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1. Introduction

Among the most severe sources of potential concern in terms of natural environment
contamination with antropogenic radionuclides, a huge potential is associated to the
radioactive waste resulting from the processing of the nuclear fuel used for energy generation
purposes and from military and medical actvities. Although it represents about 3% of the
total radioactive waste existing nowadays in the world, its total radioactivity amounts to
more than 95% of that of the low & intermediate level and high-level radioactive waste taken
together (Hu et al., 2010). By the present time, deep geologic disposal is considered to be
the safest method for isolating highly radioactive and long-lived waste over millennia (Acero
et al., 2010; Kim et al., 2011; Kurosawa & Ueta, 2001), while for the low and intermediate
radioactive waste management, near surface storage is, for economic reasons, the preferred
option (Dogaru et al., 2010; IAEA, 2004; Niculae et al., 2009).

It is a well-known fact that groundwater represents the most effective agent by which
radionuclides stored in repositories could be transferred to the adjacent environment
(Altmann, 2008; Baik et al., 2009; Geckeis & Rabung, 2008; Wersin et al., 2011). This is the
reason why, each time when the issue of the radioactive waste repositories is addressed,
irrespective of the repository type or of its inventory of stored radionuclides, the primary
concern is to assess the local groundwater contamination risk.

Radionuclides may be conveyed by groundwater in a dissolved state, but especially in
association with particles of various origins that are carried along with water. Those
particles may have various structures and chemical compositions, their possible natures being:
inorganic, organic or even micro-organisms. The inorganic particles genesis is closely related
to the geochemistry of the environment with which groundwater is in contact, while particles
of organic and biological nature are, as a general rule, allochtonous.

Particles dimensions may be very different, ranging from those of the colloids, up to
microscopic particles, generically designated as “suspended particulate matter”. Their
reactivity and their ability of binding and conveying contaminants is to a certain extent
controlled by their dimension, namely their reactivity is progressively enhanced as the
particulate phase is more finely dispersed (Kersting & Zavarin, 2011; Wigginton et al., 2007).
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2 Will-be-set-by-IN-TECH

This is also the reason why an increased interest is dedicated to the radionuclides behaviour
in the presence of the colloidal matter.

The role played by the colloidal phase is intensely investigated not only for groundwater,
but also for terrestrial surface water, namely for streams and lakes (Aleksandrova et al., 2010;
Bondareva, 2011; Matsunaga et al., 2004; Monte, 2010; Monte et al., 2009; Ollivier et al., 2011;
Semizhon et al., 2010), for estuarine water (Barros et al., 2004; Eyrolle & Charmasson, 2004;
Porcelli et al., 1997), for sea water (Bowie et al., 2010; Otosaka et al., 2006; Scholten et al., 2005)
or for soil water (Goryachenkova et al., 2009; Maity et al., 2011; Matisoff et al., 2011; Rachkova
et al., 2010; Seliman et al., 2010; Xu et al., 2011). The colloid-radionuclide interaction is
important not only from the perspective of their migration. For instance, the colloidal systems
build-up is utilized for the radionuclides separation (Mansur & Mushtaq, 2011) and there
has been noticed that they have interfering effects in the quantitative determination of the
radio-isotopes. (Constantinou & Pashalidis, 2010; 2011; Kiliari & Pashalidis, 2010; Kyriakou &
Pashalidis, 2011).

The radionuclides migration associated with the particulate phase in general, and with
colloids in particular, that flow along with groundwater, is a topic of utmost importance for
assessing the safety of the radioactive waste repositories. For assessing that overall process,
there are conducted both field observations and experimental simulations in laboratory. The
in situ investigation and the modeling of the role played by the colloidal matter and by
the suspended particulate matter are mainly concerned with the saturated region of the
water-bearing structures (e.g., Baik et al., 2010; Grambow, 2008; Kelkar et al., 2010; Laverov
et al., 2010; Mal’kovskii, 2011; Malkovsky, 2011; Mazurek et al., 2011; Pourret et al., 2010;
Severino et al., 2007; Utsunomiya et al., 2009). The modeling of the radionuclides migration in
the unsaturated zone is addressed, as a general rule, by laboratory experiments (e.g., Ku et al.,
2009; Massoudieh & Ginn, 2007). The latter range into two broad categories, batch tests and
flow-through column experiments. In the first case, a solution spiked with the investigated
radionuclide is mixed for a certain time-interval with the solid of interest, then the solution
and/or the solid are analyzed (e.g., Anderson et al., 2009; Bradbury et al., 2005; Hu, Cheng,
Zhang & Yang, 2010; Lujanienė et al., 2010; Rabung et al., 2005; Singer, Maher & Brown Jr,
2009). The column experiments investigate the radiocolloids migration characteristics, by
simulating the groundwater flow conditions (e.g., Bryan et al., 2005; Li et al., 2011; Mibus
et al., 2007; Solovitch-Vella et al., 2006).

Radionuclide migration with groundwater colloids through porous media (e.g., Bradford
& Bettahar, 2006; Delos et al., 2008; Grolimund et al., 2001; Grolimund & Borkovec, 2001;
2006; Ilina et al., 2008; Kretzschmar et al., 1997; Li et al., 2010; Panfilov et al., 2008; Santos
& Barros, 2010), or across fractured rock systems (e.g., Hu & Mori, 2008; Jeong et al., 2011;
Kosakowski, 2004; Kurosawa & Ueta, 2001; Malkovsky & Pek, 2009b; Schindler et al., 2010;
Tang & Weisbrod, 2009; 2010; Yamaguchi et al., 2008) are intensely investigated topics. At the
same time, extensive research is conducted for assessing the humic and fulvic colloids effect
on the radionuclides migration across the underground environment (e.g., Bouby et al., 2011;
Geraedts & Maes, 2008; Joseph et al., 2011; Lippold et al., 2005; Lippold et al., 2005; Pshinko,
2009; Pshinko et al., 2009; Schmeide & Bernhard, 2010; Singh et al., 2009; Singhal et al., 2009;
Yoshida & Suzuki, 2006).
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The present work intends to succinctly review and to critically analyze the most recent
contributions of the scientific literature in which there are addressed certain issues concerning
the part that particulate phases play in the migration of the radionuclides characteristic to the
radioactive waste stored in geological repositories, across more or less deep aquifer structures.
An attempt is performed to provide an adequate definition of the particulate phases, and the
main issues related to the radionuclides speciation are discussed, with particular emphasis
on the radiocolloids development and distribution. A topic that is widely addressed in the
present work concerns the radioparticles fractionation and their chemical characterization.

2. Radioparticles in groundwater

2.1 Particulate phases

It is a well-known fact that in a natural subsurface water-rock system, elements are
distributed among the three constitutive phases, namely: (1) the solid phase, consisting
of the mineral substratum and of the sediments; (2) the aqueous phase, within which
elements are considered to occur as dissolved species, and (3) the particulate phase. It is
by now fully demonstrated and unanimously accepted that much higher concentrations of
contaminants are being carried by the particulate phases, as compared to concentrations of
the corresponding dissolved species which are carried in the aqueous solution (Kalmykov &
Denecke, 2011; Morel, 1983; Stumm & Morgan, 1996).

The particulate phase conveyed by groundwater is highly dynamic. Particles are continuously
produced as a result of physical erosion and of chemical alteration of the mineral substratum,
or ensuing to precipitation from super-saturated solutions. They undergo permanent
composition changes, and are continuously removed from the water by dissolution,
coagulation, and finally by deposition or binding to the solid phase.

Particles existing in groundwater may be both of inorganic and of organic nature (Wolthoorn
et al., 2004). As a general rule, the inorganic particles composition mirrors to a large extent
the nature of the mineral substratum in contact with water. Specifically, those particles may
include solid fragments dislocated from the substratum, clay minerals, Fe(III), Mn(III,IV) and
Al(III) oxihydroxide microparticles, silicates, carbonates, complexes and polymers of certain
elements, etc. Organic particles are, at least in principle, of allochtonous origin, and they
include fragments of degraded organic matter, macromolecules of organic substances which
are specific to the soil (ex. humic or fulvic acids), but also organisms which are either alive or
decomposing, microorganisms, viruses, as well as their exudates.

Aquatic particulate phases exhibit a continuous particle size distribution. In spite of that,
practical reasons require that distinction is made between constituents that are dissolved, and
those existing as particles on the one hand, and the various types of particles on the other.
From a thermodynamic perspective, “dissolved” refers to a constituent for which a chemical
potential can be defined (Stumm & Morgan, 1996).

In terms of dimension, shape and characteristics of transfer across the environment, taken as
a whole, the particles range in two broad categories, namely colloids and suspended particles.
A distinction between those two categories made by taking into account only the dimension
criterion fails to be entirely satisfactory, although it is widely accepted and operationally

433Particulate Phases Possibly Conveyed from Nuclear Waste Repositories by Groundwater

www.intechopen.com



4 Will-be-set-by-IN-TECH

useful. Opinions fail to be unanimous even as far as the dimensional boundary separating
the two categories is concerned, so that according to various authors, the corresponding
dimension may be 0.20 μm, 0.45 μm or 1 μm (Malkovsky & Pek, 2009a). In fact, the indicated
values represent the pore dimensions of the filtering membranes which are used for separating
the particles. The lower boundary of the colloidal particles dimension is accepted to be,
as a general rule, ≈1 nm, a circumstance which authorizes, from a certain perspective,
the assimilation of colloids to nanoparticles (Geckeis et al., 2011; Wigginton et al., 2007).
An important characteristic of the aquatic colloids, useful in distinguishing them from the
suspended particles, consists in the fact that their vertical movement is not significantly
affected by gravitational settling (Gustafsson & Gschwend, 1997; Stumm & Morgan, 1996).

2.2 Speciation of radionuclides in the environment

The migration of an element in a natural environment is basically conditioned by the way
it speciates in that environment. By definition, the chemical species of a certain element are
its specific appearances, defined as electronic or oxidation states, as complex or molecular
structures (Templeton et al., 2000). At a given moment, the same element may occur in
the hydrosphere under various physical-chemical appearances, including forms associated
to the particles in suspension or dissolved forms, such as simple inorganic species, organic
complexes, metallic ions adsorbed to the colloidal matter, etc.

Accounting for the radionuclides speciation is a fundamental step toward describing the geo-
and bio-chemical processes in which they are involved, and above all for understanding how
they migrate through the environment. (Hu et al., 2010; Salbu, 2009; Salbu et al., 2004). The
definitions of the terms addressing the elements speciation, recommended by International
Union for Pure and Applied Chemistry (IUPAC) (Templeton et al., 2000), have been adapted
for the radionuclides by Salbu & Skipperud (2009) as follows:

Radionuclide species are defined according to their physicochemical properties such as nominal
molecular mass, charge properties and valence, oxidation state, structure and morphology,
density, degree of complexation.

The speciation of radionuclides is the distribution of a radionuclide amongst defined chemical
radionuclide species in a system.

Colloids and suspended particles cannot be considered, under the above definition, species,
they are, alternatively, chemical fractions. The chemical fraction is a group of chemical entities
which have common physical (e.g. size), or chemical (e.g. reactivity) properties, that group
being operationally outlined by means of an analytical process. The concerned analytical
process is termed fractionation. Chemical fractions are not mutually exclusive, i.e. rather
than identifying the involved chemical species, they indicate a specific behaviour. In terms
of involved experimental techniques, fractionation is much more accessible that the detailed
determination of chemical species. For instance, the results of the in situ fractionation of water
samples derived from The Fen Central Complex (southern Norway), one of the world’s largest
natural reservoirs of thorium (232Th), have shown that radionuclides occur mainly as colloids
and chemical species of low molecular mass (Popic et al., 2011).

There is a certain dependence of the chemical reactivity of particles carried by water on
their dimension (Wigginton et al., 2007), namely reactivity is, as a general rule, enhanced,

434 Radioactive Waste

www.intechopen.com



Particulate Phases Possibly Conveyed from Nuclear Waste Repositories by Groundwater 5

as the particle dimension decreases. This behaviour is mainly a result of the fact that with
decreasing particle dimension, the ratio between the constitutive atoms and the surface area of
the particle increases. This is one of the reasons why a large interest is being recently dedicated
to the investigation of how radionuclides are transferred by means of colloidal particles. At
the same time, the colloids mobilization and transfer can occur both in a saturated, and
in an unsaturated flow regime, this quite important issue requiring a careful consideration
for an appropriate management of the radioactive waste repositories safety. The part that
suspended particles, and macro-particles in general, play in the radionuclides migration is
not a negligible one, yet it is worth considering it only in a saturated flow regime.

3. Formation of the radiocolloids

Entities formed by the coupling of colloidal particles with radionuclides and conveyed as such
by groundwater, and which commonly are also termed radiocolloids, are classified in two large
groups, according to their origin: (1) intrinsic-, eigen-colloids or “true” colloids; and (2) carrier-

or pseudo-colloids (Geckeis et al., 2011; Malkovsky et al., 2009; Malkovsky & Pek, 2009a).

3.1 Intrinsic radiocolloids

Intrinsic-colloids are formed spontaneously, as a result of the polymerization of complexes
derived from the hydrolysis of metal ions. Under certain environmentally-controlled
circumstances, an increased tendency to form such colloids is displayed by Pu, Am, Np, for
which the dimensions of the resulting aggregates and their number per unit volume are, as a
general rule, proportional to the total concentrations of the concerned actinides in the solution
(Murakami et al., 2005).

It is a well-known fact that tetravalent plutonium has a strong predilection to develop
polymeric complexes and colloids. There has been however noticed that small polymers
such as dimers, trimers and tetramers include mixed oxidation states of Pu (Walther et al.,
2009). In natural waters with pH ranging between 6 and 8, Pu(IV) prevalently occurs under
the form of true colloids. The latter exhibit a predisposition for getting bound to the rocks
surface, a behaviour which with increasing particles dimension, becomes more and more
obvious. It was found, for instance, that when the particles dimensions exceed 220 nm, Pu(IV)
is virtually quantitatively sorbed on the rock surface (Perevalov et al., 2009). At the same time,
equilibrium distribution of Pu(IV) polymers depending on the total Pu(IV) concentration in
the solution was analyzed theoretically by Kulyako et al. (2008).

3.2 Pseudo-colloids

Pseudo-colloids are formed through the binding of radionuclides to the pre-existing colloidal
particles of the groundwater. Any mineral fragment, either crystalline or amorphous
(hydrated Al, Fe and Mn oxides), organic compounds (humic and fulvic acids), but also
biota consisting prevalently of viruses and bacteria may act as carrier particles for the
radio-nuclides. As compared to the first group of radiocolloids, pseudo-colloids are much
more abundant in groundwater, and therefore they exert a much more extensive control on
the radionuclides transfer.
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Experiments have been conducted which were aimed at establishing the conditions under
which Fe(III), Cr(III) and Zr(IV) build up pseudo-colloids together with colloidal silica. There
was thus noticed that in a Fe(III) solution with a concentration of ≈1 × 10−7 M, under pH
conditions normally met in the hydrosphere, Fe 3+ cations and mononuclear Fe(OH) 3 – n

n
hydroxo complexes mostly occur, and pseudo-colloids may form by the binding of Fe(III)
species to colloidal silica (Davydov et al., 2003). In Cr(III) ≈1 × 10−6 M synthetic solutions,
when pH >4, in solution there are prevailing the Cr(OH) 2+ and Cr(OH) +

2 species, with
chromium displaying an obvious predilection toward forming pseudo-colloids with silica
(Davydov et al., 2006). At the same time, in a solution of ≈1 × 10−13 M concentration, Zr(IV)
occurs under hydrated form as Zr(OH) 3+ and Zr(OH) 2+

2 . At pH 2–12 Zr(IV) participates in
formation of stable pseudocolloid particles (Davydov et al., 2006).

By using the surface complexation model, several investigators have modeled the
radionuclides adsorption on the surface of the colloidal particles to form pseudo-colloids.
For instance Batuk et al. (2011) interpreted in this way the sorption behavior and speciation
of U on silica colloids, Degueldre & Bolek (2009) modeled plutonium adsorption on hydrous
metal oxide solids, Del Nero et al. (2004) interpreted Np(V) sorption on amorphous Al and Fe
silicates, and uranyl ions on Al-hydroxide (Froideval et al., 2006). Sorption of Np(V), Pu(V),
and Pu(IV) on colloids of Fe(III) oxides and hydrous oxides and MnO2 was studied over wide
ranges of solution pH and ionic strength by Khasanova et al. (2007). The surface complexation
model assumes that the adsorbing ion forms a surface complex with the adsorbing site, similar
to the formation of a dissolved complex.

A box model has been proposed in order to interpret the kinetics of the radionuclides uptake
on suspended particulate matter (Barros & Abril, 2005; 2008). At the same time, there has been
investigated the kinetics of the Cs(I) sorption on hydrous silica (Pathak & Choppin, 2006), and
Am 3+ on suspended silica as a function of pH and ionic strength in the presence of complexing
anions, humic acid and metal ions (Pathak & Choppin, 2007).

Living organisms with dimensions similar to colloids, like for instance pathogenic bacteria
or viruses, are present in groundwater naturally, to form a distinct group named biocolloids
(Bekhit et al., 2009). Since they are living organisms they migrate in the subsurface porous
medium, being subject to a complex of biological, physical and chemical processes. Those
micro-organisms act as pseudo-colloids, since their surfaces are often negatively charged,
thus having the ability to bind and carry radionuclides through the subsurface environment
(Johnsson et al., 2008; Luk’yanova et al., 2008; Seiler et al., 2011; Singer, Farges & Brown Jr,
2009; Wilkins et al., 2006; 2010).

3.3 Colloids generated by engineered barriers

Besides the two already mentioned colloid groups, Malkovsky et al. (2009) and Malkovsky &
Pek (2009a) distinguish an additional third group, which they designate as “primary colloids”.
The latter are colloidal particles derived as a result of groundwater leaching the isolating
materials utilized in the storage of low and intermediate level radioactive wastes, as well
as of high-level radioactive wastes in geological disposal.

Action taken in order to prevent, as much as possible, the contamination of the geological
environment with radionuclides stored in a radioactive waste repository, irrespective whether
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the latter is located at the ground surface or in the underground, makes use of the so-called
“barriers”. The broadest meaning for barrier is “a physical obstruction that prevents or
delays the movement of radionuclides or other material between components in a system,
for example a waste repository” (IAEA, 2003). Such barriers may be either natural (i.e.
geological), or constructed, in that latter case being called “engineered barriers”. In most
instances there are used “multiple barriers”, namely “two or more natural or engineered
barriers used to isolate radioactive waste in, and prevent migration of radionuclides from,
a repository” (IAEA, 2007). Such barriers include the glass or ceramic matrixes to which the
liquid waste is usually converted (Anderson et al., 2009; Curti et al., 2009), the steel canisters
used for isolating the waste, the buffering backfill materials placed between the containers
and the walls of the repository cells. The most adequate filling material for this purpose is
bentonitic clay (Akgün et al., 2006; Ferrage et al., 2005; Galamboš et al., 2009; 2011; Gaucher
et al., 2004; Pérez del Villar et al., 2005), since it has a low permeability and its coefficient
of radionuclides diffusion is quite small (Arcos et al., 2008; Bradbury & Baeyens, 2011; Hu,
Xie, He, Sheng, Chen, Li, Chen & Wang, 2010; Missana & García-Gutiérrez, 2007; Wang et al.,
2005). When in contact with groundwater, all those barriers can release colloidal particles that
in terms of both their chemical, and their mineralogical composition, are not characteristic to
the concerned geological environment (Cadini et al., 2010; De Windt et al., 2004; Filby et al.,
2008; Kunze et al., 2008; Wieland et al., 2004).

The effect of engineered barriers in terms of radiocolloids production is an outstandingly
important research topic. It is worth mentioning that especially bentonite barriers in contact
with weakly mineralized groundwater generate a highly concentrated colloidal phase which
is liable to carry radionuclides (Albarran et al., 2008; 2011; Kalmykov et al., 2011; Kurosawa &
Ueta, 2001; Missana et al., 2008; Sabodina et al., 2006; Tertre et al., 2005; Vilks et al., 2008).

3.4 The colloids stability

The colloids stability in groundwater is primarily controlled by the processes through which
they agglomerate; at their turn, those processes are ruled by the colloid surface charge and
by the solution composition, namely by its pH and ionic strength. (Geckeis et al., 2011;
Schelero & von Klitzing, 2011). Accordingly, the groundwater chemistry plays a fundamental
part in controlling the stability of the colloidal particles. Those particles ability of remaining
in suspension in an aqueous environment depends on the interactions that are established
between them when they reach close to one another. Colloids become stabilized through
the formation of an electric double layer strong enough for preventing agglomeration. Yet
this layer may be destroyed and the colloidal particles consequently coagulate and leave
the system, along with the increase in ionic strength. There has been noticed that a reverse
correlation exists between the colloids concentration in the solution and the ionic strength of
the latter (Deepthi Rani & Sasidhar, 2011; Loux, 2011).

4. Fractionation and radioparticles charcterization

Analytical tools and detection methods used to characterize radioparticles in groundwater
may be categorized as a function of the parameter to be determined as follows: (1)
size fractionation; (2) size distribution; (3) surface area characterisation; (4) chemical and
radiochemical analysis (May et al., 2008). Common size fractionation methods include
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ultrafiltration, tangential/cross-flow ultrafiltation (TFF/CFF), centrifugal-ultrafiltration (e.g.,
Gimbert et al., 2005; Liu et al., 2006; Pourret et al., 2007) and field-flow fractionation (FFF).
Normally, those techniques are followed by the chemical analysis of the separated fractions.
They will be discussed in detail in the following sections, since they are, taken together, the
most frequently used experimental investigation approaches.

The size distribution of radioparticles can be investigated by a wide variety of techniques,
such as laser light scattering (LLS) (e.g., Dreissig et al., 2011), diffuse light scattering (DLS)
(e.g., Lahtinen et al., 2010), laser-induced breakdown detection (LIBD) (e.g., Baik et al., 2007),
or photoelectron spectroscopy (Laverov et al., 2010). For the same purpose, atomic force
microscopy (AFM) and transmission electron microscopy (TEM) (e.g., Doucet et al., 2005;
2004) are used as well.

The specific surface area (SSA) of the particles is the parameter describing the interdependence
between the particles dimensions and their chemical or mineralogical composition. The
SSA determination is frequently conducted by means of the Brunauer-Emmett-Teller (BET)
gravimetric method. In an indirect way, information about the particles surface area may be
obtained by means of AFM or TEM measurements.

In order to characterize the radionuclides speciation, a series of investigators have resorted
to sequential chemical extraction experiments, conducted in accordance with pre-established
work protocols (Bondareva, 2011; Bondareva & Bolsunovskii, 2008). As a general rule, ensuing
to a scheme of sequential extraction of radionuclides from colloidal matter of groundwater, the
following products will result: (1) water-soluble; (2) exchangeable, by using as reactant a 0.5 M

Ca(NO3)2 solution at pH 5.5; (3) associated with carbonates, in the presence of 0.1 M NH4Ac
solution, pH 4.8; (4) associated with organic matter, with 0.1 M NaOH solution, pH 10; (5)
amorphous oxides, by using a mixture of 0.18 M (NH4)2C2O4 and 0.1 M H2C2O4 solutions, at
pH 3.5; (6) the residue digestion by means of HF (Novikov et al., 2009; Novikov et al., 2009).

4.1 Suspended particulate matter (SPM) fractionation

The SPM analysis techniques have been developed and are frequently conducted for surface,
estuarine or sea water samples, but they are equally utilized as well for the analysis of
radionuclide-contaminated groundwater (Katasonova & Fedotov, 2009; Stepanets et al., 2009).

Two different approaches are utilized in order to determine the concentrations of heavy
metals and radionuclides bound on the SPM, one which is direct, and the other indirect. The
direct determination method consists in separating the suspensions on filtering membranes
of various porosities, followed by subsequent digestion and quantitative assessment of the
contaminants from the separated material, by means of an adequate spectrometric technique
(Blo et al., 2000; Nordstrom et al., 1999; Ödman et al., 1999; 2006; Ollivier et al., 2011; Yeager
et al., 2005). Through the indirect method, both the filtered and the unfiltered water samples
are analyzed in parallel, and the resulting concentration difference is considered to represent
the concentration of the element bound on the SPM (Cidu & Frau, 2009; Cortecci et al., 2009;
Gammons et al., 2005; Pokrovsky & Schott, 2002).

In a comparative study, Butler et al. (2008) have demonstrated that congruent results were
obtained when the two methods were applied in parallel. Potential artifacts induced by
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filtration, such as contamination and/or adsorption of metals within the membrane have been
investigated for different membrane materials, metals, etc. (Hedberg et al., 2011).

4.2 Ultrafiltrafiltration

Ultrafiltration became the usual technique for separating colloidal particles from any type
of natural water. The separation is performed by using a filtering membrane of a nominal
size, often reported in a molecular size cut-off, in dalton (Da) units. Dalton is non-SI unit
accepted for being utilized in the International System of Units whose values in SI units must
be obtained experimentally. One dalton unit is equivalent to one atomic mass unit (amu) and
is used in ultrafiltration in order to determine the approximate size of particles for which a
rigorous molecular mass cannot be indicated.

Single filtration is frequently used for radioparticles separation (Caron & Smith, 2011;
Novikov et al., 2009). Many investigators resort however to sequential (cascade) filtration,
which involves the utilization of a series of cells with mixing, where each cell contains a
membrane and a drainage system connected to measuring devices (Bauer & Blodau, 2009;
Dreissig et al., 2011; Eyrolle & Charmasson, 2004; Graham et al., 2011; Pourret et al., 2010;
Stepanets et al., 2009). In most cases, before starting the ultrafiltration operation, the SPM is
separated by filtering the water samples on filtering membranes of 0.45 μm or 0.22 μm (e.g.,
Graham et al., 2008; Novikow et al., 2009; Singhal et al., 2009).

Tangential-flow ultrafiltration (TFF/CFF) is a common method for size fractionation in natural
waters which has also been applied for colloids separation (e.g., Andersson et al., 2001;
Buesseler et al., 2009; Goveia et al., 2010; Hassellöv et al., 2007; Ohtsuka et al., 2006). The main
advantage of TFF is its use as a preparative fractionation method that allows for processing
of large volumes of sample - even water samples reaching, each one, up to several hundreds
of liters. It is also well known that the size distribution of colloids in natural waters can
easily change due to aging, changes in pH, ionic strength or redox conditions (Hedberg
et al., 2011). The processes that can potentially alter the size distributions of the colloids
include coagulation, adsorption to surfaces, hydrolysis and precipitation. In addition to
these processes, associated trace constituents are also affected by sorption processes, solution
complexation and redox precipitations (Katasonova & Fedotov, 2009; Salbu, 2009).

4.3 Field-Flow Fractionation

Several recently published reviews emphasize the efficiency of the Field-Flow Fractionation
(FFF) techniques for separating and estimating physical parameters of different materials:
biopolymers, biological cells, microorganisms, and colloidal and solid particles (Bouby &
Geckeis, 2011; Dubascoux et al., 2010; Kowalkowski et al., 2006; Qureshi & Kok, 2011; Stolpe
et al., 2005; Williams et al., 2011).

Particles separation by means of the FFF techniques is achieved by a combined action of
the non-uniform flow velocity profile of a carrier liquid and a transverse physical field
applied perpendicularly to this carrier. Carrier liquid flowing along the channel forms a
nearly parabolic flow velocity profile across the channel. The sample to be investigated is
dissolved or suspended in a carrier fluid and is pumped through a thin, not filled, channel.
At the present time, FFF comprises a family of separation devices with a great number of
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sub-techniques used mainly for the separation and characterization of particulate species in
the size range from 10−3 μm to 102 μm. Highly popular among those sub-techniques is the
flow field-flow fractionation (Fl-FFF). The version of the manufactured separation system
for which the channel conveying the carrier liquid had an asymmetric shape (As-Fl-FFF)
proved to be the most efficient, as it enabled nanoparticles ranging form 1 nm to 100 μm to
be separated. As a general rule, an Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
is used as on-line detector, which allows reaching low detection limits, high sensitivity, large
dynamic range and ability to simultaneously measure a large number of elements (Table 1).

Method Analyt Detection Details References
method

As-Fl-FFF Cs, Eu, ICP-MS Interaction of bento- Bouby et al. (2011)
Th, U nite colloids with

metals in presence of
HA

As-Fl-FFF minor UV detector, Analysis of colloids Lahtinen et al. (2010)
elements ICP-MS released from bento-

nite and crushed
rock

As-Fl-FFF U UV detector, U complexation by Ranville et al. (2007)
ICP-MS groundwater dissol-

ved organic C
As-Fl-FFF Cs, La, Ce, ICP-MS Quantitative Bouby et al. (2008)

Eu, Th, U characterization
of natural colloids

Fl-FFF U(VI) ICP-MS U(VI) sorption Lesher et al. (2009)
to nanoparticulate
hematite

Fl-FFF 57Fe, 65Cu, ICP-MS Chemical and colloi- Cizdziel et al. (2008)
127I, 184W, dal analyses of
88Sr, 238U natural seep water

As-Fl-FFF LIBD, Characterization of Baik et al. (2007)
ICP-MS aquatic groundwater

colloids
As-Fl-FFF Cm(III) complexation Claret et al. (2005)

behavior of isolated
HA and FA derived
from Opalinus clay

As-Fl-FFF As, Cd, Sb, ICP-MS Soil leachate Dubascoux et al. (2008)
Se, Sn, Pb

Table 1. Some field-flow fractionation procedures and detection method used to
charactherize colloid particles.

A large number of recent works contributing to the development of the FFF techniques
significantly widened their applicability range in particle size analysis (Ahn et al., 2010;
Baalousha et al., 2006; 2005; Dubascoux et al., 2008; Gascoyne, 2009; Isaacson & Bouchard,
2010; Otte et al., 2009; Pifer et al., 2011).
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4.4 Passive sampling techniques

For a given element, the overwhelming majority of its species are unstable chemical forms
that occur under precarious equilibria. As a general rule, these equilibria are disturbed
during the routine operations of collection, transport and storage of the samples, this fact
resulting in most cases in erroneous information about the considered system. This is the
reason why recently, in the elements speciation analysis, passive sampling techniques have
received increasingly large acceptance Vrana et al. (2005).

In the most general meaning, passive sampling is that particular sampling technique which
relies on the free transfer of the analyte from the sampled environment to a receiving phase
in a sampling device, by the effect of the difference between the chemical potentials that the
analyte has in the two environments. The transfer of the analyte from one environment toward
the other continues until equilibrium is reached within the system, or until the sampling is
stopped by an operator. In the first case, it is said that the passive sampling device operates in
an equilibrium regime, while in the second one, it is said that it operates in a kinetic regime.
In both situations, the sampling occurs without the involvement of any source of energy other
than the indicated difference of chemical potential.

Among the passive sampling techniques, the diffusive gradients in thin films (DGT)
technique, introduced by Davison & Zhang (1994), is highly ranked as a consequence of
its ability to determine labile species in natural waters, sediments and soils. The DGT
technique theoretical background relies on the Fick’s first law of diffusion. For aqueous
systems determinations a passive sampling device is used, which consists of a plastic piece in
the shape of a piston, on which two gel discs and a filtering membrane are installed. The first
gel, impregnated with binder material, is used for retaining the analytes. The second gel disc
has a pre-determined porosity and its role consists in maintaining a constant concentration
during the analyte diffusion between the solution and the binder material. The typical binder
material is the Chelex-100 resin, while the material used for the diffusion control is the
acrylamide/agarose hydrogel. In the end, the binder gel is eluted and the resulting solution
is analyzed by means of ICP-MS French et al. (2005); Garmo et al. (2008; 2006), multi-collector
ICP-MS (Malinovsky et al., 2005), thermal ionization mass-spectrometry (TIMS) (Dahlqvist
et al., 2005), or directly through the gel analysis by laser-ablation ICP-MS (Pearson et al., 2006;
Warnken et al., 2004). A comparative study between the DGT techniques and ultrafiltration
has been conducted by Forsberg et al. (2006).

By simultaneously immersing several devices which have diffusion gels of various thicknesses
or porosities, there is possible to obtain information about the nature of the complexes
which are present in various categories of natural waters, and also about the kinetics of the
geochemical reactions in which those complexes are involved (Zhang & Davison, 2000; 2001),
including in porewater (Leermakers et al., 2005; Wu et al., 2011). DGT has been successfully
utilized in order to monitor the radionuclides migration (Chang et al., 1998; Duquène et al.,
2010; Gao et al., 2010; Gregusova & Docekal, 2011; Li et al., 2007; 2009; 2006; Salbu, 2007).

The same class of techniques also encompasses the diffusive equilibration in thin films (DET).
In this latter case, the sampling device includes only a single layer of gel. This gel layer
is maintained in contact with the environment to be analyzed, until equilibrium is reached
between the analyte concentration in the environment, and the corresponding concentration
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in the gel. The technique is mainly utilized in sedimentary environments (Dočekalová et al.,
2002). The total content of the analyte in the gel mirrors the ability of the concerned species
to penetrate the gel, being controlled by its dimension. In the case of elements associations
with colloidal matter, by combining information provided by DET on the equilibration, with
information provided by DGT on the species dynamics, a much more appropriate description
is obtained in terms of elements speciation (Fones et al., 2001; Gao et al., 2006; van der Veeken
et al., 2008; Vandenhove et al., 2007).

In spite of being quite simple to handle, the DGT/DET techniques require a very cautious
approach in terms of interpretation. One must take into account that the elements behaviour
is not identical with respect to the binder gels, and that equilibration is largely controlled by
the pH and the ionic strength of the solution. In addition, potential artifacts may be introduced
during the devices preparation, elution and determination processes.

5. Conclusion

All the energy generation, industrial, medical, or military activities which utilize radioactive
substances are producing low and intermediate level, and high-level radioactive waste, which
needs to be isolated from the biosphere in order to protect the future generations from the
hazards potentially induced by the associated radioactivity. As a function of the radioactivity
level and of the half life length of the radioisotopes existing in their inventory, either near
surface disposal facilities or deep geological repositories are assigned to the storage of that
waste.

It is necessary that a radioactive waste repository location is selected very carefully in terms
of its hydrogeological environment, since it is a well-known fact that groundwater is the most
important vector involved in the transfer of the contaminants. The radionuclides migration
across the geosphere takes place as water-dissolved constituents, but especially bound to the
particulate phases carried by groundwater. Generally speaking, elements in a “dissolved”
state speciate, i.e. they are distributed among forms defined by electronic states, oxidation
states, isotopic compositions, as well as complex or molecular specific structures, while when
they occur as particles, it is said that they belong to chemical fractions. A chemical fraction
is a group of chemical entities which have common physical (e.g. size), or chemical (e.g.
reactivity) properties, that group being operationally outlined by means of an analytical
process.

Many authors rightly believe that the part played in the radionuclides transfer by particulate
phases in general, but especially by the colloidal matter, is so important, that modeling
approaches which do not take it into account are unrealistic. In an aqueous environment,
radiocolloids occur as intrinsic-colloids and pseudo-colloids. The first category is specific to
several transuranic elements which under certain conditions (e.g., pH, ionic strength), possess
the capacity of forming structures with colloidal properties. The second type of colloids forms
through the attachment of the radionuclide to particles pre-existing in groundwater. Those
particles are spontaneously formed in the aquifer structures, but they might also derive from
engineered barriers that are built in order to stop radionuclides from migrating out of the
repositories. In this respect, bentonitic clays used as a buffer are the most important source of
colloidal particles.
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In order to identify and to characterize the particulate phases-radionuclides associations, a
set of specific separation and determination methods is resorted to. Among the separation
techniques, the filtration/ultrafiltration is the most frequently used, while for the colloidal
matter characterization, much more efficient are the techniques belonging to the field-flow
fractionation category. The latter have the advantage that they may be hyphenated with
quantitative determination techniques, among which the inductively coupled plasma mass
spectrometry is the most widely used. Recently, into the radiocolloids analysis domain
there additionally included the “diffusive gradients in thin films (DGT)” and “diffusive
equilibration in thin films (DET)” techniques, which appear to be outstandingly promising
for the study of the radionuclides migration across the environment.
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