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1. Introduction 

Infrared spectroscopy is a very powerful tool to determine the chemical nature of 
molecules.  

Differential infrared spectroscopy allows to select only those chemical vibrations involved 
in a light induced reaction. The structure and environment of unstable and short lived 
excited states can be probed by using step scan FTIR time resolved spectroscopy. In this 
chapter we present an application of time resolved FTIR step scan spectroscopy to the 
light harvesting complexes involved in the collection of solar energy in photosynthesis. 
The time resolved data are analysed using a global and target analysis procedure which 
allows identification of the dynamic and the spectral properties of short lived 
intermediates such as triplet states. Triplet state of chlorophyll a (Chl a) can react with 
oxygen and lead to the formation of singlet oxygen. Carotenoids avoid this reaction via 
triplet excitation energy transfer (TEET) and quench the triplet of Chl a. The peridinin 
chlorophyll protein (PCP), an algal light harvesting complex, which binds Per and Chl a is 
a good system to study photoprotection mechanism by infrared spectroscopy. Indeed Per 
and Chl a have both conjugated  carbonyl groups that are efficient probes of the molecular 
state in the infrared. We first investigated by step scan spectroscopy the TEET reaction of 
Per and Chl a in solvent to get their respective spectral signature. Such a study leads to 
the identification of several mechanisms associated with the formation of triplet states in 
solution. Secondly the triplet formation is observed in two different PCP complexes 
leading to the unexpected conclusion that the Per triplet state is delocalised over the Chl 
a. In a third part we reveal that the same process of triplet sharing between Chl and 
carotenoid is also present in higher plants, in sharp contrast with purple bacteria for 
which the triplet is fully localised on the carotenoid. Our finding strongly suggests that in 
higher plants and algae a much stronger interaction between carotenoids and 
chlorophylls is at the basis of photoprotection, and represents an example of molecular 
adaptation in oxygenic photosynthesis.  
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2. Differential FTIR spectroscopy and data analysis 

2.1 Time-resolved infrared spectroscopy 

To gain information about the dynamics of the system time-resolved infrared spectroscopy 
has to be used. Characterization of unstable and short-lived reaction intermediates is 
required to understand the photo-chemical reactions of light harvesting systems. To 
investigate the dynamics of such systems time-resolved pump-probe spectroscopy is 
required. Two different time-resolved infrared (trIR) techniques are commonly used namely 
ultrafast midIR and step scan FTIR spectroscopy. 

In these cases the light-induced difference of infrared absorption (ΔOD) of a sample is 
measured as a function of time. Then, the ΔOD signal at a given wavenumber and at a given 
delay time between the pump and the probe, ΔOD(υ,t), is given by:  
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I t
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TrIR can provide many molecular details of the reaction mechanism of protein, associated 
with their specific lifetimes, which are complementary to X-ray and NMR structure analysis, 
such as:  

- the electronic, redox, protonation and conformational state of the chromophore. 
- the H-bonding, the protonation, the charge distribution of side chains of protein 

residues.  
- the H-bonding state of the C=O and C-N-H involved in the peptide bond of the protein 

backbone which give informations about secondary structure dynamics and the 
propagation of structural changes.  

- the H-bonding state of water molecules which are as essential as the side chain of the 
residues in achieving protein function in photoreceptors (Garczarek and Gerwert 2006). 

Ultrafast midIR and step scan FTIR spectroscopy are complementary. On the sub-
nanosecond time scale most of the reaction is confined to the chromophore and the 
neighboring amino acid residues in the binding pocket and can be monitored using ultrafast 
IR spectroscopy. Long lived excited states such as triplet state, side chain (de)protonation 
and large scale protein motion involving changes in secondary-tertiary structure of the 
protein generally take place on the nanosecond to millisecond time scale and can be 
monitored using step scan FTIR spectroscopy. In this chapter step scan spectroscopy will be 
described in detail. 

2.2 Step scan-Time resolved FTIR spectroscopy 

Step scan-Time resolved FTIR spectroscopy allows monitoring molecular reaction 
mechanism of proteins at longer time-scales than ultrafast IR spectroscopy. The absorbance 
changes can be monitored with time resolutions down to nanoseconds and followed for 
time periods ranging over nine orders of magnitude. The technique has already been 
successfully applied to the light-driven proton pump bacteriorhodopsin (Kotting and 
Gerwert 2005), the photosynthetic reaction center and the GTPase Ras (Kotting 2005), PYP 
(Brudler, Rammelsberg et al. 2001) and Appa (Majerus, Kottke et al. 2007). In contrast to 
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ultrafast mid-IR which uses a spectrograph containing a grating to disperse the probe beam 
on a 32-element MCT detector, Fourier-Transform Infrared (FTIR) spectroscopy is an 
interferometric method. The FTIR spectrometer consists of an infrared source, an 
interferometer, the sample, and the infrared detector. The interferometer is the heart of the 
spectrometer and consists in its simplest form of a beam splitter, a fixed mirror, and a 
moving mirror scanning back and forth. Therefore, the spectrum is not directly measured 
but its interferogram, i.e. the IR intensity reaching the detector as a function of the mirror 
position. The spectrum is subsequently obtained by Fourier transformation of the 
interferogram. The major advantages of FTIR spectroscopy, as compared to conventional 
dispersive IR spectroscopy, are the so-called multiplexing advantage (Felgett advantage) 
and the high energy flux reaching the detector (Jacquinot advantage), allowing rapid 
spectrum acquisition at a high signal to noise ratio. In the step-scan mode, the 
interferometer moving mirror may be visualized as being held stationary at the 
interferogram mirror position xn. The protein activity is initiated, by a laser flash, and the 
time dependence of the intensity change at this interferogram position xn is measured. Then 
the interferometer “steps” to the next interferogram data position xn+1, and the reaction is 
repeated and measured again. This process is continued at each sampling position of the 
interferogram.  

2.3 Data analysis for time-resolved infrared spectra. Global and target analysis 

TrIR experiments result in a 3-dimensional dataset as the changes in intensity (ΔOD(υ,t)) are 
measured as a function of time and wavelength. A typical dataset results in ~20 000 data 
points. To analyze such large amounts of data a Global analysis procedure is required (van 
Stokkum, Larsen et al. 2004). Global analysis implies a simultaneous analysis of the entire 3-
dimensional dataset which gives a correlation between different wavelength-regions and 
time scales. The total dataset is a superposition of contributions from different species 
(components) having their own time constants (lifetime). Description of such a total dataset 
should be obtained with a minimum amount (i) of time constants (ki) that result in a good 
quality fit. Each component starts with a given concentration (ci) that decays in time and 
possesses its own specific time-independent spectrum (εi). Mathematically, the observed 
signal S at any given time (t) or wavenumber (υ) can be described with: 

 
1

( , ) ( ) * ( )
n

i i
i

S t c t  

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with ( )ik t
ic e   

The resulting spectra εi may represent mixture of known physico-chemical species and then 
do not contain directly physically relevant information. In such case decisions have to be 
made about a model that not only describes the raw data, but also generates relevant and 
meaningful spectra. Data previously obtained using different experimental techniques can 
be helpful in such context. The simplest model describing the measured data has to be 
chosen. The simplest model templates are the sequential and parallel models (Figures 1A 
and 1B) where one compartment flows directly into the next compartment with increasing 
lifetimes or to the ground state, respectively. A compartment represents a spectroscopic 
distinct state or physico-chemical species and symbolizes a component of the reaction with  
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Fig. 1. Schematic view of a sequential model (A), a parallel model (B) and a branched 
scheme (C). 

its spectrum (εi) and associated lifetime (ki). Spectra that result from the application of a 
sequential and parallel model are called evolution associated difference spectra (EADS) and 
decay associated difference spectra (DADS), respectively. EADS estimated by a sequential 
model may represent mixtures of coexisting molecular states, since the possibility of 
branched or parallel dynamics are not taken into account. In order to disentangle the 
contributions a more complicated model must be used such as a branched model (Figure 
1C), where one compartment can populate two other compartments. If one data set is 
analyzed with the three described models, then the resulting spectra for each compartment 
are different, except for compartment 1. Using a model different from the sequential or the 
parallel model is called a target analysis and can only be done if the data allows for it 
and/or if additional information is available from other techniques. In this latter case the 
spectra are no longer called DADS or EADS but species associated difference spectra 
(SADS). 

3. Carotenoid and chlorophyll triplet state dynamic 

3.1 Photoprotection mechanisms in Peridinin chlorophyll proteins. The chlorophyll 
triplet quenching by peridinin 

Photosynthesis is the process by which some terrestrial and marine organisms acquire 
energy from sunlight and transform it into chemical energy (organic compounds) (Gest 
2002). Life on earth began roughly ~3.8 billion years ago (Schopf 1992), with some 
cyanobacterial species being the first photosynthetic organisms to appear. Accumulation of 
oxygen in our atmosphere has thus been possible due to the presence of these organisms, 
capable of performing oxygenic photosynthesis. Later the appearance of higher plants led to 
the production of organic compounds which constitute the basic source of energy for most 
living organisms. The photosynthetic process and, therefore the abundance and diversity of 
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life on Earth, ultimately depends on the energy provided by the Sun. Photosynthetic 
organisms use antenna pigment-proteins to harvest light. Absorbed solar energy is 
transferred to the reaction center (RC) where it is converted into an electrochemical 
gradient, which is used to synthesize ATP, powering the cell (van Grondelle, Dekker et al. 
1994). Together with (Bacterio)Chlorophyll ((B)Chl) carotenoids are the main pigments of 
photosynthesis. In addition to their structural involvement in the antenna architecture, 
carotenoids have a dual function namely light harvesting and photoprotection (Frank and 
Cogdell 1996). They harvest light in the blue –green spectral region where (B)Chl absorbs 
weakly thus increasing the absorption cross-section of the light harvesting system where 
sunlight is optimal. Carotenoid excitation is followed by ultrafast energy transfer to (B)Chl 
with a high efficiency (Shreve, Trautman et al. 1991; Ritz, Damjanovic et al. 2000; Walla, 
Linden et al. 2000; Zhang, Fujii et al. 2000; Papagiannakis, Kennis et al. 2002; Holt, Kennis et 
al. 2003; Zigmantas, Hiller et al. 2004). (B)Chl intersystem crossing (ISC) may lead to triplet 
formation, the efficiency of which depends on the singlet excited state lifetime. The long-
lived (ms timescale) (B)Chl triplet reacts with ground state oxygen (which is a triplet state) 
to produce the highly reactive oxygen singlet (1O2) (Krieger-Liszkay 2005). In light 
harvesting complexes (LHC), this process competes with fast (ns timescale) (B)Chl triplet 
excitation energy transfer to the carotenoid thereby (Krieger-Liszkay 2005) avoiding 
formation of 1O2 and ultimately the destruction of the light harvesting apparatus. In 
addition, carotenoids are also able to scavenge singlet oxygen. 

Singlet oxygen can be formed by the quenching of chlorophyll triplet states:  

3Chl-a* + 3O2  Chl-a + 1O2*  (singlet oxygen formation) 

To prevent this reaction, carotenoids with their low-lying triplet states quench long-lived 
chlorophyll triplets (Nagae, Kakitani et al. 1993; Frank and Cogdell 1996; Krueger, Scholes et 
al. 1998; Krueger, Scholes et al. 1998; Damjanovic, Ritz et al. 1999; Damjanovic, Ritz et al. 
2000) and scavenge singlet oxygen (Cogdell, Howard et al. 2000): 

3Chl-a* + Car  Chl-a + 3Car*  (chlorophyll triplet quenching) 

1O2* + Car  3O2 + 3Car   (singlet oxygen scavenging) 

In PCP, the triplet states of Chl-a are formed via intersystem crossing (ISC) from Chl-a 
singlet states. The latter are formed after direct Chl-a excitation or after excitation energy 
transfer (EET) which follows direct excitation of Per (Bautista, Hiller et al. 1999; Krueger, 
Lampoura et al. 2001; Zigmantas, Hiller et al. 2002). The Per triplet states are populated by 
triplet excitation energy transfer (TEET), which is governed by an electron-exchange 
interaction (Dexter mechanism) (Dexter 1953; Cogdell and Frank 1987). The PCP visible T-S 
spectra (Carbonera, Giacometti et al. 1996; Kleima, Wendling et al. 2000) exhibit a Qy Chl-a 
differential signal assigned to Chl-a-carotenoid interaction and is similar to carotenoid T-S 
spectra found in bacterial and higher plant antennae (Van der Vos, Carbonera et al. 1991; 
Angerhofer, Bornhauser et al. 1995; Peterman, Dukker et al. 1995). This interaction signal 
shows concerted dynamics with the carotenoid triplet (Peterman, Dukker et al. 1995; 
Kleima, Wendling et al. 2000) and has been discussed in terms of a Stark effect, but its exact 
nature remains unclear. It is then of interest to investigate such triplet dynamic using 
microsecond time-resolved FTIR spectroscopy to measure triplet formation in PCP by 
monitoring excitation-induced variations in the vibrational modes of the chromophores. For 
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infrared spectroscopy a good model to study this photoprotection mechanism is the water 
soluble LHC from the dinoflagellate Amphidinium carterae, A-PCP. Indeed it binds only one 
type of carotenoid and chlorophyll, Per and Chl a, respectively. In addition, Per and Chl-a 
possess conjugated carbonyl groups which are sensitive to the protein environment and the 
electronic state of the pigment. In other words, the carbonyl modes are the molecular probes 
for the pigments: the 9-keto mode of the Chl-a and the carbonyl group of the lactone ring of 
Per. The keto modes are generally expected at lower energies (≤ 1700 cm-1) compared to 
lactone modes (> 1700 cm-1) which makes them easily distinguishable. 

The 2.0 Å crystal structure of A-PCP reveals a trimeric arrangement. The protein is mainly 
composed of ǂ-helices structure and surrounds a hydrophobic cavity in which besides the 
pigments also two lipids are bound. The A-PCP monomer contains 2 Chlorophyll-a and 8 
Peridinins. The molecular structures of Chlorophyll-a (Chl-a) and peridinin (Per) are shown 
Figure 2A and 2B. In each half of the PCP monomer one Chl-a is closely surrounded by 4 Per 
(Figure 2C) (Hofmann, Wrench et al. 1996; Hofmann 1999) leading to high efficiency for 
both light harvesting and photoprotection (Kleima 2000; Alexandre, Luhrs et al. 2007). The 
N- and C-terminal halves of the polypeptide to which the two clusters of pigments are 
bound form almost identical domains related by a pseudo two-fold symmetry axis. PCP 
most likely functions as a LHC that transfers its energy mainly to the PSII RC complex 
(Knoetzel and Rensing 1990; Mimuro, Tamai et al. 1990). Since the latter complex is located 
in the photosynthetic membrane, transfer has to occur from a water-soluble complex to a 
membrane bound complex. As no specific binding site has been identified so far, PCP could 
in principle either transfer its energy directly to the PSII RC or indirectly via the membrane 
bound Chl-a/c complex, which is an analog of LHCII of green plants. Per has a unique  
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Fig. 2. Molecular structure of Chl-a (A) and Per (B). Pigments organization, one Chl-a (black) 
surrounded by 4 Per (grey) (C).  
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molecular structure constituted of an allene moiety and a lactone ring in conjugation with 
the π-electron system of the carotenoid backbone, an epoxy group with a secondary alcohol 
group on one beta-ring and an ester group located on the opposite beta-ring with a tertiary 
alcohol group (Figure 2B). The structural differences between Per and other carotenoids are 
most likely related to its specific function in PCP. In contrast to most photosynthetic LHCs, 
the carotenoid (Per), and not Chl-a, is the main light-absorbing pigment in PCP. Per’s 
unusual structure and especially its conjugated lactone carbonyl confers a high plasticity of 
absorptivity and reactivity to this carotenoid, for instance by mixing CT states with the 
lower excited states (Bautista, Connors et al. 1999; Zigmantas, Hiller et al. 2002; Vaswani, 
Hsu et al. 2003; Ilagan, Shima et al. 2004; Zigmantas, Hiller et al. 2004; Premvardhan, 
Papagiannakis et al. 2005).  

A different dinoflagellate species Heterocapsa pygmaea uses a LHC closely related to A-PCP, 
H-PCP. H-PCP has the same pigment stoichiometry as A-PCP but its peptide unit is about 
half the size of that of A-PCP and contains only half the number of pigments (Song, Koka et 
al. 1976; Norris and Miller 1994; Hiller, Crossley et al. 2001). The overall identity of the H-
PCP monomer with that of the N and C terminal domains of A-PCP is about 70% (Hiller, 
Crossley et al. 2001). 3-D Modeling of the H-PCP sequence on the high-resolution x-ray 
structure of A-PCP has shown only major differences in the trimer interface (Hiller, Crossley 
et al. 2001). In nature, H-PCP is found as a dimer. Thus, the A-PCP monomer can be 
considered as the covalent equivalent of the H-PCP dimer and the pigment conformation in 
both systems should be very similar. This view is supported by the high similarity of the 
spectroscopic properties (Abs, CD, T-S spectra) of the two complexes (Carbonera, 
Giacometti et al. 1996). 

3.2 Peridinin and chlorophyll triplet state in solvent 

It is important to firmly establish our spectral assignment of Per and Chl-a modes in the 3Per 
and 3Chl-a states using an artificial system where Per and Chl-a are not strongly coupled. To 
this end, we performed step-scan time resolved FTIR measurements on Per mixed with Chl-
a in organic solvent to observe TEET on the µs timescale and extract their individual spectra 
using global and target analysis. The two chromophores were mixed in THF with a 
stoichiometric ratio Per: Chl-a of 1:8 with a Chl-a OD (670 nm) of about 100 cm-1. Time-
resolved FTIR data has been obtained by direct excitation of Chl-a at 625 nm and the 
ensuing spectral evolution was analyzed using global and target analysis. Global analysis in 
terms of a sequential kinetic scheme shows that three components are required to fit the 
data. In order to determine the origin of the third component, we used target analysis. The 
best fit was obtained with a three level scheme, in which the first component decays in 3.5 
µs in parallel to the second and the third component, which decay to the ground state in 7 µs 
and 3 ms, respectively. The kinetic model is displayed in Fig.3. The first component decays 
into the second and third components with an estimated yield of 60% and 12% respectively. 
About 28% of the first component amplitude is lost via triplet-triplet annihilation and decays 
to the ground state. Experiments with Chl-a only in THF confirmed that the first component 
decays into a component having similar lifetime and spectral features as compared to the 
third component observed in the mixed Chl-a/Per sample. We note that Per is unable to 
quench the third component which suggests that it can be assigned to a radical state of Chl-a. 
The three SADS that result from the target analysis of the mixed Chl-a/Per data are shown  
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(a) Triplet-triplet annihilation proceeds with a yield of 28% (3[Chl-a]* + 3[Chl-a]* = 1[Chl-a]* + 1[Chl-a]). 
(b) Triplet excitation energy transfer from Chl-a to Per takes place in 3.5 µs with a yield of 60%. (c) Chl-a 
radical formation have a yield of 12%.  

Fig. 3. Target analysis kinetic model applied to the time-resolved data of Per mixed with 
Chl-a in THF (excitation at 625 nm).  

in Figure 4. The first component (SADS1), shown in black in Fig. 4, is assigned to 3Chl-a and 
has a lifetime of 3.5 µs. Its short lifetime indicates that the 3Chl-a is strongly quenched in the 
presence of Per. This SADS matches the FTIR triplet minus singlet (T-S) spectrum of Chl-a in 
THF at 90K (Breton, Nabedryk et al. 1999). Bands at 1747(-)/1733(+) and 1698(-)/1671(+) cm-1 
are assigned to the Chl-a 10a-ester and 9-keto carbonyl, respectively. The 9-keto carbonyl 
stretch of Chl-a in THF at 1698 cm-1 is non H-bonded and in a moderately polar 
environment. 

In SADS1 (Fig. 4), the band at 1599 (-) cm-1 is typical of a 6-coordinated Chl-a Mg-atom 
(Fujiwara 1986; Fujiwara and Tasumi 1986; Groot 2004). If Chl-a is monomeric, then Chl-a 
will be 6-coordinated with two THF molecules ligated to the central Mg atom forming the 
complex [Chl-a]-[THF]2. However the presence of a dip in the ESA at 1657 cm-1, which is not 
present in the FTIR T-S spectra in ref.(Breton, Nabedryk et al. 1999), may indicate that the 
observed triplet state actually resides on aggregated Chl-a. Chl-a at high concentration in an 
apolar solvent, in the absence of water, is known to aggregate with a typical IR band near 
1657 cm-1 for Chl-a dimers (Katz, Ballschmiter et al. 1968). The aggregation most likely 
follows from the high concentration used for the FTIR experiments of about 1 mM (OD at 
670 nm of about 100 cm-1) in THF. Assuming that Chl-a is dimeric in our sample, the 1657 
cm-1 band most likely indicates a second Chl-a (Chl-a2) with its 9-keto bound to the Mg atom 
of the first Chl-a (Chl-a1) (Katz, Ballschmiter et al. 1968; Fujiwara 1986). As SADS1 is 
dominated by modes of Chl-a1, this suggest that the triplet state is mainly localized on this 
Chl-a for which the ester and keto are free of (H-) bonding.  

The second SADS rises in 3.5 µs and decays in 7 µs. It is assigned to 3Per (dash-dot gray 
SADS in Fig. 3) according to its characteristic decay time. 3Per is formed via TEET from 3Chl-
a, note that this component is not observed in Chl-a only samples in THF. The 3Per SADS is 
dominated by a band-shift at 1761(-)/1733(+) cm-1, assigned to the C=O lactone stretch of 
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Per. Thus, C=O lactone conformers in THF, which is moderately polar and aprotic, are 
relatively homogenous and non H-bonded with a main frequency at 1761 cm-1.  

In SADS2, the small amplitude bandshift observed around 1697(-)/1666(+) cm-1 arises from 
a contribution by SADS1 (i.e. 3Chl-a) that the target analysis fails to fully remove due to our 
limited time resolution, S/N ratio and baseline fluctuations. A Chl-a – Per sample at a 1:1 
stoichiometric ratio (OD670 = 150 cm-1) exhibits a shorter 3Chl-a lifetime of about 1 µs. Target 
analysis resulted in a 3Per SADS (SADS-Per) almost free of 3Chl-a contributions. By 
comparing this latter SADS-Per with SADS2 (Figure 4, light gray line) we can confirm that in 
SADS2 (Figure 4) the small amplitude bandshift observed around 1697(-)/1666(+) cm-1 
follows from a spurious contribution from SADS1 (3Chl-a).  
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Fig. 4. SADS resulting from target analysis applied to data obtained upon direct Chl-a 
excitation at 625 nm of Per and Chl-a mixed in THF with a stoichiometric ratio Per: Chl-a of 
1:8 with a Chl-a OD at 670 nm of about 100 cm-1. The black spectrum is assigned to 3[Chl-a]*, 
it decays in 3.5 µs into the dash-dot gray and light gray SADS. The dash-dot gray SADS is 
assigned to 3[Per]* and decays to the ground state in 7 µs. The light gray SADS contains 
signature of Chl-a cation and THF radical anion; it decays in 3 ms. The gray spectrum (SADS-
Per) is obtained upon direct Chl-a excitation at 625 nm of Per and Chl-a mixed in THF with a 
stoichiometric ratio Per: Chl-a of 1:1 with a Chl-a OD at 670 nm of about 150 cm-1.  

The third SADS has an overall low amplitude. It is assigned to the Chl-a+/THF- radical pair 
which is formed with a relatively low yield from the 3Chl-a and decays with an estimated 
lifetime of 3 ms. In the carbonyl region, the third SADS exhibits up-shifted ester and keto 
C=O stretch frequencies at 1738(-)/1751(+) and 1692(-)/1712(+), 1657(-)/1680(+) cm-1, 
characteristic for radical cation formation (Breton, Nabedryk et al. 1999). The presence of 
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two different 9-keto stretches confirms our earlier hypothesis that a Chl-a dimer (Chl-
a1/Chl-a2) is present under these conditions. In contrast to the triplet state, which seemed to 
be mainly localized on Chl-a1 (SADS1), the radical appears to be delocalized over the two 
Chl-a molecules of the dimer, as its infrared signature is in fact similar to P700+ in the 
Photosystem I RC (Breton, Nabedryk et al. 1999). Below 1500 cm-1 new bands have appeared 
in SADS3. A strong negative band with a double peak character is observed centered at 1450 
and 1461 cm-1 in addition to bands at 1367, 1336 and 1306 cm-1. These bands are typical for 
THF (data not shown) and up-shifted after Chl-a excitation to 1630-1515, 1382, 1354 and 1321 
cm-1, respectively. Such up-shifts indicate radical formation of THF, probably the radical 
anionic ([THF]●-) state, forming the [Chl-a]●+/[THF]●- radical pair. 

3.3 A PCP triplet state dynamic 

In this section we use microsecond time-resolved FTIR spectroscopy to measure triplet 
formation in PCP by monitoring excitation-induced variations in the vibrational modes of 
the PCP chromophores. In the following paragraphs, we present the estimated lifetimes, the 
decay associated difference spectra (DADS) and the vibrational mode assignment of three 
sets of time-resolved IR data resulting from excitation of Chl-a at 670 nm (Qy), and Per at 480 
nm (maximum of Per absorption) and 530 nm (red edge of Per absorption, Fig.5). Excitation 
at 550 nm gave essentially the same result as 530 nm (data not shown).  

 
Fig. 5. Differential absorbance signals of PCP obtained by step-scan Fourier-transform 
infrared spectroscopy. Raw data with 5 µs time resolution for 530 nm excitation; intensity 2 
mJ/cm2. 

Time-resolved mid-IR spectra were collected (Fig. 6A) and globally analyzed at frequencies 
between 1100 and 1800 cm-1, and the resulting decay associated difference spectra (DADS) 
are shown in Fig. 6B. To describe the time resolved data, we used a parallel model, which 
required three components: two fast lifetimes, of the order of tens of microseconds and a 
longer one that we do not consider further We find the triplet state dynamics of PCP at RT 
to be described by lifetimes of 13 and 42 µs which are typical of carotenoid triplets. Previous  
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Fig. 6. (A) Time slices of raw data at different excitations. (B) DADS of PCP obtained using a 
parallel model after different excitations. DADS1 (dotted line) and DADS2 (black line) are 
associated with a 13 and 42 µs lifetime, respectively. 

experiments on PCP in the visible spectral region reported one Per triplet lifetime of 10 µs at 
RT (Bautista, Hiller et al. 1999; Kleima, Wendling et al. 2000) and two lifetimes of 13 and 40 
µs at 77 K (Kleima, Wendling et al. 2000) and 13 and 58 µs up to 200 K (Carbonera, 
Giacometti et al. 1999), respectively. In Fig. 6 the positive DADS signals originate from 
excited state absorption (ESA) of the triplet states, and negative DADS signals from the 
bleach of the ground state.  

3.3.1 Spectral analysis 

In our spectral analysis, we distinguish four regions of interest: The carbonyl region (1800-
1630 cm-1); the C=C stretch region, characteristic of the polyene backbone of carotenoids and 
chlorophylls giving rise to bands between 1610 and 1525 cm-1; the CH-deformations and 
possible lactone-ring modes in the region of 1450-1380 cm-1 and the fingerprint region below 
1380 cm-1 with e.g. CH-out-of-plane, C-C and C-O stretches and their combinations.  

As we can see in Fig. 6B, the two DADS show many spectral similarities. The weak bands at 
1623,1633 cm-1 (bleach) and strong bands at around 1555/1530 cm-1 (bleach/ESA) are Per 
C=C stretching modes. Typically, carotenoid C=C stretching modes are around 1520 cm-1 – 
e.g. spheroidene, ß-carotene (Noguchi, Hayashi et al. 1990; Hashimoto, Koyama et al. 1991) – 
and down-shifted by 20 cm-1 to around 1500 cm-1 in the T1 state (Hashimoto, Koyama et al. 
1991). In Per we observe slightly higher frequencies, indicating a decrease in bond-order, as 
observed normally for peripheral C=C stretches (Nagae, Kuki et al. 2000). Moreover, the 
broad band extending from ~1480 cm-1 to lower frequencies (bleach) due to CH-deformation 
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modes is characteristic of carotenoids (Bernhard and Grosjean 1995). The reported modes of 
Chl-a in PCP (Kleima, Wendling et al. 2000) at 1610, 1553 and 1526 cm-1 might also 
contribute to these bands to a minor extent. Additional recognizable modes are at ~1450 cm-

1 the methylene C-H deformation and the methyl asymmetric bending modes, as well as the 
symmetric methyl bending mode of the Per backbone peaks at 1408/1380 cm-1 (bleach/ESA) 
(Bernhard and Grosjean 1995). 

Carbonyl region – molecular probes 

The carbonyl region contains contributions from Per and Chl-a since both have carbonyl 
groups in conjugation with their electronic system. These carbonyl modes are very sensitive 
to electronic changes and can be used as molecular probes for the individual chromophores. 
The carbonyl modes that can be expected in this region are the lactone mode of Per, and the 
10a-ester and 9-keto modes of Chl-a (Fig. 7).  

After global analysis, the DADS in the carbonyl region show five major frequencies in the 
ground state bleach (best resolved with 530 nm excitation): 1745 cm-1 (DADS1), 1741, 1720 
cm-1 (DADS2), 1699 and 1686 cm-1 (both DADS) as seen Figure 7.  
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Fig. 7. Comparison of the carbonyl modes of the PCP DADS at 670, 530 and 480 nm 
excitations. 

Carbonyl modes of Chl-a 

The bands at ~1699, 1686 cm-1 (bleach), shown in Fig. 6 and 7, match the 1697 and 1681 cm-1 
ones reported from fluorescence line narrowing (FLN) spectra at 4 K (Kleima, Wendling et 
al. 2000). The ESA of the two bands has shifted down to 1670 and 1657 cm-1, respectively. 
Such a down-shift is typical for the 9-keto vibration of Chl-a in T-S FTIR spectra and can be 
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perfectly overlapped with the T-S FTIR spectrum of Chl-a in THF (Breton, Nabedryk et al. 
1999). Chl-a triplets are known to exhibit a down-shift in the ESA, while Chl-a cations are 
up-shifted (Breton, Nabedryk et al. 1999; Breton 2001; Noguchi 2002). A hypothetical charge 
transfer state leading to Per (+)/Chl-a(-),would be expected to downshift the 9-keto 
vibration of Chl-a anion by about 55 to 92 cm-1 as observed for BPheo/BPheo- in THF 
(Mantele, Wollenweber et al. 1988), Pheo/Pheo- in PSII (Okubo and Noguchi) and BChl-
a/BChl-a- (Hartwich, Geskes et al. 1995). In our data the 9-keto vibration of Chl-a down 
shifts by 30 cm-1 and strongly suggests that only Chl-a triplets exist on typical triplet 
carotenoid lifetimes and we can exclude the presence of Chl-a cations and anions. From the 
9-keto-mode-amplitudes at 1699, 1686 cm-1, we conclude that both Chl-a molecules of the 
quasi-symmetric PCP monomer are involved in the triplet state dynamics at RT, however, to 
a different extent depending on the excitation wavelength. The 9-keto mode is the strongest 
mode in T-S Chl-a FTIR difference spectra, about three times more intense than the 10a-ester 
mode (Breton, Nabedryk et al. 1999; Breton 2001), so we assign the other strong carbonyl 
modes to the lactone vibration of Per. 

Carbonyl modes of Per 

The remaining three ground state bleach modes – again best resolved after 530 nm 
excitation– at 1745 cm-1 (DADS1), 1741 (DADS2) and 1720 cm-1 (DADS2) represent the 
lactone carbonyl modes of three distinguishable Per conformers; however the 1741 cm-1 
(DADS2) conformer is absent under 670 nm excitation. (Fig. 7) The Per ester group, which 
could be a possible candidate for these frequencies is located at one of the cyclo-hexane end-
groups, and isolated from the conjugated backbone. For this reason, we do not expect 
contributions of the ester group after electronic excitation. The carbonyl-stretch of a five-
membered lactone has a typical frequency of 1765±5 cm-1 (Kristallovich, Shamyanov et al. 
1987), which can downshift by 20 cm-1 in conjugation with a π-system, as in Per, and even 
further in a polar environment or with hydrogen bonding of the carbonyl to the protein 
pocket. Moreover, the 25 cm-1 down-shift of the ESA corresponding to the 1745/1720 cm-1 
bands would be large compared to 5 cm-1 for ester groups (as reported e.g. for chlorophyll) 
(Breton 2001). The observed ground state bleach modes are in agreement with Per resonant 
(530 nm) Raman data for PCP (unpublished data, Papagiannakis, E. and Robert B.) which 
display only two broad bands at 1745 and 1720 cm-1 in the carbonyl region. In addition, the 
resonant Raman spectrum of Per in methanol shows only one broad carbonyl frequency 
peaking around 1740 cm-1. 

The spectral assignments leads to the conclusions that: 

- several conformers are involved in the triplet decay dynamics with bands at 1745, 1741, 
1725 cm-1 and bands at 1695 and 1681 cm-1 assigned to various Pers and Chl-a 
conformers, respectively, experiencing different protein environment.  

- Differential signals of Per and Chl-a are characteristic for their respective triplet states, 
which disappear with typical carotenoid triplet decay time constants. This implies that 
in PCP, while the triplet is on the Per, the triplet wavefunction is delocalised over the 
Chl-a, and both triplet signals decay with typical carotenoid tripet lifetimes.  

- In addition, both Per and Chl-a infrared differential signals show an excitation 
wavelength dependence. The low frequency keto carbonyl Chl-a is more populated and 
the 1741 cm-1 Per conformer appears in DADS2 upon direct red Per excitation (530 
and/or 550 nm) in comparison to direct Chl-a excitation (670 nm). The 1720 cm-1 
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dynamics shows a strong wavelength dependence suggesting increased population of 
this Per conformer upon direct Per excitation. These spectral changes are accompanied 
by an overall increase of signal amplitude observed from 670 to 480 and to 530 nm. This 
wavelength dependence indicates that Per triplet formation proceeds via different 
pathways. 

3.4 Triplet quenching in HPCP 

It is of interest to investigate whether the same “triplet sharing” occurs in H-PCP as 
observed in A-PCP. In A-PCP, we previously observed the coexistence of Per and Chl-a 
carbonyl modes during the Per triplet lifetimes of 13 and 42 µs (Alexandre, Luhrs et al. 
2007), which led us to conclude that in this triplet state, 3Chl-a and 3Per are mixed. Here, we 
investigated the H-PCP complex by step scan time-resolved FTIR spectroscopy to assess the 
nature of its triplet state. Upon excitation of peridinin at 530 nm, the H-PCP triplet decay is 
satisfactorily fitted with a single time constant of 10 µs. Excitation of H-PCP at 670 nm gave 
essentially the same result (data not shown). Figure 8 shows the DADS with a 10 µs lifetime 
in H-PCP (black line), plotted along with the 13 µs DADS observed in A-PCP (gray line), 
reproduced from ref. (Alexandre, Luhrs et al. 2007). Note that in A-PCP, also a 42 µs decay 
component with a distinctly different infrared signature was observed in the step-scan FTIR 
experiment (Alexandre, Luhrs et al. 2007). The H-PCP triplet state is spectrally very similar 
to the triplet state of A-PCP that decays in 13 µs. In both complexes, specific Per C=O lactone 
conformers are involved in the triplet state, of which the 1745(-)/~1720(+) cm-1 is the 
principal signature. In H-PCP, the bands at 1745(-)/1724(+) are assigned to the Per C=O 
lactone, while the 1700(-)/1667(+) cm-1 shift is attributed to the Chl-a C=O 9-keto (Breton, 
Nabedryk et al. 1999), showing that in the H-PCP triplet IR spectrum, explicit 3Chl-a modes 
are present. This result indicates that some Chl-a/Per specific conformations and 
interactions are conserved in both A-PCP and H-PCP to achieve the efficient photo-
protective TEET. This is consistent with the similar T-S ODMR spectra obtained for both 
complexes (Carbonera, Giacometti et al. 1996). Thus we conclude that both in A-PCP and in 
H-PCP the triplet state is shared by Per and Chl-a in a similar fashion.  

In the 10 µs DADS of H-PCP (Figure 8), at least two C=O lactone conformers (1745 and 1710 
cm-1 in a relative stoichiometry of about 80 and 20%) can be identified for H-PCP, 
independent of the excitation wavelength. For A-PCP one or two conformers at 1745 and 
1745-1725 cm-1 depending on the excitation wavelength have been observed, i.e. 670 and 
480-530 nm for the 13 µs component (Alexandre, Luhrs et al. 2007). In the two components 
of A-PCP, three Per conformers have been identified with lactone carbonyl vibrations at 
1745, 1741 and 1725 cm-1. This is consistent with the observation that the Per bound to the 
protein in H-PCP and A-PCP adopts multiple conformations (Hofmann, Wrench et al. 1996). 
Excitation of A-PCP yielded two triplet decay components of 13 and 42 µs (Alexandre, 
Luhrs et al. 2007). The differences between A-PCP and H-PCP may be related to the 
different protein structure, i.e., H-PCP is a 15.5 kDa homo-dimer and A-PCP is a 32 kDa 
trimer. The 32 kDa unit of A-PCP is asymmetric, composed of two different N-terminal and 
C-terminal units that share 56% of identity (Hofmann, Wrench et al. 1996). In contrast, H-
PCP is a symmetric homo-dimer. The asymmetry within the A-PCP monomer is responsible 
for the Chl-a singlet equilibration on a ps timescale (Kleima, Hofmann et al. 2000; Salverda 
2003). Possibly, the asymmetry in A-PCP leads to the observed triplet populations with 
different lifetimes.  
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Fig. 8. Decay-Associated Difference Spectra (DADS) that result from a global analysis of 
step-scan FTIR data of H-PCP and A-PCP. The black line represents the 10 µs component in 
H-PCP. The gray line represents the 13 µs DADS in A-PCP. 

The second component in A-PCP has been observed below 200 K by Carbonera et al. 
(Carbonera, Giacometti et al. 1999) and at 77K by Kleima et al., while only a 10 µs component 
was present at room temperature in the latter work (Kleima, Wendling et al. 2000). We 
reproduced Kleima’s result at room temperature under aerobic and anaerobic conditions, by 
measuring the triplet decay in the visible using a diluted A-PCP solution. We found only the 
10 µs component under aerobic and anaerobic conditions, which excludes an effect related 
to oxygen (data not shown). Thus, it seems that the appearance of the ~40 µs component is 
likely related to a protein conformational change induced by cooling and/or high 
concentrations used for FTIR, rather than a temperature effect on the equilibration among 
the triplet sublevels (Carbonera, Giacometti et al. 1999).  

We previously proposed that the Per conformers involved in the photoprotective 
mechanism were likely Per 612/622 and Per 614/624. In a recent TR-EPR study (Di Valentin, 
Ceola et al. 2008), participation of the Per 612/622 pair in the 3Chl-a quenching was 
considered unlikely on the basis of the similarity of the 3Per triplet spectra in Main Form A-
PCP (MFPCP) and High Salt A-PCP (HSPCP), since the latter does not bind the Per 612/622 
pair. Comparison between experimental and calculated EPR spectra led the authors to 
conclude that the triplet was mainly (~80%) localized on the Per 614/624 pair, which has the 
shortest center-to-center distance to the Chl-a. This conclusion is consistent with the result of 
MD calculations showing that in the triplet state, the highest spin density is localized in the 
center of the Per backbone (Di Valentin, Ceola et al. 2008). Thus, it seems likely that in the 
step-scan FTIR experiments, the main Per conformer at 1745(-)/~1720(+) cm-1 corresponds 
to Per 614, Per 624, or both. Hence, we conclude that in A-PCP and H-PCP, Per 614 and/or 
624 likely constitute the principal 3Chl-a quenchers, and that their specific interaction with 
Chl-a promotes the mixing of the 3Chl-a and 3Per states during the lifetime of 3Per.  

www.intechopen.com



 
Infrared Spectroscopy – Life and Biomedical Sciences 

 

246 

3.5 Triplet state in higher plants 

It has been recently reported that the TEET in LHCII takes place in less than 4 ns and is 
characterised by the lack of accumumaltion of Chl a triplet state. In order to understand the 
mechanisms underlying the very efficient triplet-triplet transfer, we investigated LHCII by 
step-scan time-resolved FTIR spectroscopy. Upon excitation of LHCII carotenoids at 475 nm, 
the triplet decay was satisfactorily fitted with two components only using global analysis. 
The first component decays with a time constant of 20 µs, while the second component, 
which does not account for more than 10% of the signal, does not decay within the time 
window of the measurement (about 320 µs). Figure 9A displays the first decay-associated  

 
(A) The Decay-Associated Difference Spectra (DADS) have a 20 µs component (black trace, termed 
DADS1), with an amplitude of 90% (Lutein-Chls shared triplet) and a non-decaying component (blue 
trace termed DADS2) which has an amplitude of 10% (unquenched Chls). For clarity, the spectra have 
been normalized to the keto modes. For comparison, the FTIR of lutein (B) and Chl a (C) triplet 
(redrawn from (Bonetti, Alexandre et al. 2009)) in THF are also plotted  

Fig. 9. Global analysis of step-scan FTIR data of LHCII excited at 475 nm showing the 
Lutein-Chls shared triplet state.  
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difference spectrum (DADS) normalized to the contribution of the keto group at 1653 cm-1. 
Taking into account the time-resolved absorption data displayed above, the first decay-
associated spectrum must be assigned to the carotenoid triplet (Fig. 9A, black spectrum and 
termed DADS1). In view of its long time the second one is attributed to unquenched Chl, i.e. 
a small proportion of triplet chlorophyll states which have not been transferred to the 
carotenoid molecules (Fig. 9A, blue spectrum and termed DADS2). It has already been 
observed that a small fraction of chlorophyll triplet may not be quenched by the carotenoid 
molecules (Mozzo, Dall'Osto et al. 2008). Considering the results of time-resolved 
absorption, DADS1 should contain positive contributions of the carotenoid triplet state and 
negative contributions of its ground state. Although such contributions clearly appear in the 
difference spectrum (region termed luteins), additional bands are obviously present in this 
spectrum. Indeed, no intense contribution in the higher frequency region is expected from 
lutein molecules (see Fig. 9B). On the contrary, in this region, DADS1 is typical of the 
spectrum of a chlorophyll triplet in solvent which is plotted in Fig. 9C for comparison 
(Breton, Nabedryk et al. 1999; Bonetti, Alexandre et al. 2009). The negative contributions 
around 1700 cm-1 represent bleaching of bands arising from the stretching modes of 
conjugated keto carbonyl groups. These groups, when conjugated with the Chl macrocycle, 
experience large downshifts upon triplet formation, which results in positive contributions 
at lower frequencies. Nevertheless, DADS1 has a lifetime characteristic of carotenoid 
triplets, and so we conclude that in LHCII these chlorophyll infrared modes decay with the 
same lifetimes as carotenoid modes. Then “sharing” of the triplet wavefunction is also 
observed for higher plants. 

4. Comparison of higher plant and purple bacteria triplet state 

Resonance Raman is a very sensitive and selective technique which allows access to the 
vibrational modes of molecules via inelastic scattering. In this section we describe the use of 
Resonance Raman to confirm the triplet delocalisation observed by step scan spectroscopy. 

In solution, upon triplet state formation, the frequency of stretching modes of the 
conjugated C=C’s of the molecule dramatically downshifts from 1522 to 1494 cm-1 for ß-
carotene in tetrahydrofuran (THF; (Hashimoto, Koyama et al. 1991), (Fujiwara, Yamauchi et 
al. 2008)), or from 1529 to 1500 cm-1 for all-trans spheroidene in hexane (Mukai-Kuroda, Fujii 
et al. 2002). This reflects the localization of the triplet throughout the conjugated system 
(triplet high spin density “hot spot” is mainly in the centre of the conjugated system; 
((Mukai-Kuroda, Fujii et al. 2002), (Di Valentin, Ceola et al. 2008)), which causes a reduction 
in the C=C bond order. The frequencies of the 1 resonance Raman bands observed in 
protein-bound carotenoid triplet spectra are reported in Table 2 and compared to those 
observed for triplet states of other carotenoids, including ß-carotene in solution and 
spheroidene bound to the bacterial reaction center. The downshift depends on the 
carotenoid configuration, and it is always larger in cis configurations ((Hashimoto, Koyama 
et al. 1991; Mukai-Kuroda, Fujii et al. 2002)). For rhodopin glucoside in LH2, this downshift 
of the band from 1517 to 1493 cm-1 is very similar to that observed for all-trans ß-carotene 
and spheroidene in solution (24 cm-1 vs. 23-25 cm-1). In contrast, the observed downshifts for 
this band for both luteins in LHCII trimers, LHCII monomers, CP29 and CP43 are much 
smaller and in all cases close to 18 cm-1, i.e. approximately 75% of the 23-25 cm-1shift that is 
observed for all-trans carotenoid triplets in solution (see Table 2). Such a reduction of the 1 
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band’s downshift reflects a dramatic alteration of the nature of the triplet state, which 
correlates very well with a reduction in the energy gap between the S0/S2 and T1/Tn 
transitions observed for these carotenoids in LHCII (see Table 1; it is harder to determine 
this gap with precision for CP43 due to the larger number of carotenoid molecules in this 
complex). 
 

Carotenoid  
(complex) 

Number of 
C=C S0S2 (nm) T1Tn (nm) ΔE (cm-1) 

Neurosporene (LH2) 9 495 516 822 
Spheroidene (LH2) 10 514 537 833 
Rhodopin(LH2) 11 529 556 918 
Lutein 1 (LHCII trimers) 10 494 506 480 
Lutein 2 (LHCII trimers) 10 510 525 560 
Lutein 1 and 2 (LHCII 
monomers, CP29) 10 494,494 508,505  558,441 

Table 1. Electronic transitions of triplet carotenoid states in some LH2 complexes from 
purple bacteria (values obtained from (Angerhofer, Bornhaeuser et al. 1995)) and in higher 
plant LHCs prepared as trimers (lines 4 and 5, ((Peterman, Dukker et al. 1995), (Lampoura, 
Barzda et al. 2002), (Croce, Mozzo et al. 2007)) and monomers (line 6, ((Croce, Mozzo et al. 
2007), (Peterman, Gradinaru et al. 1997) ), and in CP29* (Croce, Mozzo et al. 2007).  

 

Carotenoid ν1 (cm-1) Δν1 (cm-1) 
LH2 rhodopin glucoside ground state 1517 

24 
LH2 rhodopin glucoside triplet 1493 
LHCII trimer Lutein1 ground state 1530 

18 
LHCII trimer Lutein 1 triplet 1512 
LHCII trimer Lutein 2 ground state 1526 

18 
LHCII trimer Lutein 2 triplet 1508 
LHCII monomer lutein ground state 1526 

18 
LHCII monomer lutein triplet 1508 
CP29 lutein ground state 1526 

18 
CP29 lutein triplet 1508 
CP43 lutein ground state 1522 

18 
CP43 lutein triplet 1504 
all-trans -carotene singlet state in THF 1522 

25 
all-trans -carotene triplet in THF 1497 
all-trans-spheroidene singlet state in n-hexane  1523  

23 all-trans-spheroidene triplet in n-hexane  1500 

Table 2. Comparison of the position of ν1 vibrational band in resonance Raman spectra of 
rhodopin glucoside in LH2, of lutein 1 (ground state of the latter from ref (Ruban, Berera et 
al. 2007) ) and 2 in LHCII trimers and other carotenoid-containing complexes with all-trans-
ß-carotene, and other carotenoids, in solution (taken from (Hashimoto, Koyama et al. 1991; 
Mukai-Kuroda, Fujii et al. 2002; Rondonuwu, Taguchi et al. 2004) ). 
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5. Triplet state dynamic in purple bacteria, higher plant and algae, a 
molecular adaptation of the photoprotection mechanism 

Recent time-resolved absorption spectra show that no chlorophyll a triplet is accumulated in 
LHCII and PCP while, on the other hand, the FTIR difference spectra strongly suggest the 
presence of Chl a contributions long after the initial excitation. In order to explain this 
apparent contradiction, the simplest hypothesis is that the triplet could be shared between 
carotenoid and chlorophyll molecules. This question has already been addressed in the 
literature. In order to explain the influence of the carotenoid triplet state on the absorption 
bands of the BChl molecules in LH complexes from purple bacteria, Angerhofer et al. 
proposed ‘a small delocalization of the carotenoid triplet over an adjacent BChl molecule’ 
(10). They also noted that the apparent rate of Bchl to carotenoid triplet-triplet transfer 
seems to correlate with how much the carotenoid triplet state is able to influence the BChl 
transition. However, it should be pointed out that in LH complexes from purple bacteria, 
the carotenoid and BChl molecules are very closely located (an essential condition for 
triplet/triplet transfer), and therefore they each constitute a sizeable part of the environment 
(or solvation) of the other. It would thus be expected that the dielectric changes following 
the appearance of the carotenoid triplet state would have a measurable influence on the 
BChl absorption transitions. Hence, these previous results do not formally demonstrate a 
sharing of the triplet. In contrast, the resonance Raman spectra reported in this chapter 
provides a direct and unambiguous measurement of the sharing of the triplet of the 
carotenoid molecule. Indeed, upon sharing, the carotenoid triplet should progressively loose 
its pure triplet character, and the Raman signature of this state should become intermediate 
between ground- and triplet-state. In the case of rhodopin glucoside in LH2 from Rbl. 

acidophilus, the downshift of the 1 band is quite similar to that of ß-carotene or spheroidene 
in solution. We may thus safely conclude that there is very little, if any, wavefunction 
sharing between carotenoid and BChl triplet states in the LH2 complex from Rbl. acidophilus.  

In LHCs from higher plants, the presence of the triplet state of the lutein molecules is known 
to induce a net bleaching of the electronic absorption transition of the neighboring 
chlorophyll molecules (Peterman, Gradinaru et al. 1997). However, delocalization of the 
triplet was for a long time considered unlikely, due to the large energy gap between the 
triplet states of carotenoid and chlorophyll molecules (Peterman, Gradinaru et al. 1997). This 
position is challenged by time-resolved FTIR studies on PCP and LHCII, which demonstrate 
a co-existence of chlorophyll and carotenoid triplets throughout the entire triplet lifetime 
(Alexandre, Luhrs et al. 2007). In addition, resonance Raman spectroscopy provides 
additional information on the nature of the carotenoid triplet in these complexes. The 
sensitivity of the v1 bands of the ground and triplet states is expected to exhibit similar 
responses to the environment. However, in LHCII we observe a reduction of the energy gap 
between the v1 bands of the ground- and triplet states by more than 30%. This 
unambiguously indicates that the electronic state gained by the carotenoid has lost a fraction 
of its carotenoid triplet character, and consequently part of the triplet must be localized on 
another molecule. From the results of the step-scan time-resolved FTIR measurements (Fig. 
9A), we may safely conclude that a neighbouring chlorophyll molecule is the acceptor of the 
carotenoid triplet. The fact that the same effect was found for both luteins to the same extent 
strongly substantiates this conclusion. Each lutein experiences a different protein 
environment (which induces the red-shift of the electronic transitions of lutein 2; (Liu, Yan et 
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al. 2004)), but is surrounded by a number of similarly-positioned chlorophylls. The fact that 
both luteins exhibit the same 75/25 sharing of the triplet is thus most easily explained as a 
result of the pseudo-symmetry of the position of these chlorophyll molecules (Liu, Yan et al. 
2004). The same conclusion can be drawn for monomeric LHCII, CP29 and CP43. 

A closer analysis of the recently-obtained time-resolved FTIR data obtained for the PCP 
peridinin triplet supports this analysis. In FTIR, the intensity and frequency of the bands 
arising from the vibrational modes of the triplet state should reflect the triplet sharing. Since 
most of the bands are distorted by the differential method and by overlapping 
contributions, an accurate determination of their precise intensity and frequency is difficult 
except in the case of well-isolated bands. In the case of LHCII (Fig. 9), no carotenoid band 
can safely be used for that purpose. In the PCP spectra, the band arising from the stretching 
mode of the lactone carbonyl of peridinin is well isolated and contributes at ca. 1745 cm-1. 
From FTIR steady-state measurements of peridinin mixed with Chl a in THF (data not 
shown) the peridinin C=O lactone extinction coefficient was estimated to be similar to that 
of the Chl a C=O keto group. This allows us to estimate the extent of the ‘triplet sharing’ 
between peridinin and Chl a. From Fig. 8 the negative band area assigned to 9-keto C=O 
corresponds to about 25 and 40 % of the negative band area assigned to lactone C=O for A-
PCP and H-PCP, respectively. Taking into account the similar C=O extinction coefficient of 
peridinin lactone C=O and Chl a 9-keto C=O, about 25 and 40 % of the 3peridinin is shared 
with Chl a in A-PCP and H-PCP, respectively. This conclusion is in good agreement with the 
relative amplitude of the Qy bleach as compared to the peridinin bleach of about 20 % in the  

 
(A) A slice of the nonameric structure of the LH2 complex from Rhodoblastus acidophilus viewed in 
parallel with the membrane plane and from the outside of the protein. For clarity the central outer-
helice, from three ǂ/ǃ-apoprotein dimers has been removed allowing the interaction of the Car (orange) 
with its nearest-neighbour Bchl a (green) molecules to be visualised. The contacts between Car and Bchl 
molecules essentially occur at the very end of the C=C conjugated chain of the carotenoid. Protein Data 
Bank accession number 1KZU. (B) View of a monomer of LHCII from Spinacia oleracea viewed in 
parallel with the membrane plane. The colours of the luteins (L1 and L2), neoxanthin (neo) and 
xanthophyll (xan) cycle carotenoids are orange, purple and magenta, respectively. The Chl a and Chl b 
molecules are coloured green and blue, respectively. The closest contacts between Chl a and luteins in 
LHCII occur at the middle of the C=C polyenic chain. Although the Chl molecules have a pseudo-
symmetry within the monomer lutein 1 (L1) and lutein 2 (L2) experience a different protein 
environment. Protein Data Bank accession number 1RWT.  

Fig. 10. The organisation of the (bacterio)chlorophyll and carotenoid molecules in LH2 and 
LHCII.  
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T-S spectra of A-PCP (Kleima, Hofmann et al. 2000). This estimate of a 25 and 40 % triplet 
sharing in A-PCP and H-PCP is also in line with the smaller observed bandshift of the 
carbonyl lactone for H-PCP (i.e. 20 cm-1 as compared to 25 cm-1 for A-PCP and 28 cm-1 for 
Per in THF). 

Thus, in contrast to photosynthetic bacteria, our results provide compelling evidence of 
triplet sharing between carotenoid and chlorophyll molecules in plant and algal light-
harvesting complexes. It is obviously tempting to try to unravel which molecular 
mechanisms may be at the origin of this difference. In LH2, contacts between carotenoid and 
bacteriochlorophyll molecules essentially occur at the very end of the C=C conjugated chain 
of the carotenoid (Fig. 10A and Ref. (McDermott, Prince et al. 1995)), and the minimum 
distance between these molecules is 3.42 Å (Prince, Papiz et al. 1997). In strong contrast, the 
closest contacts between Chl a and luteins in LHCII occur at the middle of the C=C polyenic 
chain (Fig. 10B), and the pigments are slightly more closely packed in these complexes. 
Taking into account the expected molecular structure of the carotenoid triplet state, the 
relative positioning of carotenoid and chlorophyll molecules in LHCII appears definitely 
more favourable for triplet sharing between these molecules 

6. Conclusion 

To summarize, our results clearly show that the nature of the triplet excited state of 
carotenoid molecules is fundamentally different in the LH2 from Rbl. acidophilus and the 
antenna isolated from spinach. In the former case, the triplet state is mainly (if not totally) 
localized on the rhodopin glucoside molecule. According to the work of Angerhofer et al., 
(Angerhofer, Bornhaeuser et al. 1995), this is the case for the vast majority of light-
harvesting proteins from purple photosynthetic bacteria. This localization of the triplet state 
is associated with a relatively slow triplet-triplet transfer between the BChl and carotenoid 
molecules, in the 20-200 ns time scale. In LHCII complexes from higher plants, there is a 
sharing of the triplet between luteins and their neighbouring chlorophylls. As this is also the 
case in CP43 and CP29, as well as in PCP, it is likely that this triplet sharing exists in all 
light-harvesting proteins from plants and algae. This delocalization is associated with an 
ultrafast transfer/equilibration of the triplet between the chlorophyll and carotenoid 
molecules, which results in the absence of any measurable accumulation of pure triplet 
chlorophyll in these complexes. However, the price to pay to avoid the accumulation of this 
species is that the triplet state is shared between the chlorophyll and the carotenoid lasts for 
several microseconds. Apparently such mechanism drags the energy of the shared triplet 
below that of singlet oxygen. The resultant decrease in the probability of production of 
singlet oxygen thereby optimizes photoprotection of these complexes. It is striking that this 
tuning of photoprotection was found only in those organisms which perform 
photosynthesis in the presence of large amounts of molecular oxygen. We propose that 
triplet sharing represents an adaptation of the molecular mechanisms of protection against 
photo-oxidative stress, associated with the evolution of oxygenic photosynthesis.  
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