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1. Introduction 

In developed countries, stroke is a major cause of acquired disability among adults. 
Although there is a considerable inter-subject variability, the time course of functional 
recovery assumes an exponential shape, with a faster recovery in the initial few weeks, 
followed by a slower recovery over the next few months (Jorgensen et al., 1999; Duncan et 
al., 2000). In the former phase, faster recovery is thought to be due to the reduction of 
parenchymal oedema or recanalization of the blood flow. The latter phase is believed to 
depend upon the adaptive plasticity of the brain, including unmasking or disinhibiting the 
potentially aberrant neural network, and vicariation of function (Ward & Frackowiak, 2004). 
Although there are many evidences for brain plasticity after stroke or brain injury, most of 
our knowledge is derived from animal experiments (Jenkins & Merzenich, 1987; Nudo et al., 
1996). Direct investigation of functional reorganization after brain damage in humans has 
only recently become possible with advancements in non-invasive functional imaging 
techniques, such as positron emission tomography (PET) and functional MRI (fMRI). 
Among these functional neuroimaging techniques, functional near infrared spectroscopy 
(NIRS) has drawn attention from investigators in rehabilitation medicine since it is thought 
to be less constrained and more available for measurement during various tasks. In this 
chapter, we introduce the clinical applications of fNIRS in the field of rehabilitation 
medicine and I shall discuss the further possibilities for its application.  

2. Application of functional NIRS in studies of human motor control 

2.1 Principles of functional NIRS 

Near infrared light, particularly that with a wavelength between 700 and 900 nm, can easily 
pass through biological tissues, including skin and skull bone, and be absorbed by biological 
chromophores such as haemoglobin, myoglobin, and cytochrome oxidase in the 
mitochondria. Because myoglobin concentration is much lower than haemoglobin 
concentrations in the brain tissue and a change in the redox state of cytochrome oxidase 
occurs only under severely hypoxic conditions, near infrared light is mainly absorbed by 
haemoglobin when used as a functional brain-imaging tool. The NIRS system with 
continuous waves, which is widely used in commercially available instruments, measures 
the transmitted intensity and calculates the relative changes in the haemoglobin 
concentration according to the modified Beer-Lambert law for highly scattering media 
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(MBLL) (Cope et al., 1988). If the light attenuation by scattering is considered constant, 
MBLL is denoted as follows: ∆畦竹怠 = 盤綱竹怠潮掴槻張長 ∙ ∆系潮掴槻張長 + 綱竹怠帖勅墜掴槻張長 ∙ ∆系帖勅墜掴槻張長匪 ∙ 詣 

Where ελ is the extinction coefficient at a given wavelength λ, L is the optical pathlength, 

and ∆C is the change in the concentration of each chromophore. If measurements with 

multiple wavelengths are performed simultaneously and optical pathlength is considered to 

be constant across the measurement, the product of the change in concentration of the 

chromophore and the optical pathlength can be calculated by solving the simultaneous 

equations. However, it should be noted that the precise optical pathlength is difficult to 

determine with the continuous-wave NIRS system. Therefore, calculated measurements are 

usually denoted in arbitrary units such as millimolar·millimetres (mM × mm) (Maki et al., 

1995). It is generally accepted that the distribution of near infrared light paths between an 

illuminator-detector pair become ‘banana-shaped’ (Gratton et al., 1994), and that certain 

interoptode distances are needed for the propagation of near infrared light to the cerebral 

cortex. Commonly, a distance of 2 cm or more is used. 

In the brain tissues, regional brain activation is accompanied by an increase in the regional 

blood flow (Fox & Raichle, 1986), and this regional blood flow increase is thought to exceed 

the regional oxygen consumption. Therefore, regional cortical activation results in a regional 

increase in the oxygenated haemoglobin (OxyHb) levels, with a decrease in the 

deoxygenated haemoglobin (DeoxyHb) levels. Similar to fMRI or PET, functional NIRS 

detects the task-related haemodynamic responses, that is, the task-related increase in the 

OxyHb signal and/or the task-related decrease in DeoxyHb.  

2.2 Potential advantages and shortcomings of functional NIRS 

There are several potential advantages of functional NIRS for investigating human brain 
activity. First, functional NIRS imposes less onerous constraints on its subjects. In a NIRS 
system, minor head and truncal motion is irrelevant, if a tight contact is maintained between 
the skull surface and optodes during measurement. Second, unlike other neuroimaging 
modalities, functional NIRS requires relatively small and simple equipment. Finally, the 
NIRS system is completely safe and non-invasive, since it uses only a low-power near 
infrared laser. It therefore enables us to investigate brain activation under natural 
conditions, such as at the bedside or while sitting on a chair, and measure cortical activation 
in the activities of daily life, such as standing and walking. Based on these characteristics, 
NIRS is thought to be a suitable neuroimaging tool for clinical investigation in fields such as 
paediatric neurology and rehabilitation medicine.  

Despite these potential advantages, NIRS has several shortcomings as a functional 
neuroimaging tool. First, NIRS cannot measure activation in deep brain structures, 
including the basal ganglia, brainstem, and cerebellum. Secondly, NIRS has relatively poor 
spatial resolution (a few centimetres) and cannot provide any spatial information. Therefore, 
spatial registration should be made with other data, such as anatomical information from 
MRI scans and real-world coordinates derived from a 3-dimensional digitizer and other 
standard references (Okamoto et al., 2004). Third, with the continuous-wave NIRS system, 
we cannot measure the precise optical pathlength, and therefore cannot measure absolute 
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changes, but only relative changes, in the haemoglobin concentration. Finally, not only the 
brain tissue but also skin tissue beneath the optodes can affect NIRS signal changes. To 
avoid or cancel the effect of skin blood flow, several methodologies have been introduced 
(Kohno et al., 2007; Yamada et al., 2009), but there is no ‘gold standard’ for this problem. 
Therefore, researchers should be cautious about the contamination of these non-brain 
signals when interpreting NIRS measurements (Takahashi et al., 2011).  

2.3 Application of NIRS to human gait control 

Gait requires complex visuo-sensorimotor coordination. Like in other animals, human 
locomotion is controlled by multiple neural systems, hierarchically distributed throughout 
the central nervous system, including the spinal cord, brainstem, cerebellum, basal ganglia, 
and motor cortex (Grillner & Wallen, 2004). Although most studies of neuronal mechanisms 
of gait control were conducted with quadruped animals, a bipedal stance and gait are 
unique functions of humans. Therefore, functional imaging studies in humans are important 
for investigating the neural mechanisms of gait control. However, as stated above, it is 
difficult to study dynamic movements such as gait control with conventional neuroimaging 
techniques, and functional NIRS is a suitable tool for these studies. 

2.3.1 Cortical activation of gait in healthy subjects 

Using a multi-channel NIRS system, Miyai and colleagues reported cortical activation 
during human gait on a treadmill (Miyai et al., 2001). They used a custom-made plastic 
holder cap and a weight-balancing system to avoid excessive motion artifacts during the 
locomotor task, and they could measure the task-related haemoglobin signal changes from 
the frontoparietal skull surface (Fig. 1). 

 

A: Subject performing a locomotor task on the treadmill. B: A custom-made plastic holder cap for fixing 
optode fibres. C: The schematic location of each optode and channel. Cz represents the vertex. Red and 
blue circles represent the light sources and detector fibres. 

Fig. 1. Measurement of cortical activation during walking by using a functional NIRS system 

In healthy subjects, the locomotor task on a treadmill evoked symmetrical activation in the 
medial sensorimotor cortex and supplementary motor area (Fig. 2). These findings were 
consistent with results from a study using single photon emission tomography (Fukuyama  
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A: Optode locations on the skull surface (red and blue dots) and estimated cortical projection points of 
functional NIRS measurement (yellow dots) B: Cortical activation map based on OxyHb signal changes 
during 3-km/h gait on the treadmill. Data averaged from 3 repetitions of 30-s gait followed by 30-s rest 
periods.  

Fig. 2. Cortical activation during gait in a healthy subject 

et al., 1997). Furthermore, it was suggested that the different areas of the cerebral cortex play 
different roles in human gait control. During the locomotor task, cortical activation in the 
prefrontal cortex temporally increased during the acceleration phase of gait, and gradually 
decreased during walking at a stable speed (Suzuki et al., 2004). It was also revealed that 
cortical activation change was more prominent at higher locomotor speed in the prefrontal 
cortex, but cortical activation in the sensorimotor cortex was not associated with gait speed. 
Therefore, the prefrontal cortex was involved in the adaptation of gait speed, but the medial 
sensorimotor cortex was involved in stable gait. 

2.3.2 Cortical activation of gait in stroke patients 

Gait disturbance is a major consequence of stroke and is shown to greatly affect the ability to 
independently perform activities of daily living (ADL). Although it is assumed that 
functional reorganization of the central nervous system plays an important role in gait 
recovery after stroke, there is not enough evidence to associate cortical reorganization with 
gait recovery. Because the NIRS system is non-invasive and places fewer burdens on the 
patient, it is useful for repetitive measurement of the cortical activation of gait. In stroke 
patients, there are several reported cortical activation patterns. In hemispheric stroke 
patients with supratentorial lesions, activation in the motor-related cortex in the affected 
hemisphere increases with functional recovery. Particularly, the premotor cortex in the 
affected hemisphere appears to be essential (Miyai et al., 2002, 2003), as a previous 
observational study had suggested (Miyai et al., 1999). On the other hand, ataxic stroke 
patients with infratentorial lesions display a different activation pattern during gait. In 
ataxic stroke patients, activation in the medial sensorimotor cortex is not significantly 
changed compared to that in the healthy subjects. However, the prefrontal activation pattern 
differs, and ataxic patients show sustained activation in the prefrontal cortex (Fig. 3) (Mihara 
et al., 2007). As described above, prominent activation in the prefrontal cortex is reported in 
the acceleration phase of gait in healthy subjects, and is presumed to be involved in the 
adaptation of gait speed. Ataxic stroke patients exhibit increased postural sway, difficulty in 
multi-joint adjustment during locomotion, and reduced walking speed (Morton & Bastian,  
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Cortical mapping results from healthy control subjects and ataxic stroke patients. In the acceleration 
phase, the cortical activation in both groups was consistent, but in the stable phase, cortical activation 
(particularly activation in the prefrontal cortex) was sustained in ataxic stroke patients but reduced in 
healthy control subjects. Raw data from the NIRS channel covering the left prefrontal cortex is also 
shown (red, blue, and green lines denote Oxy-, Deoxy-, and total-Hb signal changes, respectively).  

Fig. 3. Gait-related cortical activation in the healthy and ataxic stroke patients 

2004). Such a substantial variability of limb movements may require both more attention 

and more intention to control lower limb movements during gait. Thus, our findings are in 

accordance with the hypothesis that the impaired control of automated locomotion in ataxic 

patients is compensated by recruitment of the frontal cortices in the course of gait recovery, 

especially the prefrontal cortex. 

2.3.3 Supposed mechanisms for the gait recovery after stroke 

The abovementioned NIRS studies revealed the vital role of cortical reorganization in gait 
recovery after stroke, and that the cortical activation pattern could differ with the lesion 
location and size. One possible interpretation for these findings is that a widespread neural 
network is engaged in the locomotor control, and different regions regulate different 
aspects. Although both the infra- and supratentorial structures are thought to regulate 
locomotion through the putative central pattern generator in the spinal cord (Dimitrijevic et 
al., 1998), these contribute to different aspects of locomotor control. The infratentorial 
regions, including the reticular nuclei and the medial cerebellum, are regarded as the main 
structures for controlling automated locomotion and muscle tone during gait (Armstrong, 
1988; Drew et al., 2004; Mori et al., 2004). In contrast, the supratentorial structures are 
predominantly involved in adjusting locomotor performance to an altered environment 
(Armstrong, 1988; Matsuyama et al., 2004; Takakusaki et al., 2004). For instance, studies 
using fMRI and PET report decreased the cortical activation during motor imaging of 
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automated locomotion, such as walking at a steady speed (Malouin et al., 2003; Jahn et al., 
2004). These results indicate that the cortical demand for controlling gait is reduced during 
the steady phase of locomotion in control subjects, since the infratentorial structures engage 
in automated locomotion.  

In patients with hemiparetic stroke and supratentorial lesion, it is assumed that the 
infratentorial locomotor centre, which engages in automated locomotion, is intact. 
Therefore, increased activation in the ipsilesional premotor cortex, which has ample 
connections to the brainstem and basal ganglia, is likely to compensate for the reduced 
regulatory output from the cerebral cortex. In contrast, automated locomotor control is 
impaired in ataxic stroke patients with infratentorial lesions. Thus, continuous monitoring 
and adjustment are needed, and this may result in sustained activation of the prefrontal 
cortex (Fig. 4).  

 

A: Neural network in central nervous system for locomotor control B: Assumed compensatory 
reorganization for gait recovery in supratentorial hemiparetic stroke C: Assumed compensatory 
reorganization for gait recovery after infratentorial ataxic stroke 

Fig. 4. Suggested framework for locomotor recovery after stroke 

2.4 Cortical activation associated with the maintenance of postural balance 

Our habitual bipedal stance is highly advantageous because it enables us to maximize the 
dexterity of our hands, which is useful for developing tools. However, as a trade-off for this 
advantage, the unstable nature of bipedal standing increases the tendency to fall, leading to 
severe injuries such as limb fracture, joint dislocation, and head injury. A community-based 
study revealed that more than one-third of the people aged over 65 years fell at least once a 
year, and that proportion increased to 50% by the age of 80 years (O'Loughlin et al., 1993). To 
prevent falls and resultant disability in the elderly, it is essential to understand the neural 
mechanisms underlying bipedal standing. Accumulated results from studies in cats and other 
vertebrates (Armstrong, 1988; Drew et al., 2004) suggest that multiple automated and reflexive 
actions regulated by the subcortical structures contribute to balance control. However, since 
balance control in bipedal standing requires more complex and sophisticated sensorimotor 
coordination than quadruped standing, it is plausible that not only the subcortical structures 
but also the well-evolved cerebral cortices are involved in balance control during bipedal 
standing in humans (Nielsen, 2003). In line with this notion, recent studies suggest that the 
cerebral cortex is involved in human balance control (Dietz et al., 1984; Quant et al., 2005; 
Slobounov et al., 2005). Compared to conventional neuroimaging techniques, such as fMRI or 
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PET, functional NIRS is relatively robust against a subject’s motion and seems to be suitable 
for investigating cortical involvement in postural control. 

2.4.1 Cortical activation with postural perturbation in healthy subjects 

Using functional NIRS, Mihara et al. reported the cortical activation associated with 
predictable and unpredictable postural perturbation (Mihara et al., 2008). During the 
experiment, subjects were asked to stand still on a platform, and postural perturbation was 
given by the brisk forward and backward translation of the platform (Fig.5). Oxy- and 
DeoxyHb signal changes were recorded from 50 channels on the frontoparietal skull surface 
with a sampling rate of 4 Hz. 

 

A: Experimental overview: Subjects are asked to stand on the custom-made platform with their feet 
shoulder-width apart. B: Schematic figure of platform movement. The middle and bottom row denote 
the time course of platform position and velocity. C: Task protocol in both conditions. Postural 
perturbations are given with randomised intervals. In the predictable condition, auditory warning 
signals are provided 2 s before the perturbation.  

Fig. 5. Experimental setup for the measurement of cortical activation associated with 
postural perturbation. 

Statistical analyses, using a general linear model with least squares estimation, revealed 
significant task-related OxyHb increase in the bilateral prefrontal cortex regardless of 
preceding warning cues. In the predictable condition, the supplementary motor area and the 
parietal association cortex were activated as well as the prefrontal cortex (Fig. 6).  

Considering that results from previous studies imply attentional demands for postural 
control (Woollacott & Shumway-Cook, 2002), the prefrontal involvement suggests the 
recruitment of the attentional process for the maintenance of standing posture against 
postural perturbation. The supplementary motor area and the parietal association cortex, 
however, were more activated with the preceding warning cues, suggesting that these 
cortices are involved in voluntary postural control.  

2.4.2 Possible application of functional NIRS as a surrogate marker for balance ability 

Neurological disorders, including stroke, Parkinson’s disease, and spinocerebellar ataxia, 
affect the balance ability and activity of daily living. In the field of rehabilitation medicine,  
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A: Cortical activation mapping based on task-related OxyHb signal increase. In the unpredictable 
condition, a task-related OxyHb signal increase is prominent in the bilateral prefrontal cortex (left). In 
the predictable condition, postural perturbation evoked task-related OxyHb signal increases in the 
supplementary motor area and parietal association cortex, as well as the bilateral prefrontal cortex 
(right). B: Timeline analyses of the OxyHb signal in both conditions.  

SMA: supplementary motor area, PFC: prefrontal cortex  

Fig. 6. Cortical activation associated with postural perturbation in healthy subjects. 

balance impairment is one of the main targets for improvement. As described above, 

functional NIRS can monitor the activation of the cortical network, which is vital for 

postural control. Therefore, functional NIRS may possibly help objectively monitor balance 

recovery. Below, we present several cases in which we observe changes in cortical activation 

during functional recovery after inpatient rehabilitation. 

A hemiplegic stroke patient with a subcortical lesion showed a similar cortical activation 

pattern change. Figure 7 shows the longitudinal change of cortical activation mapping 

associated with unpredicted postural perturbation. In a left hemiplegic patient, activation  

in the broad cortical area, including the bilateral prefrontal cortex, premotor cortex,  

 

Cortical activation mapping based on task-related OxyHb signal increase associated with unpredictable 
postural perturbation. Cortical activation was increased after 40 d of inpatient rehabilitation.  

Fig. 7. Cortical mapping change associated with postural perturbation in a patient with left 
hemiplegic stroke (45 years old). 
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supplementary motor area, and sensorimotor cortex, became evident as his balance ability 
recovered after inpatient rehabilitation. These results suggest that balance recovery is 
associated with cortical activation change, as is upper and lower limb recovery after stroke 
(Calautti & Baron, 2003; Ward et al., 2003; Luft et al., 2005; Enzinger et al., 2009).  

Interestingly, not only stroke patients show functional recovery-associated cortical mapping 

pattern changes. Figure 8 shows cortical activation with postural perturbation in a 73-year-

old male patient with Parkinson’s disease. He exhibited postural instability and could not 

walk without assistance at admission, but after 4 weeks of inpatient rehabilitation and drug 

control, his condition improved and he became ambulant. Postural perturbation-related 

cortical activation was dramatically changed along with functional recovery. Cortical 

activation in the bilateral prefrontal, premotor, and supplementary motor areas was 

increased after inpatient rehabilitation. Considering the subcortical nature of Parkinson’s 

disease, increased cortical activation may compensate for subcortical dysfunction, similar to 

gait in the ataxic stroke patients described above. Although there are several issues to be 

elucidated, these results imply that functional NIRS could be used as a surrogate marker for 

balance ability in patients with neurological disorders. 

 

Cortical activation mapping based on the task-related OxyHb signal increase associated with 
unpredictable postural perturbation. Cortical activation increased along with the recovery of balance 
ability in a widespread cortical area, including the bilateral prefrontal, premotor, and supplementary 
motor areas. 

Fig. 8. Cortical mapping change associated with postural perturbation in a patient with 
Parkinson’s disease (73 years old). 

2.5 Functional NIRS as a tool for motor learning studies 

Motor learning is vital and essential process in acquiring motor skills in daily life, not only 
for the neurological patients, but also for healthy individuals. Motor learning comprises 
motor sequence learning and motor adaptation in experimental settings (Doyon & Benali, 
2005). Motor sequence learning is assessed by the incremental acquisition of movements 
with repetition, while motor adaptation refers to the ability to compensate for 
environmental changes. To date, most human studies of motor sequence learning have used 
positron emission tomography (PET) or functional magnetic resonance imaging (fMRI) and 
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investigated the neural mechanisms underlying the learning of sequential movements of 
fingers or feet in a lying position. However, motor learning usually occurs under postural 
control since most movements are executed while subjects are sitting or standing in daily 
situations. As described above, because of less postural restriction, functional NIRS is 
considered suitable for investigating motor learning under normal daily circumstances.  

Using functional NIRS, Hatakenaka et al. studied the cortical activation change during the 
pursuit rotor (PR) task in healthy subjects (Hatakenaka et al., 2007). A pursuit rotor (PR) is a 
tool to evaluate motor sequence learning by measuring the ability to keep a stylus on a 
rotating target. In the PR task, there is no need for precise control of finger movements, but 
it requires motor control of proximal parts of the upper extremity, including the shoulder 
and elbow, as well as postural control for sitting (Grafton et al., 1992).In this study, 18 right-
handed healthy subjects performed 8 repetitions of 30-s PR tasks followed by 30-s rest 
periods. Gains of motor skill were evaluated by the contact time between the stylus and 
target. During 8 repetitions of the PR task, cortical activation in the frontoparietal cortices 
was evaluated with functional NIRS.  

As shown in Figure 9, performance of the subjects improved with PR task repetition. A task-
related OxyHb increase was observed in the sensorimotor cortex, prefrontal cortex, and 
premotor cortex. A task-related DeoxyHb decrease was also observed. Interestingly, the 
centre of the task-related OxyHb increase was observed in the pre-supplementary motor 
area initially, but it shifted caudally to the supplementary motor area with cycle repetitions 
(Fig. 9). These data suggest that the pre-supplementary motor area and the supplementary 
motor area play different roles in the motor skill learning process.  

 

A: Cycle-by-cycle contact time during the pursuit rotor (PR) task in healthy right-handed subjects. B: 
Cortical activation mapping based on the task-related OxyHb signal increase associated with the PR 
task in a representative subject. A caudal shift of the centre of task-related cortical activation from the 
pre-supplementary motor area to the supplementary motor area was evident. 

Fig. 9. Cortical mapping change associated with motor sequence learning. 
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Functional NIRS was also used in a study investigating the adaptation learning process. We 
investigated the cortical activation changes during the adaptation of reaching with robotic 

devices with 3-dimensional virtual reality (VR) system (Mihara et al., 2009), in which the 
limb coordination pattern is altered. Seven right-handed healthy subjects participated in this 

study. An upper limb training system, mediated by electro-rheological fluid actuators with 
3° of free movement range, was used (Furusho et al., 2005). The subjects are given visual 

feedback of the position and the movement of the gripping handle of the robot arm, as the 
coloured ball (object) moves in the 3-dimensional VR space on the 13’’monitor. The 

experiment consisted of 16 cycles of alternating 12-s rest and 8-s task periods. In the rest 
period, the floating target (Target) was fixed at the near lower left corner (the home 

position) of the VR space. In the reaching task period, the Target moved from the home 
position to the far upper right corner, and then returned to the home position in 8 s, and 

they asked the subject to follow the Target by moving the robot arm. The distance between 
the Object and the Target was indicated by the colour of the object. The mean distance in 

each cycle was calculated as a measure of performance. Cortical activation was measured as 
OxyHb signal change using 50-channel functional NIRS from the frontoparietal area, and 

the task-related cortical activation of each subject was modeled using 2 orthogonal 
covariates (Buchel et al., 1998). The first was the task covariate, modeled as a boxcar function 

in all task periods, and the second was the error covariate that comprised a boxcar function 
scaled by the mean distance. The error covariate was mean-corrected and orthogonalized 

with respect to the first covariate. Both covariates were convolved with the canonical 
haemodynamic response functions and used in a GLM analysis. Group analysis was 

performed using the random effects model. 

The mean distance of 7 subjects gradually reduced with cycle repetitions, indicating that the 
subjects learned to adapt to the visuo-motor reaching task in the VR space. Group analysis 
of functional NIRS signals showed significant effects primarily in the bilateral prefrontal, 
bilateral premotor, and left primary sensorimotor areas. Significant negative correlations to 
the error covariate were also found in the left prefrontal and premotor areas (Fig. 10). 
Although a broad cortical network is involved in the visuo-motor adaption learning of the 
reaching task, the prefrontal and premotor areas may be involved in the early stages of the 
adaptation process. 

2.6 Future directions of functional NIRS in the rehabilitation field 

To improve the performance of the activities of daily life and to restore function in severely 
damaged patients with stroke or neurodegenerative disease, there has been much interest in 
developing brain–computer interface (BCI) technology (Dobkin, 2007; Daly & Wolpaw, 
2008). The main purpose of BCI development is to substitute for lost neuromuscular output. 
For interactions between the brain and the outer environment, the BCI system must be able 
to detect brain signal, decode these signals, and output the appropriate information. Among 
several techniques for detecting brain activity, functional NIRS has attracted attention 
because of its portability and noninvasiveness. Although the clinical usage of BCI in the 
rehabilitation field is limited at this time, decoding techniques are improving with 
enthusiastic efforts from many groups. Sitaram et al. reported that right/left finger motor 
imagery could be classified with an average of 89% accuracy by applying a pattern 
recognition algorithm with hidden Markov Models to the multi-channel NIRS data  
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A: Experimental setting of the robotic rehabilitation system with functional NIRS. B: Reaching task with 
the robotic rehabilitation system. In a virtual reality space, subjects were asked to follow the target, 
which moves from the lower left corner to the upper right corner, and then back to the lower left corner 
in 8 s. C: Average distance from the handle position and the target, and cortical activation in the 
contralateral premotor cortex.  

Fig. 10. Adaptation learning task with the 3-dimensional robotic rehabilitation system 

(Sitaram et al., 2007). As another approach, the real-time analysis of the NIRS signal with an 
adaptive general linear model using Kalman filtering was also reported (Abdelnour & 
Huppert, 2009).  

In addition, BCI could be used as a tool to augment cortical plasticity. Using 
electroencephalography signals, it has been shown that providing feedback of brain activity 
to the subjects can alter their brain activity itself. This technique, known as ‘neurofeedback’, 
has been investigated for several years and is already used in the clinical setting. It has been 
reported that real-time feedback of EEG activity enables voluntary regulation of cortical 
activation and attentional level (Delorme & Makeig, 2003), and this has been applied in the 
treatment of attention deficit and hyperactivity disorder (Fuchs et al., 2003) and epilepsy 
(Kotchoubey et al., 2001). Combined with the real-time signal processing technique 
described above, functional NIRS could be used as a neurofeedback system for enhancing 
cortical plasticity.  
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3. Conclusion 

Functional NIRS is a unique tool as a neuroimaging modality. Despite several shortcomings, 
including difficulty in measuring haemoglobin oxygenation changes in deep brain 
structures and poor spatial resolution, it has characteristic advantages that can measure 
cortical activation in normal daily conditions. Functional NIRS could be used not only as a 
tool for measurement of cortical activation but also as a tool for treatment with further 
advancements in data analysis techniques.  
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