server The name of the type for the lifeline object. 

|operation login  
|reply try_again  

|handle_error save_bad_attempt  

Table 1. Example of Security Aspect Binding Rules. 

 

  
 
     (a) Pointcut         (b) Advice 
 

Fig. 3.4. Context Specific Aspect Model. 

3.2 Model composition 

After instantiating a context specific aspect model, a complete integrated system is obtained 
by composing the primary model with the context specific aspect model. We view 
composition as a form of model transformation as shown in Figure 3.5.  Therefore, our aim 
is to transform the input models (Primary and Context Specific Aspect) to a target composed 
model.  As shown in Figure 3.5, both the input and output models conform to an EMF 
implementation of the UML metamodel specification while our ATL program or model 
conforms to the ATL metamodel. All the metamodels conform to the EMF's Ecore 
metametamodel. As in other aspect composition approaches composition has to be 
performed on different views, that is, structural or behavioral views. Our main focus is on 
the behavioral view. Composition inevitably results in some model elements been replaced, 
removed, added or merged (Morin et al., 2008; Gong, 2008). Similarly in our approach, all 
model elements from the context specific aspect model that are not already in the primary 
model, will be added to the composed model but elements common to both models will be 
merged. All join point model elements (from primary model) are replaced by advice 
elements. The rest of the elements from the primary model will be added to the composed 
model. A formal definition of our models and the proposed algorithm (for matching and 
composing) are based on UML metamodel classes. The specification for the UML 
metamodel (OMG, 2009) is enormous and also includes metaclasses for other UML 
diagrams that we are not interested in. Therefore, it makes sense to look only at some of the 
important classes whose objects are used in creating sequence diagrams (SDs). 
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Fig. 3.5. Aspect Composition as an ATL model transformation. 

4. Model composition semantics and definitions 

A sequence diagram shows the order in which messages are exchanged among participants; 

hence, order is crucial [Hamilton & Miles, 2006; Pilone & Pitman, 2005). The messages or 

interactions, to be precise, on a specific lifeline are totally ordered but interactions between 

two lifelines are partially ordered. The most important model elements in a SD are probably 

lifelines (participants), messages, message ends, and the enclosing interaction. Figure 4.1 is a 

simplified class diagram of the Interactions Metamodel showing the relationships among 

the metaclasses for these model elements. 

A complete description of each metaclass can be obtained from the UML specification 

(OMG, 2009). The InteractionFragment abstract class represents a general concept of an 

interaction (OMG, 2009). An Interaction is a sub class of InteractionFragment that represents 

the modeled behavior or interactions (exchange of messages) between participants 

(lifelines)[OMG09]. An Interaction essentially encloses Messages, Lifelines and other 

InteractionFragments. The enclosed InteractionFragments are stored in an ordered list 

referenced by the fragment role. This ordering is exploited in our algorithms for matching 

and composing SDs. A Message models the kind of communication between participants 

[OMG09]. There are five main types of messages; namely, synchronous, asynchronous, 

delete, create, and reply messages [Hamilton+06]. Each message is accompanied by a pair of 

MessageOccurrenceSpecifications (MOSs). The sendEvent MOS represents the sending of the 

message while receiveEvent MOS models the reception of the message. Each MOS also has a 

reference to the lifeline for which the message is received or sent from through the covered 

association. In return, each Lifeline has a reference to a list of InteractionFragments or 

specializations of InteractionFragment (including MOSs), which cover the lifeline, through the 

coveredBy association.  

The events that we are interested in are specializations of the MessageEvent abstract class 

mainly the SendOperationEvent (SOE) and ReceiveOperationEvent (ROE) classes. These types 

of events occur during the sending or receiving of a request for an operation invocation 

(OMG, 2009).  
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Fig. 4.1. Simplify Metamodel for Sequence Diagrams. 

4.1 Sequence Diagram (SD) Composition 

As previously described, our AOM approach has a primary model, one or more generic 
aspect models and a mark model. The primary model describes the core system 
functionality (behavior) without cross-cutting concerns. The generic aspect models describes 
(encapsulate) cross-cutting concerns which could otherwise be scattered across core 
functionality; for example, new features (in software product lines), security, persistence, 
etc. Before composing the primary model with an aspect model we first instantiate the 
generic aspect model in the context of the application with the help of a mark model. We 
employ an ATL transformation model that takes the primary, generic aspect, and mark 
models as input, and produces a context specific aspect model as output. We would like to 
point out that the mark model does not necessarily have to specify all the bindings for the 
template parameters in cases where some of the bindings can be matched or implied from 
the primary model. A second ATL transformation model then takes as input the primary 
and context specific models to produce the composed model. Defining a generic aspect 
improves re-usability since the same aspect can be instantiated and then composed with the 
primary model multiple times until a complete integrated system model is obtained. Since 
we are mainly interested in the behavioral view (of our primary and aspect models), our 
work is mainly focused on the composition of interactions diagrams in the form of SDs. As 
described earlier, the aspect model consists of a pointcut and an advice defined as SDs 
where the pointcut is the behavior to detect and the advice is the new behavior to compose 
or weave at the join points [Klein et al., 2007]. Before composing, we first have to identify all 
our join points by matching the pointcut SD with the primary model. The pointcut SD 
consists of message or a sequence of messages between lifelines; therefore, we want to find 
the occurrence of these sequences of messages in the primary model and then insert the 
defined cross-cutting behavior (defined in the advice SD) at every join point. Composition is 
essentially inserting this new behavior; that is, composition is achieved by replacing the join 
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points with the advice SDs.  Before instantiating a generic aspect, we first have to ensure 
that the aspect can be applied to the primary model; that is, whether its pointcut matches. A 
formal definition of matching will be given later. Also during composition we have to find 
where to weave. This makes pointcut detection or finding join points a core operation. The 
algorithm designed for pointcut detection manipulates the SD metaclasses by exploiting the 
relationship between InteractionFragments and their ordered list of fragments in an 
interaction. It also makes use of the fact that a sequence of messages (and indeed a SD) is 
essentially a list of ordered fragments.   

4.1.1 Formal notations for defining aspects and primary models 

Let, 

 P be a sequence of fragments, that is, InteractionFragments (CombinedFragments and 
MOSs), from the aspect's pointcut SD. 

 A be a sequence of fragments from the aspect's Advice SD. 

 C be a sequence of fragments from the primary model SD. 

Note that a sequence is an ordered collection/list. 

Then, P = Sequence{f1, ..., fǙ} where Ǚ = number of fragments in P and fi is either a 
CombinedFragment (CF) or a MessageOccurrenceSpecification (MOS), such that, 

fi = If instance of where 
CF(O, Λ) CF O is a sequence of operands in the CF and each operand is 

also a sequence of fragments just like P. This is the case with 
nested CFs. 
Λ is a list of lifelines covered by the CF. 

MOS(Li,Ei,Mi) MOS Li is a lifeline covered by fi. 
Ei is an event associated with fi. 
Mi is a message associated with fi. 

and, 

C = Sequence{c1, ..., cμ} where μ = number of fragments in C and ci is also either a CF or a 
MOS, such that, 

ci = If instance of where
CF(O, Λ) CF O is a sequence of operands in the CF and each operand is 

also a sequence of fragments just like C. This is the case with 
nested CFs. 
Λ is a set of lifelines covered by the CF.

MOS(Li,Ei,Mi) MOS Li is a lifeline covered by ci, 
Ei is an event associated with ci. 
Mi is a message associated with ci.

4.1.2 Aspect and primary models definition 

Using the above notation, we will define an aspect model as a pair of fragment sequences, 
that is, Aspect = (P, A) where P and A are the sequences defined earlier. This definition is 
adapted from Klein et al. in (Klein et al., 2006; Klein et al., 2007); However, Klein et al. define 
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a simple SD as a tuple that consists of a set of lifelines, a set of events, a set of actions and 
partial ordering between the messages (Klein et al., 2007). This is different from our 
definition of a sequence of fragments. Using our definition, the primary model = C, a 
sequence of fragments from the primary model SD. Then our pointcut P matches C if and 

only if there exists two sub-sequences M1 and M2 in C such that, C = M1  P  M2, where  

denotes a union of sequences. A  B returns a sequence composed of all elements of A 
followed by the elements of B. If the P matches C several times, say n times, then we can say,        

C = M1  P M2  … Mn P Mn+1.  This definition is an adaptation of the definition 
given by Klein et al. in (Kleinet al., 2006). 

4.1.3 Join point definition 

Part of the sequence C that corresponds or matches P is the join point. In other words, a 

join point is a sub sequence of C that is equal to the sequence P. Equal here means that 

fragments at the same corresponding location in P and join point (same index on either 

sequences) are equal. For example, if elements at position 1 in P and in the join point are 

both MOSs, they can only be equal if and only if they cover similar lifelines (same name 

and type), have the same message, and have other features that are similar. More details 

for checking for equality will be given in the design and implementation section. Since the 

size (number of fragments) of P, hence the size of a join point, is fixed we can afford to 

keep track of only fragments at the beginning of each join point. With this assumption we 

can define; S = Sequence{s1, ... ,sn}, a sequence of fragments at the beginning of each join 

point where n > 1 is number of join points matched by P. A join point, Ji is then given by a 

sub sequence of C from index of si in S to the index of si  plus Ǚ minus 1. That is, if; xi = 

indexOf(si) and yi = xi + Ǚ - 1, where Ǚ = number of elements in P, then, Ji = C-

>subSequence(xi,yi) for 1 ≤ i ≥ n. 

4.2 Composition algorithms - assumptions and requirements 

The below algorithm and indeed the other algorithms to be introduced later, make the 
following assumptions: 

 The input models are well formed and valid; hence, the sequences S, P, and A are valid. 

For example, we do not have empty sequences. We also assume that the aspect models 

(generic and context specific) consists of two interactions (SDs) named Advice and 

Pointcut, and that the primary model represents one interaction or scenario; therefore, 

consists of one instance of Model, one instance of Collaboration, and one instance of 

Interaction.  

 We can correctly compare any two fragments regardless of their specialization, for 

example, comparing a MOS with a CF. 

 Nested CFs have been properly and consistently unrolled. 

 A lifeline's name is the same as that of the represented object (property). 

 Message have arguments with primitive UML types (strings and integers). 

 We can ignore other fragments like BehaviorExecutionSpecifications (BESs) and 
ExecutionOccurrenceSpecifications (EOSs) focusing only on MOSs and CFs (and their 
operands), and still achieve accurate pointcut detection.  
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4.2.1 Pointcut detection algorithm 

The pseudo code for the algorithm that detects or matches pointcuts and returns S is given 
below. The algorithm begins by creating an empty sequence S on line 2. It then iterates over 
all fragments ci in C checking if ci is equal to f1, the first element in our pointcut P on line 9. 
If the elements are not equal, the algorithm moves to the next ci. However, if the fragments 
(ci and f1) are equal, it obtains Ji, a sub sequence of C starting from ci and with the same size 
as P, on line 10. 

Algorithm-1 Pointcut Detection Algorithm 
Input : P = Sequence{f1, ..., fǙ}, C = Sequence{c1, ..., cμ} 

where Ǚ = number of fragments in P, and μ = number of fragments in C 
Output : S = Sequence{s1, ... ,sn} 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
20. 

begin 
S = Sequence{} 
foreach ci in C do 

//compute the location of the end of the potential join point 
k = i + Ǚ -1  
if k > μ then //make sure we have a valid location 

break 
end if 
if ci = f1 then 

Ji = C->subSequence(i,k) // Potential join point 
/* check if fragment at the same location in P is equal to the  
corresponding element in the join point */ 
if pairWiseMatch(P, Ji) then 

S->enqueue(ci) 
end if 

end if 
   end loop 
return S 

end 

On line 13 the algorithm then compares P and Ji, side-by-side by checking if each pair of 
fragments at index j on both sequences is equal for 1 ≤ j ≥ Ǚ. If this is true, then indeed Ji is a 
join point. So the algorithm inserts the first element (ci) of the join point into S and loops 
back to line 3. It continues looping until it has checked all the elements of C or the condition 
on line 6 is true to ensure we do not fall off the edge. More details on the implementation of 
this algorithm and its functions, like pairWiseMatch, will be discussed in the next section. 

4.2.1.1 Algorithm-1 complexity 

If the algorithm-1 has to visit all fragments in C (when Ǚ = 1) then both functions on lines 10 

and 13 will take constant time, that is, O(1) which makes the algorithm linear or O(n). If P is 

the same size as C (Ǚ = μ), then the algorithm has to loop only once but both subSequence 

and pairWiseMatch functions are O(n); hence, the algorithm is again linear. However, if Ǚ < μ 

then again both functions (i.e., Sequence and pairWiseMatch ) are, in the worst case, linear and 

the algorithm will have to loop several times each time invoking the two functions making 

the algorithm quadratic, that is O(n2); therefore, in general the algorithm is O(n2). 
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4.2.2 Complete composition algorithm 

After detecting the pointcut and obtaining our join points, the next step is to weave the 
advice at the join points. Since the advice has already been bound to the context of the 
application during aspect instantiation, weaving the advice is simplified to replacing a join 
point with the advice. This is trivial with only one join point. Challenges arise when we 
have multiple join points because we have only one advice from the aspect model. We can 
either duplicate the advice or work with one join point at a time. Both options were explored 
but duplicating the advice (without duplicating the aspect model) proved to be complex due 
to the inability to navigate target models in ATL, and the nested relationships between 
InteractionFragments. Focusing one join point at a time is easier and more elegant. The 
complete composition algorithm presented in this section achieves this. Let us first 
introduce abbreviations that we will use in the algorithm. 

 GAM = Generic Aspect Model 

 CSAM = Context Specific Aspect Model (Instantiated generic aspect model) 

 MM = Mark Model 

 PM = Primary Model 

 CM = Composed Model 

The pseudo code of the Complete Composition Algorithm is given below. The three functions 
defined in this algorithm represent the ATL transformations used to implement this algorithm 
as we shall see in the next chapter. The algorithm begins by retrieving n the number of join 
points matched in the primary model (PM) using the JoinPointsCount function on line 2. This 
function implements algorithm-1 (Pointcut detection Algorithm) to return a sequence of 
fragments at the beginning of each join point, and then finds the size of that sequence. The 
details of the implementation of this function will be given in next chapter. The number of join 
points determines if the algorithm will execute lines 6 to 10, and not necessarily the number of 
times the loop will iterate. If n > 0, that is, we have at least one join point, the algorithm 
instantiates the GAM to create a CSAM on line 6.  This corresponds to the instantiate process 
shown in Figure 5.1. It then composes PM with CSAM by weaving the advice at the first join 
point using the Compose function on line 8 to produce our composed model.   

Algorithm-2 Complete Composition Algorithm 
Input :GAM, MM, PM 
Output :CM 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 

begin 
 n = JoinPointsCount(GAM, MM, PM)  
 temp = PM  
 while n > 0 

// instantiate our generic aspect model 
 CSAM = Instantiate(GAM, MM, temp)  

// compose advice and first join point  
CM = Compose (temp,CSAM)  

 temp = CM 
 n = JoinPointsCount(GAM, MM,temp) 

 end while 
return CM 

end 
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The algorithm then checks the CM for more join points on line 10. If more are found, it 
returns to line 6 to instantiate the GAM using CM (new primary model). It then creates 
another CM and checks for more join points. The algorithm continues looping until no join 
points are found. 

As it is, this algorithm has a potential nasty flaw in the form of positive feedback, which, if 

left unattended, can cause the algorithm to loop indefinitely in some cases! The problem is 

rooted on the fact that composing an aspect in most cases results in the addition of new 

model elements (fragments, messages and lifelines) which in turn can produce more join 

points. This means that after composition on line 8, the algorithm may find more join points 

on line 10 causing the algorithm to iterate again and again. For example, if the pointcut is 

defined as a single message MSG1, and the primary model has two invocations of this 

message, then we have two join points. If the advice adds three instances of the same 

message MSG1, then after composition (1st iteration) we will have four join points. After the 

second iteration well have six, then eight, etc. With the number of join points increasing all 

the time the algorithm will never terminate. This problem is easily solved by tagging model 

elements from advice during instantiation on line 6. To be precise we only have to tag MOSs 

(fragments). Then when pointcut matching during the invocation of JoinPointsCount 

(implementing algorithm-1), we check for that tagging. If a potential join point has at least 

one tagged fragment, then we know that this join point emerged only after composition; 

therefore, it is immediately disqualified. 

4.2.2.1 Algorithm-2 complexity 

The complexity of algorithm-2 is difficult to analyze because on the surface the algorithm 
appears to be linear on the number of join points. However, the algorithm is not necessarily 
linear on the number fragments. We have already seen that detecting the number of join 
points is quadratic. Therefore, if that is nested within a loop, we could say that (in general) 
the algorithm is cubic, that is, O(n3) 

4.2.3 Advice composition algorithm 

At the core of the Compose function, used by the Complete Composition Algorithm 
described above, is the Advice Composition algorithm that weaves the advice at the join 
point. Recall the definition of an Aspect = (P, A). We will use definition again where by 
“Aspect” we are referring to a context specific aspect model. Our main interest is mainly on 
the advice sequence A. Recall that, 

 A = Sequence{a1, ..., aǚ}, a sequence of fragments from the aspect model advice SD, 
where ǚ = number of fragments in A. 

 C = Sequence{c1, ..., cμ}, a sequence of fragments from the primary model, where μ = 
number of fragments in C. 

 S = Sequence{s1, ... ,sn}, a sequence of fragments at the beginning of each join point, 
where n > 1 is number of join points matched by P. 

 A join point, Ji is then given by a sub sequence of C from index of si in S to the index of 
si + Ǚ-1; That is, If, xi = indexOf(si) and yi = xi + Ǚ - 1, then,  Ji = C->subSequence(xi,yi) 
for 0 ≤ i ≥ n 

 P is a sequence of fragments from the pointcut SD. 
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Since our Complete Composition Algorithm is concerned with one join point at a time, our 
Advice Composition algorithm needs to work with only one join point; that is, the join point 
that begins with s1 (the first element in S). Then, let CCM be a sequence of fragments from the 
composed model. Recall again that; 

With the notation defined, we can now describe our Advice Composition algorithm. Its 
pseudo code is given on the next page. In a nut shell, the algorithm simply replaces the join 
point with the advice. The algorithm first checks if we have a join point. If so, it obtains the 
first element of S, on line 5. Using that element, the algorithm finds the location (x1) at the 
beginning and at the end (y1) of the join point, as shown on lines 6 and 7. The algorithm then 
obtains a sub sequence of fragments from C (primary model) before the start of the join 
point, on line 12. Note that indexing for our sequence data structure starts at 1 instead of 
zero as in Java lists or arrays. On line 16, the algorithm returns a sequence of fragments after 
the last element of the join point to the end of C. The composed model is then given by CCM 

= sub_before  A sub_after, that is, the union of sub_before, A andsub_after. 

 
 
Algorithm-3 Advice Composition 
Input : C, A, P, S - where Ǚ = number of fragments in P  
Output : CCM 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 

begin 
if S->isEmpty() then 

CCM = {} 
else 

s1 = S->first()           // fetch the tail of the 1st join point 
x1 = C->indexOf(s1)  // find its location in C 
y1 = x1 + Ǚ–1 // find the location of the join point's head 
sub_before = {} 
sub_after = {} 
if x1 > 1 then 

// get all fragments before the join point 
sub_before = C->subSequence(1,x1-1) 

end if 
if y1 < μ then 

// get all fragments after the join point 
sub_after = C->subSequence(y1+1, μ) 

end if 
//Insert the advice in place of the join point 
CCM = Sequence {sub_before, A, sub_after}  

end if 
return CCM 

end 

 

4.2.3.1 Algorithm-3 complexity 

Creating sub_before and sub_after is linear in the worse case. Creating CCM is also O(n) in the 
worst case; hence, the above algorithm is clearly linear. 
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5. Design and Implementation 

In the previous section, we introduced our definition of primary, aspect and mark models. 
We also introduced our approach to AOM composition, and discussed our Complete 
Composition Algorithm that uses two other algorithms to detect join points, and compose 
the primary and aspect models. In this chapter we describe how the Complete Composition 
Algorithm was implemented using ATL transformations to realize the functions 
JoinPointsCount(...), Instantiate(...) and Compose(...) employed by the algorithm. These 
functions were implemented as ATL transformation models and used to transform several 
input models to desired target models to achieve composition of SDs. Before giving the 
implementation details of these transformation models, we would like to first justify some of 
our design decisions and also describe how we designed our mark model. 

5.1 Design decisions 

Several key decisions were taken in this work. These include: 

 The use of ATL transformation models for composition instead of, say, graph 
transformations or general programming languages (e.g., Java).    Aspect composition 
or weaving can be considered a form of model transformation because we take at least 
two input (primary and aspect) models and produce at least one target model 
(composed). Therefore, model transformation approaches can be used for aspect 
composition. ATL was chosen because it is mature and has a rich set of development 
tools that are built on top of flexible and versatile Eclipse platform. ATL is based on 
OCL; therefore, it is not difficult for a developer with some OCL experience to learn. 
ATL was also chosen because no work on behavioral aspect composition, that we are 
aware of, has been attempted using ATL. 

 The use of RSA 7.5 as a modeling tool of choice.  RSA 7.5 is not free but we already have 
a license for it. It is a great UML modeling tool. It has excellent support for SDs. It is 
easy and intuitive to use. It allows for easy model migration. We can export or import 
UML models as .uml or XMI files. It allows for model validation (not available in some 
of the tools) which we found very useful. RSA can also generate a sequence diagram 
from an imported model. This makes verification of our composed model easy and less 
error prone. 

 The use of a mark model. ATL Transformations only work with models; therefore, our 
binding rules have to be in the form of a model that has a metamodel. Mark models are 
a convenient way to work with parameterized transformations. MDA, certainly, allows 
for use of mark models in model transformations (Happe et al., 2009). Happe et al. use 
mark models to annotate performance models in their work on performance 
completions (Happe et al., 2009). 

 Ignoring BehaviorExecutionSpecifications (BESs) and Execution Occurrence 
Specifications (EOSs) model elements during pointcut detection and composition. As 
stated in the previous section, we are convinced that we can ignore  these two and still 
achieve accurate pointcut detection. This is because BESs and EOSs are used to define 
the duration of execution of behavior (OMG, 2009) of say, a message invocation. Our 
work is focused on detecting the occurrence of a sequence of messages (interactions 
between participants) and doing something when we find the sequence. We are not 
concerned about how long the participant will execute after a message invocation. 
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During early stages of system modeling or at high levels of system abstraction, BESs 
and EOSs are not really applicable or useful; therefore, our decision to ignore them is 
reasonable. 

5.2 Designing mark model metamodel 

A mark model helps define binding rules for instantiating generic aspect models. These 

rules are merely template parameter and value pairs stored in mark model instances. In 

MDE, a model must have a metamodel that it conforms to, and our mark model is no 

exception. Since the mark model is to be used in ATL transformations (with an EMF model 

handler), its metamodel must conform to a metametamodel that is the same as the ATL 

metamodel, that is, Ecore as shown in Figure 4.1 and Figure 4.2. ATL development tools 

include KM3 (Kernel MetaMetaModel) which is textual notation for defining metamodels 

(ATL_Manual, 2009). The code snippet below shows a KM3 definition of the metamodel for 

our mark model which we named BindingDirectives. The metamodel has one class with a 

parameter and binding value attributes of type String. This essentially means that the 

instances of the mark model will be a collection of objects with initialized parameter and 

binding attributes. 

package BindingDirectives { 
 class BindingDirective { 
  attribute parameter : String; 
  attribute binding : String; 
 } 
 package PrimitiveTypes { 
  datatype String; 
 } 
} 

The metamodel is defined in a .km3 file which is then converted (injected) to an Ecore format 
encoded in XMI 2.0 using injectors in the ATL IDE (ATL_Manual, 2009). Once the 
metamodel has been defined, we can begin creating mark models in an XMI format. 

5.3 Implementation of the complete composition algorithm 

As mentioned earlier, the Complete Composition Algorithm uses the JoinPointsCount, 
Instantiate, and Compose transformations to produce a composed model (SD). These 
transformations in return implement the other two algorithms (Pointcut detection and 
Advice Composition algorithm) to achieve their objectives.  

5.3.1 Getting the Number of Join Points 

The JoinPointsCount transformation is implemented by the ATL transformation model 
shown in Figure 5.1. It returns the number of join points found in the primary model given a 
pointcut defined in a generic aspect, and binding rules defined in a mark model. The 
transformation produces a simple UML target model that contains the number of join points 
found. The number of join points must be returned in a model because an ATL 
transformation (module) has to produce a model but not a string or integer. The 
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JoinPointsCount transformation is implemented in an ATL module creatively named 
JoinPointsCount as shown below by its header definition. 

module JoinPointsCount; 
create NUMJOINPOINT:UML2 from PRIMARY:UML2, ASPECT:UML2, BIND:BD; 
uses PointcutMatchHelpers; 

... 

The header declares that the transformation takes as input two UML2 models (bound to 

variables PRIMARY and ASPECT), a model that conforms to the BD (Binding Directive) 

metamodel, that is the mark model bound to the variable BIND. The transformation then 

produces a UML2 target model bound to the variable NUMJOINPOINT. The header also 

declares that the transformation uses the PointcutMatchHelpers ATL library. This is where 

common or general purpose helpers such as the ones used for pointcut detection (and used 

also by other transformations) are defined. This helps reduce code duplication and allows 

for a better code maintenance. 

 

Fig. 5.1. An Overview of the JoinPointsCount ATL Transformation. 

5.3.2 JoinPointsCount helpers 

The transformation employs several helpers listed in Appendix A. It also uses some of the 

helpers defined in the PointcutMatchHelpers library listed in Appendix B. Please note that 

aspect model here refers to the generic aspect model (not context specific) which is one of 

the input models to the transformation.  

5.3.3 JoinPointsCount rules 

Rules are used to generate the target model in ATL. Our JoinPointsCount transformation has 
two simple declarative rules (one matched rule and one lazy rule) that generate a UML 
model to store the number of join points found. A proper UML model should have a Model 
container element that packages all the other modeling elements. The list of contained 
objects is then referenced by the packagedElement attribute or association. The Model matched 
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rule is the main rule that generates a Model element. We want the rule to match only one 
element. Therefore, its source pattern defines that the rule should match an element of type 
UML2 Model from the input aspect model as it can be seen on line 2 in the code snippet for 
the rule below. The rule's target pattern defines that a UML2 Model element will be 
generated.  

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

rule Model { 
    from s : UML2!Model(s.fromAspectModel() ) 
    to t : UML2!Model ( 
      name <- 'NumberOfJoinpoints', 

packagedElement <- Sequence { 
      thisModule.CreateLiteralInteger(thisModule.numJoinPoints,  
          'NumberOfJoinpoints'), 

... 

The attributes of the target elements will be initialized as defined from line 4. A Model 
element has a name and a collection of packaged elements. The name attribute is set to 
'NumberOfJoinpoints'. The packagedElement attribute will be set to a sequence containing a 
UML2 LiteralInteger element generated by the invoked CreateLiteralInteger lazy rule. This 
lazy rule is passed the number of join points and a string (name) as parameters. The number 
of join points is, therefore, returned in a UML2 LiteralInteger model element packaged in a 
UML2 Model element. The code snippet for the CreateLiteralInteger lazy rule is shown 
below. The rule creates a LiteralInteger model element and initializes its name and value 
attributes with a string (desired name) and an integer (number of join points found by our 
transformation) respectively. 

1. 
2. 
3. 
4. 
5. 
6. 

lazy rule CreateLiteralInteger  { 
    from count : Integer,  name :String 
    to t: UML2!LiteralInteger  ( 
      name <- name, 
      value <- count 

... 

5.4 Instantiating A generic aspect model 

The Instantiate transformation is implemented by the ATL transformation shown in Figure 
5.2. This transformation instantiates a generic aspect model and produce a context specific 
aspect model. It inputs a primary model, generic aspect model and a mark model, and 
outputs a context specific aspect model. 

The Instantiate ATL module, whose header is shown below, implements the Instantiate 
transformation. The header declares that the module creates a target UML2 model bound to 
the CONTEXTSPECIFIC variable. 

module Instantiate;
create CONTEXTSPECIFIC : UML2 from PRIMARY : UML2, ASPECT : UML2, BIND : BD; 
uses PointcutMatchHelpers; 

... 

The module has two UML2 source models (bound to variables PRIMARY and ASPECT) and 
one source model bound to the variable BIND that conforms to our Binding Directives  
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Fig. 5.2. An overview of the Instantiate ATL Transformation. 

metamodel (BD); that is, a mark model. The header also declares that the module imports 
the PointcutMatchHelpers library. 

5.5 Instantiate helpers 

Just like the JoinPointsCount, this module also uses some of the helpers defined in the 

PointcutMatchHelpers library listed in Appendix B. This transformation also uses helpers 

defined within its module.  Before we can generate the context specific aspect model, we 

have to ensure that we have a join point where we can weave. The pointcutMatched attribute 

helper returns true if we have at least one join point. It is used as a guard condition for all 

the rules that generate the target model elements as we shall see later. This ensures that no 

model element will be generated if there are no join points. The details of this helper are 

shown below. 

helper def: pointcutMatched : Boolean =   
 thisModule.joinPointsFragments()->notEmpty(); 

The helper returns true if the sequence that contains all the fragments at the beginning of 
each join point (returned by joinPointsFragments()) is not empty. Since pointcutMatched is 
defined as an attribute helper, it is evaluated once and the result cached. This means that 
successive calls to the helper will be faster which improves performance especially in our 
case where the helper is called many times by all the rules. 

5.5.1 Instantiate rules 

Several rules are required to generate a complete context specific aspect model. In fact, we 
have a rule for every model element type required for a well formed UML sequence 
diagram. These rules include several matched rules and a handful of lazy rules. Just like in 
the previous transformation, our target UML model should have a Model container element 
that packages all the other modeling elements. The rule that generates the target Model 
element is shown below. 
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1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

rule Model { 
    from s : UML2!Model ( 
      s.fromAspectModel() and thisModule.pointcutMatched 
 ) 
    to t : UML2!Model ( 
         name <- s.createAspectName(), 
  packagedElement <- s.packagedElement 
 ) 
} 

The source pattern specifies that the rule matches elements of type UML2 Model. It also has 
a condition that the matched element should come from the aspect model (using 
fromAspectModel() helper), and also that pointcutMatched must be true, as mentioned earlier. 
There is only one Model element from the aspect model. If at least one join point was found, 
then only one UML2 Model element will be created on the target model since the target 
pattern declares that the rule creates an instance of UML2 Model. Its packaged elements 
will be initialized to the list from the matched element as defined on line 7 above. The name 
will be initialized with the string returned by the createAspectName() helper on line 6 above. 
The UML specification describes that an Interaction can be contained in a Collaboration. 
Collaborations are used to show the structure of cooperating elements with a particular 
purpose (OMG, 2009). Indeed, the primary and aspect models created using RSA have 
interactions contained within collaborations. The Collaborations matched rule has the task of 
generating Collaboration objects that enclose the interactions for the advice and pointcut. 
Recall that the aspect model consists of the advice and pointcut SDs (interactions). The rule 
is described by the code snippet shown below.  

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 

rule Collaborations { 
    from s : UML2!Collaboration ( 
      thisModule.aCollaborations->includes(s) and  

thisModule.pointcutMatched 
 ) 
    to t : UML2!Collaboration ( 
         name <- s.name, 
  ownedBehavior <- s.ownedBehavior, 
        ownedAttribute <- s.ownedAttribute, 
         ownedConnector <- s.ownedConnector 
 ) 
} 

The guard condition for this rule's source pattern ensures that only collaborations from the 
aspect model (and not from primary model) are matched. It checks if a collaboration is 
included in the collection of collaborations from the aspect model returned by the 
aCollaborations attribute helper. The attributes of the generated collaboration, including the 
enclosed interactions (ownedBehavior), are initialized from those of the matched collaboration 
as shown on lines 7 to 10 above. The aInteractions and pInteractions rules are used to create 
Interaction target elements for the advice and pointcut respectively. The rules are almost 
identical with slight differences in the source pattern guard. The code below gives details of 
the aInteractions rule. The difference between the rules is in line 3. The guard for aInteractions 
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rule ensures that the rule matches the interaction from the aspect's advice which has the 
name “Advice”.  

1. 
2. 
3. 
4. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

rule aInteractions { 
    from s : UML2!Interaction ( 
      s.name = 'Advice' and thisModule.pointcutMatched 
 ) 
    to t : UML2!Interaction  ( 
       name <- s.name, 
  lifeline <- s.lifeline, 
        fragment <- s.fragment, 
        message <- s.message, 
      ownedAttribute <- s.ownedAttribute, 
  ownedConnector <- s.ownedConnector, 
  generalOrdering <- s.generalOrdering, 
         ownedBehavior <- s.ownedBehavior, 
         covered <- s.covered 
 ) 
} 

The guard for the pInteractions rule matches the interaction from the aspect's pointcut which 
has the name “Pointcut”. Both rules then initialize the attributes of the generated 
interactions using the values from the attributes of the matched source elements as it can be 
seen from lines 7 to line 15. 

The Lifelines rule generates lifelines for both the advice and pointcut SDs. The rule matches 
all lifelines from the advice model as shown on line 3 of rule's code snippet on the next page. 
The aLifelines helper returns all lifelines from the generic aspect model (advice and pointcut 
SDs). The generated lifeline's attributes are then initialized as shown from lines 6 to 8. This 
rule probably best shows how helpers are used to assist rules in creating the target models 
other than been used as guard conditions in the source pattern. We can see on line 6 that 
binding is achieved by using the bind() helper to initialize the name of the generated lifeline.  

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

rule Lifelines { 
    from s : UML2!Lifeline ( 
     thisModule.aLifelines->includes(s)and thisModule.pointcutMatched 

) 
    to targetLifeline : UML2!Lifeline ( 
       name <- s.bind(), 
  coveredBy <- thisModule.getMOSByLifeline(s), 
  represents <- s.represents 
 ) 
} 

5.6 Composing aspect models 

After obtaining a context specific aspect model from the previous transformation 
(Instantiate), the next step is to compose the context specific aspect model with the primary 
model. This is achieved by the Compose ATL transformation whose overview is shown in 
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Figure 3.5. The transformation inputs the primary and context specific source models, and 
produces a composed target model. Both the source models and the output model conform 
to the UML2 metamodel. This transformation is implemented by the Compose ATL module. 
The code snippet below shows a description of the module's header. 

module Compose; 
create COMPOSED : UML2 from PRIMARY : UML2, ASPECT : UML2; 
uses PointcutMatchHelpers; 

... 

As expected, the header declares that the module creates a UML2 Model bound to the 
variable COMPOSED from two UML2 source models bound to the variables PRIMARY and 
ASPECT for the primary and aspect models respectively. The module also uses some 
helpers from the PointcutMatchHelpers library. 

5.6.1 Compose helpers 

Our Compose transformation has a number of helpers. All the helpers have a necessary role 
to play but some roles are, certainly, more important than others. For example, the 
getTargetFragments attribute helper has the privilege of returning the composed sequence of 
fragments, that is, sequence {sub_before, A, sub_after} from algorithm-3. The code definition of 
this helper is shown below. The helper begins by ensuring that there is, at least, one join 
point by calling the pointcutMatched helper on line 2, which we have described earlier. If 
there exists a join point, getTargetFragments then obtains a sequence of fragments before the 
join point by invoking the lowerFragSub helper on line 4, a sequence of fragments from the 
advice (by invoking getAspectFragments ) on line 5, and a sequence fragments after the join 
point on line 6. It returns a flattened sequence consisting of those sequences. The fragments 
returned by getTargetFragments are used to initialize the fragment attribute of the interaction 
generated by our transformation. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 

helper def : getTargetFragments : Sequence(UML2!InteractionFragment) =  
   if thisModule.pointcutMatched then 
      Sequence { 
   thisModule.lowerFragSub(thisModule.firstJPIndex),  
   thisModule.getAspectFragments('Advice'), 

  thisModule.upperFragSub(thisModule.firstJPIndex +  
  thisModule.numPCTFs-1) 

  }->flatten()->asSequence() 
else 

  Sequence{} 
 endif; 

The getTargetFragments helper also serves as the base of our composition process. Almost all 
the other elements to be used in generating the target model are rooted from this helper. The 
targetCFs helper, which returns all combined fragments to be used for generating combined 
fragments in the target model, iterates through fragments returned by getTargetFragments 
returning all instances of CombinedFragment. The targetOperands helper, in return, iterates 
through the sequence of combined fragments returned by targetCFs to obtain all instances of 
InteractionOperand. 

www.intechopen.com



 
Using Model Transformation Language Semantics for Aspects Composition 

 

27 

5.6.2 Compose rules 

Several rules are defined for creating the composed target model. Rules in the Compose 
transformation probably use more helpers compared to the two previous transformations, 
mainly because in this transformation more elements are removed or added. This requires 
modifications to many associations between model elements. The code below is that for the 
Model matched rule which is used to create the UML2 Model element. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 

rule Model { 
    from s : UML2!Model ( 
 s.fromPrimaryModel()  and thisModule.pointcutMatched  
 ) 
    to t : UML2!Model ( 

       name <- thisModule.getModelName(s.name, thisModule.aModel), 
 packagedElement <- Sequence {  
         thisModule.targetClasses,  
         thisModule.pCollaborations, 
  thisModule.getTargetEvents() 

... 

The rule matches elements of type UML2 Model from the primary model, and provided the 

pointcut matches as defined by the source pattern on lines 2 and 3. The rule creates instances 

of Model as declared on line 5. Since the primary model consists of one instance of the Model 

class, this rule will generate only one instance. It then initializes the created instance with 

the use of several helpers as defined on lines 6 to 11. The getModelName helper generates a 

string used to initialize the name attribute. The packageElement list attribute is initialized to a 

sequence of classes returned by targetClasses, a collaboration from the primary returned by 

pCollaborations, and a sequence of events returned by the getTargetEvents() operation helper. 

These three helpers are defined in the context of the module; hence, the use of the keyword 

thisModule. 

 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

rule Messages{ 
    from s : UML2!Message ( 

thisModule.targetMessages->includes(s) and  
thisModule.pointcutMatched  

 )  
    to t : UML2!Message ( 

name <- s.name, 
sendEvent <- s.sendEvent,  
receiveEvent <- s.receiveEvent, 
messageSort <- s.messageSort, 
argument <-  s.argument->collect (e |  

   if  e.oclIsTypeOf(UML2!LiteralString) then 
    thisModule.CreateLS(e) 
   else 

   if  e.oclIsTypeOf(UML2!LiteralInteger) then 
    thisModule.CreateLI(e) 
   else 

     OclUndefined  
    endif 
... 
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The Messages rule shown below is used to generate messages for the target model. This rule 
is more interesting since it calls a few lazy rules to help initialize some of the attributes of 
the target messages to be created. The rule matches all messages included in targetMessages 
and creates messages for the target model. The generated message is initialized as defined 
from line 7. On line 12, the argument attribute is initialized by calling a suitable lazy rule. We 
are only interested in primitive type message arguments (integers and strings); therefore, we 
have two lazy rules for creating an instance of LiteralInteger or LiteralString depending on the 
argument type for the matched message. 

The rule uses ATL's built-in oclIsTypeOf(t: oclType) operation to check the type of the 
argument for the matched message. If it is a LiteralString then the CreateLS lazy rule is called 
but if it is a LiteralInteger the CreateLI lazy rule is called instead. If the argument is neither an 
integer nor a string, the message's argument attribute is initialized to OclUndefined, ATL's 
equivalent of null. All the rules that are used by the Compose transformation to generate the 
composed model are listed in Appendix C. 

6. Case studies - phone call features as aspects 

This case study of a cell phone application was adapted from Whittle and Jayaraman in 

(Whittle et al., 2007). The application has three use cases but we are only interested in two; 

namely, Receive a Call and Notify Call Waiting (Whittle et al., 2007]. The Receive a Call use case 

is considered to be the base model and the Notify Call Waiting is considered the aspect. 

Figure 6.1 shows a dynamic view of the Receive a Call use case modeled as a sequence 

diagram. This will be our primary model. When the user's phone receives a call 

(incomingCall message), it alerts the user by displaying the appropriate information about 

the caller on the phone's display (Whittle et al., 2007) by sending a displayCallInfo message to 

the display. The phone also sends a ring message to the ringer. The user then has several 

options captured by an alt combined fragment. The user can accept the call by sending a 

pickUp message to the phone and later end the call by sending a hangUp message. 

Alternatively, if the user chooses not to accept the call, the user can send a disconnect 

message to the phone. If the user elects to ignore the call, the phone will ring for a specified 

amount of time and then time out ending the scenario. As mentioned, the Notify Call Waiting 

scenario or feature is considered an aspect. The approach (graph transformations) taken by 

Whittle and Jayaraman (Whittle & Jayaraman, 2006) does not have the notion of generic or 

context specific models like our approach. Therefore, Figure 6.2 shows our representation of 

the behavioral model of the Notify Call Waiting scenario as a generic aspect model. 

The pointcut is defined as a sequence of parameterized |accept and |end messages from the 

receiver lifeline to the phone lifeline. This will match a sequence of two messages that will 

be bound to |accept and |end from the lifeline bound to |receiver. The advice shown in 

Figure 5.2b is slightly more complex. It introduces messages that if bound properly, will 

place the current call on hold (Whittle et al., 2007). The behavior defined by the advice is 

only applicable when the user is currently on call; therefore, we must ensure that the advice 

is weaved between the pickUp and hangUp messages on the primary model (Whittle et al., 

2007). To achieve this, we will bind |accept and |end to pickUp and hangUp respectively, as 

shown on lines 9 and 10 of the mark model below. The |receiver parameter is bound to user 

so the pointcut matches pickUp and hangUp from the user to the phone. 
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Fig. 6.1. Receive a Call Primary Model Adapted from (Whittle et al., 2007). 

 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"  
xmlns="BindingDirectives"> 
  <BindingDirective  parameter="|receiver"  binding="user"/>   
  <BindingDirective  parameter="|sender"  binding="caller"/>   
  <BindingDirective  parameter="|anotherRequest" binding="incomingCall"/> 
  <BindingDirective  parameter="|notify" binding="displayCallInfo"/> 
  <BindingDirective  parameter="|acknowledge" binding="ok"/> 
  <BindingDirective  parameter="|accept"  binding="pickUp"/> 
  <BindingDirective  parameter="|end"   binding="hangUp"/> 
  <BindingDirective  parameter="|suspend"  binding="putOnHold"/>   
  <BindingDirective  parameter="|Client"  binding="User"/>    
  <BindingDirective  parameter="|notifier"  binding="display"/> 
  <BindingDirective  parameter="|Transducer"  binding="Display"/> 
</xmi:XMI> 
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             (a) Pointcut          (b) Advice 

Fig. 6.2. Notify Call Waiting Generic Aspect Model. 

The rest of the parameters are bound as defined by the mark model. Recall that by binding 
these parameters from the generic aspect model, we are actually instantiating it to produce a 
context specific aspect model. This is done by the Instantiate ATL transformation as 
discussed in earlier sections. However, before going into the trouble of instantiating a 
context specific aspect (and composing it with the primary model), we must first determine 
if the pointcut matches, and if so, how much join points were found. Getting the number of 
join points is performed by the JoinPointsCount transformation which takes the generic 
aspect, the primary and mark models as input, and produces a target model that contains 
the number of join points. Executing this transformation produces the model shown in 
Figure 6.3 (when viewed on Eclipse's uml editor). The model contains a LiteralInteger object 
with the name NumberOfJoinpoints and which has a value of one, that is, our primary model 
has one join point. 

 

Fig. 6.3. JoinPointsCount Output Model. 
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With only one join point, our composition algorithm only has to loop once; hence, no loop 
unrolling is required. The next step is to validate our models using both RSA and our 
custom validator package. Running the ValidateComposedModel class from our custom 
package to validate the composed model (CM) produces the output shown below. 

 
 
 
 
 
Reading model CM from disk ...Validating CM 
Model container is valid 
All Classes are valid :) 
All Class Operations are valid :) 
All Message events are valid :) 
Collaboration model element ReceiveCall is valid :) 
All Owned attributes in ReceiveCall are valid :) 
Interaction model element ReceiveCall is valid :) 
All Message Occurrence Specifications in ReceiveCall are valid :) 
All Messages in ReceiveCall are valid :) 
All lifelines in ReceiveCall are valid :) 
Our model and all its model elements meet our validation requirements 
 
 
 
 
 
 

  
          (a) Pointcut          (b) Advice 
 
 
 

Fig. 6.4. Context Specific Aspect Model. 
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Fig. 6.5. Composed Model. 

Running the ValidateComposedModel to validate the context specific aspect model (CSAM) 

also shows that the model is valid.  Both models are valid according to the checklist defined 

in our validator package. Both models are then imported into RSA for validation and visual 

inspection.   

Figure 6.4 and 6.5 show the context specific aspect and composed model SDs created on 
RSA after importing the models. The pointcut was properly bound. We can see in Figure 
6.4a that |accept and |end are bound to pickUp and hangUp while |receiver and |Client 
have been bound to user and User respectively. Figure 6.4b shows that the advice has also 
been bound as specified by the mark model.  Figure 6.5 shows a sequence diagram for our 
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composed model. We can see that the advice has been properly weaved into the alt 
combined fragment's first operand. This way, if the user chooses to accept a call and another 
incomingCall message is received by the phone the phone's display will show the new caller's 
information. The user can then send an ok message to phone to put the caller on hold. 

7. Conclusion 

The main objective of this work is to compose aspect models represented as UML sequence 

diagrams (SDs) using the Atlas Transformation Language (ATL). Toward this end, we 

proposed a formal definition of SDs in terms of an ordered list of interaction fragments, and 

in the process defined three algorithms for pointcut detection, advice composition and 

complete composition. We designed and implemented the Complete Composition 

algorithm to achieve composition of the primary model and generic aspect models. We 

consider aspect composition as a form of model transformation; therefore, the algorithm is 

implemented using model transformations written in the ATL model transformation 

language. We also designed a simple metamodel in Ecore for mark models used to define 

binding rules which are used to instantiate generic aspect models. We finally designed and 

implemented a custom Java package to help validate the composed model. The Java classes 

check the composed model elements against a list of defined constraints designed to ensure 

that essential model elements are present in the composed model and are properly 

initialized. 

The Complete Composition Algorithm proposed and implemented composes behavioral 

views of both primary and aspect models represented as UML sequence diagrams. The 

primary model defines the core system behavior without cross-cutting concerns while the 

aspect models represent behavior that cross-cuts the primary model. The models are 

described in UML Sequence diagrams created using an eclipse-based modeling tool (RSA) 

and then exported to a UML2.1 file for composition and validation. 

Using ATL, a mature model transformation language, the Complete Composition Algorithm 

is implemented using three transformation models; namely JoinPointsCount, Instantiate, 

and Compose. The JoinPointsCount transformation determines the number of join points in 

the primary model given the pointcut from the aspect model. The aspect models are made 

generic so that they can be more reusable; therefore, they must first be instantiated before 

they can be composed with the primary model. The Instantiate transformation is used to 

instantiate generic aspect models in the context of the application using a set of binding 

rules defined in mark models to produce context specific aspect models. The Compose 

transformation then takes the primary model and context specific aspect model as inputs, 

and produces a composed model. This process is repeated as many times as there are join 

points and aspect models until a complete integrated system is obtained. 

To test our design and implementation, several test cases and case studies were successfully 

conducted. Validation was achieved by using custom Java classes to check the model against 

a set of defined constraints. The composed model was also validated using RSA's built-in 

validation feature. To verify composition, a sequence diagram was generated from the 

model's UML2.1 file using RSA. The generated sequence diagram was then visually 

inspected to see if the composition was performed properly. 
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Using ATL for composing models does have its challenges. The inability to navigate target 
models or modify input models makes intricate weaving of aspects a hard problem. 
However, the benefits of using a versatile language that allows for powerful expressions 
may outweigh the challenges. 

7.1 Limitations and future work 

This work is part of an ambitious quest for a complete AOM composition framework and a 
set of tools that can allow software architects and developers to easily apply AO techniques 
to model driven software development. There are several limitations that must be 
addressed, and new features to be added before our composition approach can be more 
useful. These include: 

 Improved string pattern definition and matching for template parameters. 

 Non primitive message and operation argument types. 

 Support for Interaction Occurrences. 

 Support for BehaviorExecutionSpecifications (BESs), ExecutionOccurrenceSpecifications 
(EOSs) and other model elements. 

 Structural view composition. 

 Invoking ATL from Java. 

 An eclipse plug-in to help in the creation of the mark model. 

Our approach currently supports the use of the wildcard “*” for defining template 

parameters. This gives some flexibility when defining generic aspect models. However, to 

allow for powerful expressions, we need to use regular expressions. Currently ATL (version 

2.0.x) does not support the use of regular expressions for comparing or matching strings. 

ATL only uses regular expressions for replacing and splitting strings. Future research may 

include development of a custom string ATL library that will provide helpers that 

implement regular expression matching operations.  

Furthermore, we have assumed that messages in the primary and aspect models have 

simple arguments that are either strings or integers. However, messages can have 

arguments that are instances of classes defined in the structural view of the system. 

Therefore, the current use of lazy rules to create message arguments (and class operation 

parameters) may not be ideal. Future work would look at a more efficient and elegant way 

of creating message arguments in the target model. Interaction Occurrences provide a way 

to reuse and manage complex SDs. They are a notation for copying one SD (basic) into 

another one, which may be larger (Pilone et al., 2005). Our current composition approach 

has no support processing interaction occurrences; therefore, future research would look 

into including interaction occurrences in pointcut detection and composition. This will 

provide challenges because the use of interaction occurrences means that the primary model 

SD or the aspect model SDs may contain more than one instance of Interaction depending on 

the number of interaction occurrences. 

Recall that BESs and EOSs were ignored in our composition approach. Future work could 

look into how these model elements can be processed with other interaction fragments. We 

would also add support for other model elements that are not currently supported; like, 

connectors, signals (and related events), gates, etc. 
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Future research would also include composition of other behavioral views (Statechart and 
Activity diagrams) and structural views (class diagrams) of the primary model and aspect 
models. Our current approach does achieve some composition of structural model elements 
from the primary and aspect models but does ignores associations between the structural 
elements. 

8. Acknowledgement  

This research work was partly sponsored by NSERC (Natural Sciences and Engineering 
Research Council) of Canada through grant number EGP 401451-10.  

9. Appendix A - JointPointsCount helpers 

 
Helper Name Return type Purpose 

aMessages Sequence Returns all messages from the aspect model. 

aOperations Sequence Returns all class operations from the aspect model. 

aLifelines Sequence Returns all lifelines from the aspect model. 

aSendEvents Sequence Returns all SOEs from the aspect model. 

aRecvEvents Sequence Returns all ROEs from the aspect model. 

aProperties Sequence Returns all lifeline properties the aspect model. 

allBindings Sequence Returns all binding rules from the mark model. 

10. Appendix B - PointcutMatchHelpers library 

 
Helper name 
 

Return type Purpose 

adviceMOSEncoding() String A tagging string for advice MOSs 
getAspectFragments(sd) Sequence Returns MOSs and CFs from a 

given SD from the aspect model.  
getPrimaryFragments() Sequence Returns MOSs and CFs from a 

given SD from the primary model.  
getFragments() Sequence Returns MOSs and CFs within the 

context CF. 
getFragments()  Sequence Returns MOSs and CFs within the 

context Interaction Operand. 
sameEventType(e1, e2) Boolean Returns true if the given 

MessageEvents are both ROE or 
SOE 

PairwiseMatchFragments 
(src, tgt) 

Boolean Checks if the fragments at the same 
index from src and tgt sequences 
are "equal". 
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getBinding(name) String Retrieves the binding value from 
the mark model for the given 
template parameter. 

bindingDefined(String) Boolean Returns true if a binding value 
exists for the given parameter. 

samePropertyType(pct , 
core) 

Boolean Returns true if the given Properties 
have the same type (class). 

equals(mos)  Context =  MOS Boolean Checks if the context and supplied 
MOSs are equivalent. 

invalidMOSName() Boolean Returns true if the context MOS 
has been tagged meaning it was 
added from a previous 
composition iteration 

getLifelineMOS() Sequence Returns MOSs that cover the 
context lifeline. 

getAspectSD (name) Interaction Returns an SD (Advice or Pointcut) 
from the Aspect Model. 

getMessageLifelines (m) Sequence Returns the sender and receiver 
lifelines for the given message. 

getSDLifelines (sd) Sequence Returns all lifelines in a given SD. 
getSDMessages (sd) Sequence Returns all messages in a given SD. 
createMOSName (code, idx) String Generates a name for the context 

MOS given our tagging string and 
MOS index in the sequence of 
MOS.

fromAspectModel() Context 
= Model 

Boolean Returns true if the context model is 
from the aspect model. 

fromAspectModel() Context 
=  Interaction 

Boolean Returns true if the context 
Interaction is from the aspect 
model.

fromPrimaryModel() Context 
= Model 

Boolean Returns true if the context model is 
from the primary model. 

fromPrimaryModel()  
Context  =  Message 

Boolean Returns true if the context message 
is from the primary model. 

notInPrimaryModel() 
Context = Class 

Boolean Returns true if the context class is 
from the primary model. 

notInPrimaryModel() 
Context = MessageEvent 

Boolean Returns true if the context 
MessageEvent is from the primary 
model. 

notInPrimaryModel() 
Context = Operation 

Boolean Returns true if the context 
operation is from the primary 
model.

equals(c) Context  = Class Boolean Returns true the context class is the 
same as the supplied class; that is, 
if they have the same name. 

classMatch (c1 , c2)  Returns true if the two classes are 
equal. 

www.intechopen.com



 
Using Model Transformation Language Semantics for Aspects Composition 

 

37 

equals(o)  Context = 
Operation 

Boolean Returns true if the context 
operation is the same as the 
supplied operation. 

equals(e) Context = 
MessageEvent 

Boolean Returns true if self is the same as 
the supplied event; that is, they are 
of the same type and have the 
same operation. 

equals(f) Context = 
CombinedFragment 

Boolean Returns true if the context CF is the 
same as the given interaction 
fragment which also has to be CF. 

equals(f) Context = 
InteractionOperand 

Boolean Returns true if the context 
interaction operand is equal to the 
given interaction fragment . 

getMOSs() Context = 
InteractionOperand 

Sequence Returns all MOSs enclosed by the 
context interaction operand. 

getMOSs() Context = 
CombinedFragment 

Sequence Returns all MOSs enclosed by the 
context CF. 

PairwiseMatchOperands 
(src,tgt) 

Boolean Returns true if the given sequences 
of operands have matching pair of 
operands, that is, the operands at 
the same index are equal. 

PairwiseMatchMOSs (src, 
tgt)  

Boolean Checks if the elements at the same 
index from the src and tgt sequence 
are equal. 

joinPointsFragments()  Sequence Returns fragments at the start of 
the join points. 

getMaxInt()  ValueSpecificationAction Returns the maxInt value of the 
given Interaction constraint. 

getMinInt()  ValueSpecificationAction Returns the minInt value of the 
given Interaction constraint. 

   

11. Appendix C – Compose rules 
 

Rule Purpose 

Model Generates a Model element that contains all the other target model 
elements. 

Collaborations Creates a Collaboration that contains the composed model 
interaction. 

Interactions Generates the Interaction that owns fragments, lifelines, messages, 
etc. 

CombinedFragments Generates all CombinedFragments including nested ones. 

InteractionOperands Generates all InteractionOperands. 
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InteractionConstraints Creates all the constraints. 

OpaqueExpressions Generates OpaqueExpressions for InteractionConstraints. 

Lifelines Generates all lifelines. 

Messages Produces messages for the target model. 

MOSs Creates all MessageOccurrenceSpecifications (MOSs). 

ROEs Generates ReceiveOperationEvents for receiveEvent MOSs. 

SOEs Produces SendOperationEvents for sendEvent MOSs. 

Operations Generates operations for classes. 

Classes Generates classes. 

Properties Generates all Properties for lifelines. 

lazy rule CreateLUN Creates LiteralUnlimitedNaturals that are used for guard conditions. 

lazy rule CreateLS  Creates strings that are used for guard conditions and arguments for 
messages. 

lazy rule CreateLI Creates integers that are used for guard conditions and arguments 
for messages. 

lazy rule CreateParam Creates parameters for operations in the target model. 
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