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1. Introduction

Debugging tools are a practical need for helping programmers to understand why their

programs do not work as intended. Declarative programming paradigms involving complex

operational details, such as constraint solving and lazy evaluation, do not fit well to traditional

debugging techniques relying on the inspection of low-level computation traces. As a solution

to this problem, and following a seminal idea by Shapiro (Shapiro, 1982), declarative debugging

(a.k.a. declarative diagnosis or algorithmic debugging) uses Computation Trees (shortly, CTs) in

place of traces. CTs are built a posteriori to represent the structure of a computation whose

top-level outcome is regarded as a symptom of the unexpected behavior by the user. Each node

in a CT represents the computation of some observable result, depending on the results of its

children nodes, using a program fragment also attached to the node. Declarative diagnosis

explores a CT looking for a so-called buggy node which computes an unexpected result from

children whose results are all expected. Each buggy node points to a program fragment

responsible for the unexpected behavior. The search for a buggy node can be implemented

with the help of an external oracle (usually the user with some semiautomatic support) who

has a reliable declarative knowledge of the expected program semantics, the so-called intended

interpretation.

The generic description of declarative diagnosis in the previous paragraph follows (Naish,

1997). Declarative diagnosis was first proposed in the field of Logic Programming (LP)

(Ferrand, 1987; Lloyd, 1987; Shapiro, 1982), and it has been successfully extended to other

declarative programming paradigms, including (lazy) Functional Programming (FP) (Nilsson,

2001; Nilsson & Sparud, 1997; Pope, 2006; Pope & Naish, 2003), Constraint Logic Programming

(CLP) (Boye et al., 1997; Ferrand et al., 2003; Tessier & Ferrand, 2000), and Functional-Logic

Programming (FLP) (Caballero & Rodríguez, 2004; Naish & Barbour, 1995). The nature of

unexpected results differs according to the programming paradigm. Unexpected results in

FP are mainly incorrect values, while in CLP and FLP an unexpected result can be either a

single computed answer regarded as incorrect, or a set of computed answers (for one and the

same goal with a finite search space) regarded as incomplete. These two possibilities give rise

to the declarative debugging of wrong and missing computed answers, respectively. The case

of unexpected finite failure of a goal is a particular symptom of missing answers with special

relevance. However, diagnosis methods must consider the most general case, since finite
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failure of a goal is often caused by non-failing subgoals that do not compute all the expected

answers.

In contrast to recent approaches to error diagnosis using abstract interpretation (e.g., (Alpuente

et al., 2003; Comini et al., 1999; Hermenegildo, 2002), and some of the approaches described

in (Deransart et al., 2000)), declarative diagnosis often involves complex queries to the user.

This problem has been tackled by means of various techniques, such as user-given partial

specifications of the program’s semantics (Boye et al., 1997), safe inference of information

from answers previously given by the user (Caballero & Rodríguez, 2004), or CTs tailored to

the needs of a particular debugging problem over a particular computation domain (Ferrand

et al., 2003). Another practical problem with declarative diagnosis is that the size of CTs

can cause excessive overhead in the case of computations that demand a big amount of

computer storage. As a remedy, techniques for piecemeal construction of CTs have been

considered; see (Pope, 2006) for a recent proposal in the FP field. However, current research

in declarative diagnosis has still to face many challenges regarding both the foundations and

the development of practical tools.

In spite of the above mentioned difficulties, we are confident that declarative diagnosis

methods can be useful for detecting programming bugs by observing computations whose

demand of computer storage is modest. The aim of this chapter is to present a logical

and semantic framework for diagnosing wrong and missing computed answers in CFLP(D)
(López et al., 2006), a newly proposed generic programming scheme for lazy Constraint

Functional-Logic Programming which can be instantiated by any constraint domain D given

as parameter, and supports a powerful combination of functional and constraint logic

programming over D. Sound and complete goal solving procedures for the CFLP(D) scheme

have been obtained (López et al., 2004). Moreover, useful instances of this scheme have been

implemented in the T OY system (López & Sánchez, 1999) and tested in practical applications

(Fernández et al., 2007). Borrowing ideas from CFLP(D) declarative semantics we obtain

a suitable notion of intended interpretation, as well as a kind of abridged proof trees with a

sound logical meaning to play the role of CTs. Our aim is to achieve a natural combination of

previous approaches that were independently developed for the CLP(D) scheme (Tessier &

Ferrand, 2000) and for lazy functional-logic languages (Caballero & Rodríguez, 2004). We

give theoretical results showing that the proposed debugging method is logically correct

for any sound CFLP(D)-system whose computed answers are logical consequences of the

program in the sense of CFLP(D) semantics. We also present a practical debugger called

DDT , developed as an extension of previously existing but less powerful tools (Caballero,

2005; Caballero & Rodríguez, 2004). DDT implements the proposed diagnosis method for

CFLP(R)-programming in the T OY system (López & Sánchez, 1999) using the domain R of

arithmetic constraints over the real numbers.

The rest of the chapter is organized as follows: Section 2 motivates our approach by presenting

debugging examples which are used as illustration of the main features of our diagnosis

method. Section 3 recalls the CFLP(D) scheme from (López et al., 2006) to the extent needed

for understanding the theoretical results in this chapter. Section 4 presents a correct method

for the declarative diagnosis of wrong computed answers in any soundly implemented

CFLP(D)-system. Section 5 describes the debugging tool DDT for wrong answers. Section

6 presents the abbreviated proof trees used as CTs in our method for debugging missing

122 Semantics – Advances in Theories and Mathematical Models
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computed answers, as well as the results ensuring the logical correctness of the diagnosis.

Section 7 presents a prototype debugger for diagnosing missing answers. Section 8 concludes

and points to some plans for future work.

2. Motivating examples

As a motivation for our declarative debugging method of wrong answers in the CFLP(D)
scheme, we consider the following program fragment written in T OY (López & Sánchez,

1999), a programming system which supports several instances of the CFLP(D) scheme:

Example 1. (Debugging Wrong Answers in T OY)

infixr 40 &&

(&&) :: bool –> bool –> bool

false && Y = false

true && Y = Y

head :: [A] –> A

head [X|Xs] = X

type point = (real,real)

type figure = point –> bool

rect :: point –> real –> real –> figure

rect (X,Y) LX LY (X’,Y’) = (X’ >= X)&&(X’ <= X+LX)&&(Y’ <= Y)&&(Y’<=Y+LY)

% This program rule is incorrect. It should be: (Y’ >= Y) . . .

intersect :: figure –> figure –> figure

intersect F1 F2 P = F1 P && F2 P

ladder :: point –> real –> real –> [figure]

ladder (X,Y) LX LY = [rect (X,Y) LX LY | ladder (X+LX, Y+LY) LX LY]

5 20 35 70

5

20

40
45

Fig. 1. Building ladders in T OY

In this example (see Fig. 1), T OY is used to implement the instance CFLP(R) of the CFLP(D)
scheme, with the parameter D replaced by the real numbers domain R, which provides

real numbers, arithmetic operations and various arithmetic constraints, including equalities,

disequalities and inequalities. The type figure is intended to represent geometric figures

as boolean functions, the function rect is intended to represent rectangles (more precisely,

(rect (X,Y) LX LY) is intended to represent a rectangle with leftmost-bottom vertex (X,Y) and

rightmost-upper vertex (X+LX,Y+LY)); and the function ladder is intended to build an infinite list

of rectangles in the shape of a ladder. Although the text of the program seems to include no

constraints, it uses arithmetic and comparison operators that give rise to constraint solving in

execution time. More precisely, consider the following session in T OY :

123A Semantic Framework for the Declarative Debugging 
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4 Will-be-set-by-IN-TECH

Toy> /run(examples/debug/ladder) % compile ladder.toy

Toy> /cflpr % load CFLP(R)

Toy(R)> intersect (head (ladder (20,20) 50 20))

(head (ladder (5,5) 30 40)) (X,Y) == R % goal

{ R –> true } { Y <= 5, X >= 2.0E+01, X <= 35 } % computed answer

The goal asks for the membership of a generic point (X,Y) to the intersection of the two

rectangles (rect (20,20) 50 20) and (rect (5,5) 30 40), computed indirectly as the first steps of two

particular ladders. The diagram included in Fig. 1 shows these two rectangles as well as

the rectangle corresponding to their intersection (highlighted in black). The T OY system has

solved the goal by a combination of lazy narrowing and constraint solving; the computed

answer consists of the substitution R –> true and three constraints imposed on the variables X

and Y1. The only constraint imposed on Y (namely Y <= 5) allows for arbitrarily small values

of Y, which cannot correspond to points belonging to the rectangle expected as intersection.

Therefore, the user will view the computed answer as wrong with respect to the intended

meaning of the program. As we will see in Sections 4 and 5, the declarative debugging

technique presented in this chapter leads to the diagnosis of the program rule for the function

rect as responsible for the wrong answer. Indeed, this program rule is incorrect with respect to

the intended program semantics; as shown in Fig. 1, the third inequality at the right hand side

should be Y’ >= Y instead of Y’ <= Y.

After this correction, no more wrong computed answers will be observed for the goal

discussed above. As any debugging technique, declarative diagnosis has limitations. A

“corrected” program fragment can still include more subtle bugs that can be observed in the

computed answers for other goals. In our case, we can consider the goal

Toy> /cflpr

Toy(R)> intersect (head (ladder (70,40) -50 -20))

(head (ladder (35,45) -30 -40)) (X,Y) == R

whose meaning with respect to the intended semantics is the same as for the previous goal,

except that the rectangles playing the role of initial steps of the two ladders are represented

differently. Since the boolean expression at the right hand side of the “corrected” program rule

for function rect yields the result false whenever LX or LY is bound to a negative number, wrong

answers including the substitution R –> false will be computed. Moreover, other answers

including the substitution R –> true will be expected by the user but missing to occur among

the computed answers.

The traditional approach to declarative debugging in the CLP(D) scheme includes the

diagnosis of both wrong and missing computed answers (Tessier & Ferrand, 2000). Now,

we motivate our approach for the declarative debugging of missing answers in the CFLP(D)
scheme by means of the following example, intended to illustrate the main features of our

diagnosis method.

1 There are other five computed answers consisting of the substitution R –> false and various constraints
imposed on X and Y.
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Example 2. (Debugging Missing Answers in T OY)

The following small CFLP(H)-program PfD, written in T OY syntax over the Herbrand

domain H with equality (==) and disequality (/=) constraints, includes program rules for the

non-deterministic functions (//) and fDiff, and the deterministic functions gen and even.

Note the infix syntax used for (//), as well as the use of the equality symbol = instead of the

rewrite arrow -> for the program rules of those functions viewed as deterministic by the user.

This is just meant as user given information, not checked by the T OY system, which treats all

the program defined functions as possibly non-deterministic.

infixr 40 // % non-deterministic choice operator

(//) :: A -> A -> A

X // _ --> X

_ // Y --> Y

fDiff :: [A] -> A

fDiff [X] --> X

fDiff (X:Y:Zs) --> X // fDiff (Y:Zs) <== X /= Y

fDiff (X:Y:Zs) --> X <== X == Y

gen :: A -> A -> [A] even :: int -> bool

gen X Y = X : Y : gen Y X even N = true <== (mod N 2) == 0

Function fDiff is intended to return any element belonging to the longest prefix Xs of the

list given as parameter such that Xs does not include two identical elements in consecutive

positions. In general, there will be several of such elements, and therefore fDiff is

non-deterministic. Function gen is deterministic and returns a potentially infinite list of

the form [d1, d2, d2, d1, d1, d2, . . .], where the elements d1 and d2 are the given parameters.

Therefore, the lazy evaluation of (fDiff (gen 1 2)) is expected to yield the two possible

results 1 and 2 in alternative computations, and the initial goal GfD : even (fDiff (gen

1 2)) == true for PfD is expected to succeed, since (fDiff (gen 1 2)) is expected to

return the even number 2. However, if the third program rule for function fDiffwere missing

in program PfD, the expression (fDiff (gen 1 2)) would return only the numeric value

1, and therefore the goal GfD would fail unexpectedly. At this point, a diagnosis for missing

answers could take place, looking for a buggy node in a suitable CT in order to detect some

incomplete function definition (that of function fDiff, in this case) to be blamed for the

missing answers. As we will see in Sections 6 and 7, this particular incompleteness symptom

could be mended by placing again the third rule for fDiff within the program.

3. The CFLP(D) programming scheme

In this section we summarize the essentials of the CFLP(D) scheme (López et al., 2006) for lazy

Constraint Functional-Logic Programming over a parametrically given constraint domain

D, which serves as a logical and semantic framework for the declarative diagnosis method

presented in the chapter.

125A Semantic Framework for the Declarative Debugging 
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3.1 Preliminary notions

We consider a universal signature Σ = 〈DC, FS〉, where DC =
⋃

n∈N DCn and FS =
⋃

n∈N FSn

are countably infinite and mutually disjoint sets of data constructors resp. evaluable function

symbols, indexed by arities. Evaluable functions are further classified into domain dependent

primitive functions PFn ⊆ FSn and user defined functions DFn = FSn \ PFn for each n ∈ N. We

write Σ⊥ for the result of extending DC0 with the special symbol ⊥, intended to denote an

undefined data value and we assume that DC includes the two constants true and false and the

usual list constructors. We use the notations c, d ∈ DC, f , g ∈ FS, and h ∈ DC ∪ FS. We also

assume a countably infinite set V of variables X, Y, . . . and a set U of primitive elements u, v, . . .

(as e.g. the set R of the real numbers) mutually disjoint and disjoint from Σ⊥. Expressions

e ∈ Exp⊥(U ) have the following syntax:

e ::= ⊥ | u | X | h | (e e1 . . . em) % shortly: (e em)

where u ∈ U , X ∈ V , h ∈ DC ∪ FS. An important subclass of expressions is the set of patterns

s, t ∈ Pat⊥(U ), whose syntax is defined as follows:

t ::= ⊥ | u | X | (c tm) | ( f tm)

where u ∈ U , X ∈ V , c ∈ DCn with m ≤ n, and f ∈ FSn with m < n. Patterns are used as

representations of possibly functional data values. For instance, the rectangle (rect (5, 5) 30 40)

we met when discussing Example 1 is a functional data value represented as pattern2.

As usual, we define substitutions σ ∈ Sub⊥(U ) as mappings σ : V → Pat⊥(U ) extended to

σ : Exp⊥(U ) → Exp⊥(U ) in the natural way. By convention, we write eσ instead of σ(e) for

any e ∈ Exp⊥(U ), and σθ for the composition of σ and θ. A substitution σ such that σσ = σ is

called idempotent.

3.2 Constraints over a constraint domain

Intuitively, a constraint domain provides a set of specific data elements, along with certain

primitive functions operating upon them. Primitive predicates can be modelled as primitive

functions returning boolean values. Formally, a constraint domain with primitive elements U
and primitive functions PF ⊆ FS is any structure D = 〈DU , {pD | p ∈ PF}〉 with carrier

set DU the set of ground patterns (i.e., without variables) over U and interpretations pD ⊆ Dn
U

× DU of each p ∈ PFn satisfying the technical monotonicity, antimonotonicity, and radicality

requirements given in (López et al., 2006). We use the notation pD tn → t to indicate that

(tn, t) ∈ pD .

Constraints over a given constraint domain D are logical statements built from atomic

constraints by means of logical conjunction ∧ and existential quantification ∃. Atomic

constraints can have the form ♦ (standing for truth), � (standing for falsity), or p en →! t ,

meaning that the primitive function p ∈ PFn with parameters en ∈ Exp⊥(U ) returns a total

result t ∈ Pat⊥(U ) (i.e, with no occurrences of ⊥). Constraints whose atomic parts have the

2 Note that (5, 5) can be seen as syntactic sugar for (pair 5 5), pair being a constructor for ordered pairs.
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form ♦, � or p tn →! t with tn ∈ Pat⊥(U ) are called primitive constraints. In the sequel, we use

the notation PCon⊥(D) for the set of primitive constraints over D and DCon⊥(D) for the set

of user defined constraints over D.

Example 3. (Constraint Domain R) The constraint domain R has the carrier set DR of ground

patters over R and the primitives defined below:

1. eqR , equality primitive for real numbers, such that: eqR
R

u u → true for all u ∈ R; eqR
R

u v →
f alse for all u, v ∈ R, u �= v; eqR

R
t s → ⊥ otherwise.

2. seq, strict equality primitive for ground patterns over the real numbers, such that: seqR t t → true

for all total t ∈ DR ; seqR t s → f alse for all t, s ∈ DR such that t, s have no common upper

bound with respect to the information ordering introduced in (López et al., 2006); seqR t s → ⊥
otherwise. In the sequel, e1 == e2 abbreviates seq e1 e2 →! true.

3. +, −, ∗, for addition, subtraction and multiplication, such that: x +R y → x +R y for all x, y ∈
R; t +R s → ⊥ whenever t /∈ R or s /∈ R; and analogously for −R and ∗R.

4. <, ≤, >,≥, for numeric comparisons, such that: x <
R y → true for all x, y ∈ R with x <

R y;

x <
R y → f alse for all x, y ∈ R with x ≥R y; t <

R s → ⊥ whenever t /∈ R or s /∈ R; and

analogously for ≤R, >R, ≥R. In the sequel, e1 < e2 abbreviates e1 < e2 →! true and e1 ≥ e2

abbreviates e1 < e2 →! f alse (analogously for other comparison primitives).

The set of valuations over a constraint domain D is defined as the set Val⊥(D) of ground

substitutions (i.e., mappings from variables to ground patterns). The semantics of constraints

relies on the idea that a given valuation can satisfy or not a given constraint. Therefore, the set

of solutions of π ∈ PCon⊥(D) can be defined in a natural way as a subset SolD(π) ⊆ Val⊥(D);
see (López et al., 2006) for details. Moreover, the set of solutions of Π ⊆ PCon⊥(D) is defined

as SolD(Π) =
⋂

π∈Π SolD(π).

3.3 Constraint functional-logic programming

For any given constraint domain D, a CFLP(D)-program P is presented as a set of constrained

rewrite rules, called program rules, that define the behavior of user-defined functions. More

precisely, a constrained program rule R for f ∈ DFn has the form R : f tn → r ⇐ ∆ (abbreviated

as f tn → r if ∆ is empty) and is required to satisfy the conditions listed below3:

1. The left-hand side f tn is a linear expression (i.e, there is no variable having more than one

occurrence), and for all 1 ≤ i ≤ n, ti ∈ Pat⊥(U ) are total patterns. The right-hand side

r ∈ Exp⊥(U ) is also total.

2. ∆ ⊆ DCon⊥(D) is a finite set of total atomic constraints, intended to be interpreted as

conjunction, and possibly including occurrences of user defined functions.

Program defined functions can be higher-order and/or non-deterministic. For instance, the

T OY program presented in Example 1 can be viewed as an example of CFLP(R)-program

written in T OY ’s syntax. The reader is referred to (López et al., 2006) for more explanations

and examples in other constraint domains.

3 In practice, T OY and similar languages require program rules to be well-typed in a polymorphic
type system. However, the CFLP(D) scheme can deal also with untyped programs. Well-typedness
is viewed as an additional requirement, not as part of progam semantics.
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The intended use of programs is to perform computations by solving goals proposed by the

user. An admissible goal for a given CFLP(D)-program must have the form G : ∃U. (P ✷ ∆),
where U is a finite set of so-called existential variables of the goal G (the rest of variables in G are

called free variables and denoted by f var(G)), P is a finite conjunction of so-called productions

of the form e → s fulfilling the admissibility conditions given in (López et al., 2006), with e ∈
Exp⊥(U ) and s ∈ Pat⊥(U ) intended to mean that e can be evaluated to s, and ∆ ⊆ DCon⊥(D)
is a finite conjunction of total user defined constraints. Two special kinds of admissible goals

are interesting. Initial goals, where U and P are both empty (i.e., G has only a constrained part

∆ without occurrences of existential variables), and solved goals (also called solved forms) of the

form S : ∃U. (σ ✷ Π), where σ is a finite set of productions X → t or s → Y interpreted as the

variable bindings of an idempotent substitution and Π ⊆ PCon⊥(D) is a finite conjunction

of total primitive constraints. Finally, a goal solving system for CFLP(D) is expected to accept

a program P and an initial goal G from the user, and to obtain one or more solved forms Si

as computed answers. As explained in Section 2, an initial goal G for the CFLP(R)-program

shown in Example 1 can be intersect (head (ladder (20, 20) 50 20)) (head (ladder (5, 5) 30 40)) (X, Y)

== R and a computed answer S for G is R → true ✷ X ≤ 35 ∧ X ≥ 20 ∧ Y ≤ 5.

Goal solving systems can be implementations of CFLP languages such as Curry (Hanus, 2003)

or T OY (López & Sánchez, 1999), or formal goal solving calculi including recent proposals such

as the CDNC(D) calculus (López et al., 2004), which is sound and complete with respect to

the declarative semantics discussed in the next subsection, and behaves as a faithful formal

model for actual computations in the T OY system.

3.4 Standardized programs and negative theories

Let P be a CFLP(D)-program. Its associated Negative Theory P− is obtained in two steps.

First, each program rule f tn → r ⇐ ∆ is replaced by a standardized form f Xn → Y ⇐ R,

where Xn, Y are new variables, R = ∃U. R with U = var(R) \ {Xn, Y}, and the condition

R is X1 → t1, . . . , Xn → tn, ∆, r → Y. Next, P− is built by taking one axiom ( f )−P of the

form ∀Xn, Y. ( f Xn → Y ⇒ (
∨

i∈I Ri) ∨ (⊥ → Y)) for each function symbol f whose

standardized program rules are { f Xn → Y ⇐ Ri}i∈I . By convention, we may use the

notation D f for the disjunction (
∨

i∈I Ri) ∨ (⊥ → Y), and we may leave the universal

quantification of the variables Xn, Y implicit. Intuitively, the axiom ( f )−P says that any result

computed for f must be obtained by means of some of the rules for f in the program. The

last alternative (⊥ → Y) within D f says that Y is bound to the undefined result ⊥ in case

that no program rule for f succeeds to compute a more defined result. For example, let

PfD be the CFLP(H)-program given in Section 2, with the third program rule for fDiff

omitted. Then P−
fD

includes (among others) the following axiom for the function symbol fDiff:

(fDiff)−PfD
: ∀ L, F. (fDiff L → F ⇒

∃X. (L → [X] ∧ X → F) ∨

∃X, Y, Zs. (L → (X : Y : Zs) ∧ X /= Y ∧ X // fDiff (Y : Zs) → F) ∨

(⊥ → F))

128 Semantics – Advances in Theories and Mathematical Models
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3.5 Answer collection assertions

In this work we propose to use computation trees for missing answers whose nodes have

attached so-called answer collection assertions, briefly acas. The aca at the root node has the

form G ⇒
∨

i∈I Si, where G is the initial goal and
∨

i∈I Si (written as the failure symbol � if

I = ∅) is the disjunction of computed answers observed by the user. This root aca asserts

that the computed answers cover all the solutions of the initial goal, and will be regarded as

a false statement in case that the user misses computed answers. For example, the root aca

corresponding to the initial goal GfD for program PfD is even (fDiff (gen 1 2)) ==

true ⇒ � stating that this goal has (unexpectedly) failed. The acas at internal nodes in our

computation trees have the form f tn → t✷ S ⇒
∨

i∈I Si, asserting that the disjunction of

computed answers
∨

i∈I Si covers all the solutions for the intermediate goal G′ : f tn → t✷ S.

Note that G′ asks for the solutions of the production f tn → t which satisfy the constraint store

S. The acas of this form correspond to the intermediate calls to program defined functions f

needed for collecting all the answers computed for the initial goal G. Due to lazy evaluation,

the parameters tn and the result t will appear in the most evaluated form demanded by the

topmost computation. When these values are functions, they are represented in terms of

partial applications of top-level function names. This is satisfactory under the assumption

that no local function definitions are allowed in programs, as it happens in T OY .

3.6 Declarative semantics

In this subsection we recall some notions and results on the declarative semantics of

CFLP(D)-programs which were developed in (López et al., 2006) and are needed for the rest

of this work. Given a constraint domain D we consider two different kinds of constrained

statements (briefly, c-statements) involving partial patterns t, ti ∈ Pat⊥(U ), partial expressions

e, ei ∈ Exp⊥(U ), and a finite set Π ⊆ PCon⊥(D) of primitive constraints:

1. c-productions e → t ⇐ Π, with e ∈ Exp⊥(U ) and t ∈ Pat⊥(U ), intended to mean

that e can be evaluated to t if Π holds (if Π is empty they boil down to unconstrained

productions written as e → t). As a particular kind of c-productions useful for debugging

we distinguish c-facts f tn → t ⇐ Π with f ∈ DFn. A c-production is called trivial iff

t = ⊥ or SolD(Π) = ∅.

2. c-atoms p en →! t ⇐ Π, with p ∈ PFn and t total (if Π is empty they boil down to

unconstrained atoms written as p en →! t ). A c-atom is called trivial iff SolD(Π) = ∅.

In the sequel, we use ϕ to denote any c-statement. A c-interpretation over D is defined as any

set I of c-facts including all the trivial c-facts and closed under D-entailment, a generalization

of the entailment notion introduced in (Caballero & Rodríguez, 2004) to arbitrary constraint

domains. We write I ⊢⊢D ϕ to indicate that the c-statement ϕ (not necessarily a c-fact) is

semantically valid in the c-interpretation I . This notation relies on a formal definition given

in (López et al., 2006). Now we are in a position to define various semantics notions which

rely on a given c-interpretation I over D.

Definition 1. (Interpretation-Dependent Semantic Notions)

1. The set of solutions of δ ∈ DCon⊥(D) is a subset SolI (δ) ⊆ Val⊥(D) defined as follows:

(a) SolI (π) = SolD(π), for any π ∈ PCon⊥(D).
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(b) SolI (δ) = {η ∈ Val⊥(D) | I ⊢⊢D δη}, for any δ ∈ DCon⊥(D) \ PCon⊥(D).

The set of solutions of a set of constraints ∆⊆DCon⊥(D) is defined as SolI (∆)=
⋂

δ∈∆ SolI (δ).

2. The set of solutions of a production e → t is a subset SolI (e → t)⊆ Val⊥(D) defined as SolI (e →
t) = {η ∈ Val⊥(D) | I ⊢⊢D eη → tη}. The set of solutions of a set of productions P is defined as

SolI (P) =
⋂

(e→t)∈P SolI (e → t).

3. The set of solutions of an admissible goal G : ∃U. (P ✷ ∆) is a subset SolI (G)⊆ Val⊥(D) defined

as follows: SolI (G) = {η ∈ Val⊥(D) | η′ ∈ SolI (P) ∩ SolI (∆) for some η′ such that η′(X) =
η(X) for all X /∈ U}.

For primitive constraints one can easily check that SolI (Π) = SolD(Π). Moreover, we note

that SolI (S) = SolD(S) for every solved form S.

Definition 2. (Model-Theoretic Semantics) Let P a CFLP(D)-program and I a c-interpretation.

1. I is a model of P (in symbols, I |=D P) iff every constrained program rule ( f tn → r ⇐ ∆)
∈ P is valid in I : for any ground substitution η ∈ Sub⊥(U ) and t ∈ Pat⊥(U ) ground such

that ( f tn → r ⇐ ∆)η is ground, I ⊢⊢D ∆η and I ⊢⊢D rη → t one has I ⊢⊢D ( f tn)η → t (or

equivalently, (( f tn)η → t) ∈ I).

2. A solved form S is a semantically valid answer for a goal G with respect to a program P (in

symbols, P |=D G ⇐ S) iff SolD(S) ⊆ SolI (G) for all I |=D P .

3. I is a model of P− iff every axiom ( f )−P : ( f Xn → Y ⇒ D f ) ∈ P− satisfies SolI ( f Xn → Y)

⊆ SolI (D f ). When this inclusion holds, we say that ( f )−P is valid in I , or also that f ’s definition

as given in P is complete with respect to I .

4. The aca G ⇒
∨

i∈I Si is a logical consequence of P− iff SolI (G)⊆
⋃

i∈I SolD(Si) for any model

I of P−. When this happens, we also say that the disjunction of answers
∨

i∈I Si is complete for

G with respect to P .

4. Declarative debugging of wrong answers in CFLP(D)

In this section, we present the logical and semantic framework of the declarative diagnosis

method of wrong answers for CFLP(D) and prove its logical correctness. In what follows, we

assume that a constraint domain D and a CFLP(D)-program P are given.

4.1 Wrong answers and intended interpretations

Declarative diagnosis techniques rely on a declarative description of the intended program

semantics. We will assume that the user knows (at least to the extent needed for answering

queries during the debugging session) a so-called intended model I , which is a c-interpretation

expected to satisfy I |=D P , unless P is incorrect. For instance, rect (X, Y) LX LY (A, B) →

f alse ⇐ A < X ∧ LX > 0 ∧ LY > 0 could belong to the intended model I for the program

fragment shown in Example 1. As explained in Subsection 3.6, the c-facts belonging to

c-interpretations can be non-ground. Nevertheless, the model notion I |=D P used here

(see Definition 2 above) corresponds to the so-called weak semantics from (López et al., 2006),

which depends just on the ground c-facts valid in I . Therefore, different presentations of the
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intended model will be equivalent for the purposes of this work, as long as the ground c-facts

valid in them are the same.

The aim of declarative diagnosis of wrong answers is to start with an observed symptom of

erroneous program behavior, and detect some error in the program. The proper notions of

symptom and error in our setting are as follows:

Definition 3. (Symptoms and Errors) Assume I is the intended interpretation for program P , and

consider a solved form S produced as computed answer for the initial goal G by some goal solving

system. We define:

1. S is a wrong answer w.r.t I (serving as symptom) iff SolD(S) �⊆ SolI (G).

2. P is incorrect with respect to I iff there exists some program rule ( f tn → r ⇐ ∆) ∈ P
(manifesting an error) that is not valid in I (in the sense of Definition 2).

For instance, the computed answer shown in Example 1 is wrong with respect to the intended

model of the program assumed in that example, for the reasons already discussed in Section

2. As illustrated by that example, computed answers typically include constraints on the

variables occurring in the initial goal. However, goal solving systems for CFLP(D) programs

also maintain internal information on constraints related to variables used in intermediate

computation steps, but not occurring in the initial goal. Such information is relevant for

declarative debugging purposes. Therefore, in the rest of this section we will assume that

computed answers S include also constraints related to intermediate variables.

4.2 A logical calculus for witnessing computed answers

Assuming that S is a computed answer for an initial goal G using a program P , the declarative

diagnosis of wrong answers needs a suitable Computation Tree (shortly, CT) representing the

computation. In our setting we will obtain the CT from a logical proof P ⊢CPPC(D) G ⇐ S

which derives the statement G ⇐ S from the program P in the Constraint Positive Proof

Calculus (shortly CPPC(D)) given by the inference rules in Fig. 2. We will say that the

CPPC(D)-proof witnesses the computed answer.

Most of these inference rules have been borrowed from the proof theory of CRWL(D), a

Constraint ReWriting Logic which characterizes the semantics of CFLP(D) programs (López et

al., 2006). The main novelties in CPPC(D) are the addition of rule EX (to deal with existential

quantifiers in computed answers) and a reformulation of rule DFP , which is presented as the

consecutive application of two inference steps named AR f and FA f , which cannot be applied

separately. The purpose of this composite inference is to introduce the c-facts f tn → t ⇐ Π

at the conclusion of inference FA f , called boxed c-facts in the sequel. As we will see, only

boxed c-facts will appear at the nodes of CTs obtained from CPPC(D)-proofs. Therefore, all

the queries asked to the user during a declarative debugging session will be about the validity

of c-facts in the intended model of the program, which is itself represented as a set of c-facts.

We also agree that the premises Gσ ⇐ Π in rule EX (resp. ∆ ⇐ Π in rule DFP ) must be

understood as a shorthand for several premises α ⇐ Π, one for each atomic ϕ in Gσ (resp.

∆). Moreover, rule PF depends on the side condition SolD(Π) ⊆ SolD(ptn → t) which is true

iff pD tnη → tη holds for all η ∈ SolD(Π). Some other inference rules in Fig. 2 have similar

conditions.
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EX Existential Gσ ⇐ Π

G ⇐ ∃U. (σ ✷ Π)
if f var(G) ∩ U = ∅.

TI Trivial Inference
ϕ

if ϕ is a trivial c-statement.

RR Restricted Reflexivity
t → t ⇐ Π

if t ∈ U ∪ V .

SP Simple Production
s → t ⇐ Π

if s ∈ Pat⊥(U ), s ∈ V or t ∈ V , and SolD(Π) ⊆ SolD(s → t).

DC Decomposition e1 → t1 ⇐ Π . . . em → tm ⇐ Π

hem → htm ⇐ Π

IR Inner Reduction e1 → t1 ⇐ Π . . . em → tm ⇐ Π

hem → X ⇐ Π

if hem /∈ Pat⊥(U ), X ∈ V , and SolD(Π) ⊆ SolD(htm → X).

PF Primitive Function e1 → t1 ⇐ Π . . . en → tn ⇐ Π

p en → t ⇐ Π

if p ∈ PFn, ti ∈ Pat⊥(U ) (1 ≤ i ≤ n), SolD(Π) ⊆ SolD(ptn → t).

DFP P-Defined Function

∆ ⇐ Π r → t ⇐ Π (FA f )

e1 → t1 ⇐ Π . . . en → tn ⇐ Π f tn → t ⇐ Π

f en → t ⇐ Π

(AR f )

∆ ⇐ Π r → s ⇐ Π (FA f )

e1 → t1 ⇐ Π . . . en → tn ⇐ Π f tn → s ⇐ Π s ak → t ⇐ Π

f enak → t ⇐ Π (AR f )

if f ∈ DFn (k > 0), ( f tn → r ⇐ ∆) ∈ [P ]⊥ ≡ {Rθ | R ∈ P , θ ∈ Sub⊥(U )}, and

s ∈ Pat⊥(U ).

AC Atomic Constraint e1 → t1 ⇐ Π . . . en → tn ⇐ Π

p en →! t ⇐ Π

if p ∈ PFn, ti ∈ Pat⊥(U ) (1 ≤ i ≤ n), SolD(Π) ⊆ SolD(ptn →! t).

Fig. 2. The Constraint Positive Proof Calculus CPPC(D)
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intersect (head (ladder (20, 20) 50 20)) (head (ladder (5, 5) 30 40)) (X, Y) == R

⇐ R → true ✷ X ≤ 35 ∧ X ≥ 20 ∧ Y ≤ 5

intersect (head (ladder (20, 20) 50 20)) (head (ladder (5, 5) 30 40)) (X, Y) == true

⇐ X ≤ 35 ∧ X ≥ 20 ∧ Y ≤ 5
︸ ︷︷ ︸

Π

intersect (head (ladder (20, 20) 50 20))

(head (ladder (5, 5) 30 40)) (X, Y) → true ⇐ Π

true → true ⇐ Π

head (ladder (20, 20) 50 20) →

rect (20, 20) 50 20 ⇐ Π

head (ladder (5, 5) 30 40) →

rect (5, 5) 30 40 ⇐ Π

ladder (20, 20) 50 20 → [rect (20, 20) 50 20 | ⊥] ⇐ Π

head ([rect (20, 20) 50 20 | ⊥]) → rect (20, 20) 50 20 ⇐ Π

intersect (rect (20, 20) 50 20) (rect (5, 5) 30 40) (X, Y) → true ⇐ Π

[rect (20, 20) 50 20 |

ladder (20 + 50, 20 + 20) 50 20]

→ [rect (20, 20) 50 20 | ⊥] ⇐ Π

rect (20, 20) 50 20 →

rect (20, 20) 50 20 ⇐ Π

(rect (20, 20) 50 20) (X, Y)) &&

(rect (5, 5) 30 40) (X, Y)) → true ⇐ Π

rect (20, 20) 50 20 →

rect (20, 20) 50 20 ⇐ Π

ladder (20 + 50, 20 + 20) 50 20

→ ⊥ ⇐ Π

rect (20, 20) 50 20 (X, Y) → true ⇐ Π

rect (5, 5) 30 40 (X, Y) → true ⇐ Π

true && true → true ⇐ Π

true → true ⇐ Π

(X ≥ 5) && (X ≤ 5 + 30) && (Y ≤ 5) && (Y ≤ 5 + 40) → true ⇐ Π

true && true → true ⇐ Π true && true → true ⇐ Π true && true → true ⇐ Π

true → true ⇐ Π true → true ⇐ Π true → true ⇐ Π

EX

AC==

DC

ARintersect

ARladder

ARhead . . .

FAladder

FAhead

FAintersect

AR&&

FA&&

ARrect

ARrect

DC

TI

. . . . . .

. . .

FArect

AR&&

FA&& FA&&FA&&

DC DC DC

DC

SolD (Π) ⊆ SolD (X ≥ 5 ∧ X ≤ 35∧

Y ≤ 5 ∧ Y ≤ 45 → true)

SolD (Π) ⊆ SolD (true == true)

. . .

. . .

. . .

Fig. 3. A Positive Proof Tree in CPPC(R)

Any CPPC(D)-derivation P ⊢CPPC(D) G ⇐ S can be depicted in the form of a Positive Proof

Tree over D (shortly, PPT(D)) with G ⇐ S at the root and c-statements at the internal nodes,

and such that the statement at any node is inferred from the statements at its children using

some CPPC(D) inference rule. In particular, the statement at the root must be inferred

using rule EX, which is then applied nowherelse in the proof tree. Fig. 3 shows a PPT(R)
representing a CPPC(R)-derivation which witnesses the computed answer from Example 1,

which is wrong with respect to the intended model of the program. We say that a goal solving

system is called CPPC(D)-sound iff for any computed answer S obtained for an initial goal G
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using program P there is some witnessing CPPC(D)-proof P ⊢CPPC(D) G ⇐ S. The next

result shows that CPPC(D)-sound goal solving systems exist:

Theorem 1. (Existence of CPPC(D)-Sound Goal Solving Systems) The goal solving calculus

CDNC(D) given in (López et al., 2004) is CPPC(D)-sound.

Proof. Straightforward adaptation of the soundness theorem for CDNC(D) presented in

(López et al., 2004).

In addition to the goal solving calculus CDNC(D), other formal goal solving calculi

known for CFLP(D) are also CPPC(D)-sound. Moreover, it is also reasonable to assume

CPPC(D)-soundness for implemented goal solving systems such as Curry (Hanus, 2003)

and T OY (López & Sánchez, 1999) whose computation model is based on constrained lazy

narrowing. Moreover, any CPPC(D)-sound goal solving system is semantically sound in the

sense of item 2 in Definition 2:

Theorem 2. (Semantic Correctness of the CPPC(D) Calculus) If G is an initial goal for P and

S is a solved goal s.t. P ⊢CPPC(D) G ⇐ S then P |=D G ⇐ S.

Proof. For each of the inference rules EX, AR f , and FA f , we prove that an arbitrary model

I |=D P such that the premises of the rule are valid in I , also verifies that the conclusion of

the rule is valid in I . Similar proofs for the other inference rules in CFLP(D) can be found in

(López et al., 2006).

• The rule EX is semantically correct. Let I be an arbitrary model of P such that I |=D Gσ ⇐
Π, i.e., SolD(Π)⊆ SolI (Gσ). We prove that I |=D G ⇐∃U. (σ ✷ Π), i.e., SolD(∃U. (σ ✷ Π))
⊆ SolI (G). Let η ∈ SolD(∃U. (σ ✷ Π)). By the syntactic form of solved goals, η ∈
SolD(∃U. (Xn → tn ∧ sm → Ym ✷ Π)) and η ∈ SolD(∃ U. (Xn = tn ∧ Ym = sm ✷ Π)). By

applying Definition 1, there exists η′ ∈ Val⊥(D) such that η′ =\U η y η′ ∈ SolD(Xn = tn ∧

Ym = sm ✷ Π), and therefore, η′ ∈ SolD(Xn = tn ∧ Ym = sm) (i.e., η′ ∈ SolD(σ)) and η′ ∈
SolD(Π). Since by induction hypothesis SolD(Π) ⊆ SolI (Gσ), it follows that η′ ∈ SolI (Gσ).
Moreover, since η′ ∈ SolD(σ), we obtain η′ ∈ SolI (G). In consequence, there exists η′ ∈
Val⊥(D) such that η′ =\U η and η′ ∈ SolI (G). Finally, using the condition of applicability

f var(G) ∩ U = ∅ associated to the rule EX, we can conclude that η ∈ SolI (G).

• The rule AR f is semantically correct. Let I be an arbitrary model of P such that I |=D

ei → ti ⇐ Π for each 1 ≤ i ≤ n (i.e., SolD(Π) ⊆ SolI (ei → ti) for each 1 ≤ i ≤ n), I |=D

f tn → s ⇐ Π (i.e., SolD(Π) ⊆ SolD( f tn → s)) and I |=D sak → s ⇐ Π (i.e., SolD(Π) ⊆
SolI (sak → t)). We prove that I |=D f enak → t ⇐ Π, i.e., SolD(Π) ⊆ SolI ( f enak → t). Let

η ∈ SolD(Π). We have then η ∈ SolI (ei → ti) for each 1 ≤ i ≤ n, and by Definition 1, I
⊢⊢D eiη → tiη for each 1 ≤ i ≤ n. Analogously, η ∈ SolI ( f tn → s), by Definition 1, I ⊢⊢D

f tnη → sη, and by the Conservation Property (see (López et al., 2006) for details), ( f tnη →
sη) ∈ I . Analogously, η ∈ SolI (sak → t) and by Definition 1, I ⊢⊢D (sη)(akη) → tη. But

then, by applying of the rule DFI (see (López et al., 2006) for details), we have that I ⊢⊢D

f (enη)(akη) → tη. From Definition 1, we obtain finally η ∈ SolI ( f enak → t).
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• The rule FA f is semantically correct. By definition of [P ]⊥, there are ( f t′n → r′ ⇐ ∆′) ∈

P and θ ∈ Sub⊥(U ) such that ( f t′n → r′ ⇐ ∆′)θ ≡ ( f tn → r ⇐ ∆). Let I be an arbitrary

model of P such that I |=D ∆ ⇐ Π (i.e., SolD(Π) ⊆ SolI (∆)) and I |=D r → s ⇐ Π (i.e.,

SolD(Π) ⊆ SolI (r → s)). We prove that I |=D f tn → s ⇐ Π, i.e., SolD(Π) ⊆ SolI ( f tn →
s). Let η ∈ SolD(Π). Then we have η ∈ SolI (∆), and by Definition 1, I ⊢⊢D ∆η, and also,

I ⊢⊢D ∆′θη. Analogously, η ∈ SolI (r → s), and by Definition 1, I ⊢⊢D rη → sη, and also, I
⊢⊢D r′θη → sη. We have then ( f t′n → r′ ⇐ ∆′) ∈ P , θη ∈ Sub⊥(U ) ground substitution

and sη ∈ Pat⊥(U ) ground such that ( f t′n → r′ ⇐ ∆′)θη ≡ ( f tn → r ⇐ ∆)η is ground,

I ⊢⊢D ∆′θη and I ⊢⊢D r′θη → sη. Since I is a model of P , by applying Definition 2, we

obtain (( f t′n)θη → sη) ∈ I , i.e., (( f tn)η → sη) ∈ I , or also, ( f tn → s)η ∈ I . Finally, by

applying the Conservation Property (see (López et al., 2006) for details), it is equivalent to I
⊢⊢D ( f tn → s)η, and by Definition 1, we can conclude that η ∈ SolI ( f tn → s).

4.3 Declarative diagnosis using positive proof trees

Now we are ready to present a declarative diagnosis method of wrong answers and to prove

its correctness. Our results apply to any CPPC(D)-sound goal solving system. First we prove

that the observation of an error symptom implies the existence of some error in the program:

Theorem 3. (Wrong Answers Are Caused By Erroneous Program Rules) We assume that a

CPPC(D)-sound goal solving system computes S as an answer for the initial goal G using program

P . If S is wrong with respect to the user’s intended interpretation I then some program rule belonging

to P is incorrect with respect to I .

Proof. Because of CPPC(D)-soundness of the goal solving system, we know that P ⊢CPPC(D)
G ⇐ S. Then, from Theorem 2 we obtain P |=D G ⇐ S, i.e., SolD(S)⊆ SolJ (G) for each model

J |=D P . Since S is wrong with respect to the user’s intended model I , it must be the case

that SolD(S) �⊆ SolI (G) because of Definition 3. Therefore, we can conclude that the intended

model I is not a model of P . Then, by Definition 2, some program rule belonging to P is not

valid in I .

The previous theorem does not yet provide a practical method for finding an erroneous

program rule. As explained in the Introduction, a declarative diagnosis method is expected to

find the erroneous program rule by inspecting a CT. We propose to use abbreviated CPPC(D)
proof trees as CTs. Since DFP is the only inference rule in the CPPC(D) calculus that depends

on the program, abbreviated proof trees will omit the inference steps related to all the other

CPPC(D) rules. More precisely, given a PPT(D) T , its associated Abbreviated Positive Proof

Tree over D (shortly, APPT(D)) AT is defined as follows:

• The root of AT is the root of T .

• The children of a node N in AT are the closest descendants of N in T corresponding to

boxed c-facts introduced by DFP inference steps.
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A node in an APPT(D) is called a buggy node iff the c-statement at the node is not valid in the

intended interpretation I , while all the c-statements at the children nodes are valid in I . Our

last theorem guarantees that declarative diagnosis with APPT(D)s used as CTs leads to the

correct detection of program errors.

Theorem 4 (Declarative Diagnosis of Wrong Answers). Under the assumptions of Theorem 3,

any APPT(D) witnessing P ⊢CPPC(D) G ⇐ S (which must exist due to CPPC(D)-soundness of

the goal solving system) has some buggy node. Moreover, each buggy node points to a program rule

belonging to P which is incorrect in the user’s intended interpretation.

5. A declarative debugging tool of wrong answers in T OY

Fig. 4 shows the APPT(R) associated to the PPT(R) of Fig. 3 as displayed by DDT , the

debugger tool included in the system T OY . Although in theory all the c-facts in a PPT(R)
should include the same constraint Π, in practice the tool simplifies Π at each c-fact f tn →
t ⇐ Π, keeping only those atomic constraints related to the variables occurring on f tn → t.

It can be checked that such a simplification does not affect the intended meaning of c-facts.

Fig. 4. The APPT(R) corresponding to the PPT(R) of Fig. 3

Before starting a debugging session, the user may inspect and simplify the tree using several

facilities. For instance the user could mark any node corresponding to the infix function && as

trusted, indicating that the definition of && is surely not erroneous. This makes all the nodes

corresponding to && automatically valid. Valid nodes can be removed from the tree safely

(the set of buggy nodes doesn’t change) by using a suitable menu option.

Next, the user can start a debugging session by selecting one of the two possible strategies

included in DDT : the top-down or the divide and query strategy (see (Caballero & Rodríguez,
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2004) for a comparative between both strategies in an older version of DDT which did not

yet support constraints). After selecting the divide and query strategy, which usually leads to

shorter sessions, DDT asks about the validity of the following node:

The intended program model corresponds to the intuitions explained in Section 2. Therefore,

the question must be understood as: Is (X, Y) a point in the intersection of the two rectangles for

all possible values of X, Y satisfying X ≤ 35, X ≥ 20, Y ≤ 5 is (X, Y)? The answer is no, because

with these constraints Y can take any value less than 5 and some of these values would yield

a pair (X, Y) out of the intersection for every X. Therefore the user marks the cross meaning

that the c-fact is non-valid. The next question is:

which is also reported as non-valid by the user. At this point a buggy node is found by the

tool, pointing out to the incorrect program rule and ending the debugging session:

The current version of the debugger supports programs using the constraint domain R, which

provides arithmetic constraints over the real numbers as well as strict equality and disequality

constraints over data values of any type; see Example 3 and (López et al., 2006) for details. The

tool is as an extension of older versions which did not yet support constraints over the domain

R (Caballero, 2005; Caballero & Rodríguez, 2004), and it is part of the public distribution of the

functional-logic programming system T OY , available at http://toy.sourceforge.net.

The APPT(R) associated to a wrong answer is constructed by means of a suitable program

transformation. The yielded tree is then displayed through a graphical debugging interface

implemented in Java. More detailed explanations on the practical use of DDT can be found

in (Caballero, 2005; Caballero & Rodríguez, 2004).
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SF Solved Form
R ✷ S ⇒ D

if SolD(S) ⊆ SolD(D).

CJ Conjunction

R1 ✷ S⇒
∨

i∈I ∃Zi. Si . . . (R2 & Si)⇒
∨

j∈Ji
∃Zij. Sij . . . (i ∈ I)

(R1 ∧ R2) ✷ S ⇒
∨

i∈I
∨

j∈Ji
∃Zi, Zij. Sij

if Zi /∈ var((R1 ∧ R2)✷ S), Zij /∈ var((R1 ∧ R2)✷ S)∪ Zi , for all i ∈ I, j ∈ Ji .

TS Trivial Statement
ϕ : G ⇒ D

if Sol(G) ⊆ SolD(D).

DC DeComposition em → tm ✷ S ⇒ D

hem → htm ✷ S ⇒ D
if hem is not a pattern.

IM IMitation
em → Xm ✷ (S ∧ hXm → X) ⇒

∨

i∈I ∃Zi. Si

hem → X ✷ S ⇒
∨

i∈I ∃Xm, Zi. Si

if hem is not a pattern, X ∈ V , and Xm /∈ var(hem → X ✷ S).

(AR)p Argument Reduction for Primitive Functions

en → Xn ✷ (S ∧ pXn →! t) ⇒
∨

i∈I ∃Zi. Si

pen →? t ✷ S ⇒ (S ∧ ⊥ → t) ∨ (
∨

i∈I ∃Xn, ∃Zi. Si)

if p ∈ PFn, Xn /∈ var(pen →? t ✷ S), →?≡→ (production)∪→! (constraint).

(AR) f Argument Reduction for Defined Functions

(en → Xn ∧ f Xn → Y ∧ Yak → t) ✷ S ⇒
∨

i∈I ∃Zi. Si

f enak → t ✷ S ⇒
∨

i∈I ∃Xn, Y, Zi. Si

if f ∈ DFn (k > 0), and Xn, Y /∈ var( f enak → t ✷ S).

(DF) f Defined Function . . . Ri[Xn �→ tn, Y �→ t] ✷ S⇒ Di . . . (i ∈ I)

f tn → t ✷ S ⇒ (S ∧ ⊥ → t) ∨ (
∨

i∈I Di)

if f ∈ DFn, Xn, Y /∈ var( f tn → t ✷ S), and ( f Xn → Y ⇒
∨

i∈I Ri) ∈ P−.

Fig. 5. The Constraint Negative Proof Calculus CNPC(D)
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6. Declarative debugging of missing answers in CFLP(D)

The declarative debugging of missing answers also assumes an intended interpretation IP of

the CFLP(D)-program P , starts with the observation of an incompleteness symptom and ends

with an incompleteness diagnosis. A more precise definition of this debugging scenario of missing

answers is as follows:

Definition 4. (Debugging Scenario of Missing Answers) For any given CFLP(D)-program P :

1. An incompleteness symptom occurs if the goal solving system computes finitely many solved

goals {Si}i∈I as answers for an admissible initial goal G, and the programmer judges that SolIP (G)
�

⋃

i∈I SolD(Si), meaning that the aca G ⇒
∨

i∈I Si is not valid in the intended interpretation

IP , so that some expected answers are missing.

2. An incompleteness diagnosis is given by pointing to some defined function symbol f such that

the axiom ( f )−P : ( f Xn → Y ⇒ D f ) for f in P− is not valid in IP , which means SolIP ( f Xn →
Y) �⊆ SolIP (D f ), showing that f ’s definition as given in P is incomplete w.r.t. IP .

Some concrete debugging scenarios have been discussed in Section 2. Assume now that

an incompleteness symptom has been observed by the programmer. Since the goal solving

system has computed the disjunction of answers D =
∨

i∈I Si, the aca G ⇒ D asserting

that the computed answers cover all the solutions of G should be derivable from P−. The

Constraint Negative Proof Calculus CNPC(D) consisting of the inference rules displayed in Fig.

5 has been designed with the aim of enabling logical proofs P− ⊢CNPC(D) G ⇒ D of acas. We

use a special operator & in order to express the result of attaching to a given goal G a solved

goal S′ resulting from a previous computation, so that computation can continue from the

new goal G & S′.

Formally, assuming G = ∃U. (R ✷ (Π ✷ σ)) and S′ = ∃U
′
. (Π′

✷ σ′) a solved goal such that U

\ dom(σ′) ⊆ U
′
, σσ′ = σ′, and SolD(Π

′) ⊆ SolD(Πσ′), the operation G & S′ is defined as ∃U
′
.

(Rσ′
✷ (Π′

✷ σ′)). The inference rule CJ infers an aca for a goal with composed kernel (R1 ∧
R2) ✷ S from acas for goals with kernels of the form R1 ✷ S and (R2 & Si), respectively; while

other inferences deal with different kinds of atomic goal kernels.

Any CNPC(D)-derivation P− ⊢CNPC(D) G ⇒ D can be depicted in the form of a Negative Proof

Tree over D (shortly, NPT) with acas at its nodes, such that the aca at any node is inferred from

the acas at its children using some CNPC(D) inference rule. We say that a goal solving system

for CFLP(D) is admissible iff whenever finitely many solved goals {Si}i∈I are computed as

answers for an admissible initial goal G, one has P− ⊢CNPC(D) G ⇒
∨

i∈I Si with some

witnessing NPT. The next theorem is intended to provide some plausibility to the pragmatic

assumption that actual CFLP systems such as Curry (Hanus, 2003) or T OY (López & Sánchez,

1999) are admissible goal solving systems.

Theorem 5. (Existence of Admissible Goal Solving Calculi) There is an admissible Goal Solving

Calculus GSC(D) which formalizes the goal solving methods underlying actual CFLP systems such

as Curry or T OY .

Proof. A more general result can be proved: If (R ∧ R′) & S ‖∼
p

P ,GSC(D)
D (with a partially

developed search space of finite size p built using the program P , a Goal Solving Calculus
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GSC(D) inspired in (López et al., 2004), and a certain selection strategy that only selects atoms

descendants of the part R) then P− ⊢CNPC(D) R & S ⇒ D with some witnessing NPT. The

proof proceeds by induction on p, using an auxiliary lemma to deal with compound goals

whose kernel is a conjunction.

We have also proved the following theorem, showing that any aca which has been derived

by means of a NPT is a logical consequence of the negative theory associated to the

corresponding program. This result will be used below for proving the correctness of our

diagnosis method of missing answers.

Theorem 6. (Semantic Correctness of the CNPC(D) Calculus) Let G ⇒ D be any aca for a

given CFLP(D)-program P . If P− ⊢CNPC(D) G ⇒ D then G ⇒ D is a logical consequence of P− in

the sense of Definition 2.

6.1 Declarative diagnosis of missing answers using negative proof trees

We are now prepared to present a declarative diagnosis method for missing answers which is

based on NPTs and leads to correct diagnosis for any admissible goal solving system. First,

we show that incompleteness symptoms are caused by incomplete program rules. This is

guaranteed by the following theorem:

Theorem 7. (Missing Answers are Caused by Incomplete Program Rules) Assume that an

incompleteness symptom has been observed for a given CFLP(D)-program P as explained in Definition

4, with intended interpretation IP , admissible initial goal G, and finite disjunction of computed

answers D =
∨

i∈I Si. Assume also that the computation has been performed by an admissible goal

solving system. Then there exists a defined function symbol f such that the axiom ( f )−P for f in P− is

not valid in IP , so that f ’s definition as given in P is incomplete with respect to IP .

Proof. Because of the admissibility of the goal solving system, we can assume P− ⊢CNPC(D)

G ⇒ D. Then the aca G ⇒ D is a logical consequence of P− because of Theorem 6. By

Definition 2, we conclude that SolI (G) ⊆ SolD(D) holds for any model I of P−. However,

we also know that SolIP (G) � SolD(D), because the disjunction D of computed answers is

an incompleteness symptom with respect to IP . Therefore, we can conclude that IP is not a

model of P−, and therefore the completeness axiom ( f )−P of some defined function symbol f

must be invalid in IP .

The previous theorem does not yet provide a practical method for finding an incomplete

function definition. As explained in Section 2, a declarative diagnosis method is expected to

find the incomplete function definition by inspecting a CT. We propose to use abbreviated

NPTs as CTs. Note that (DF) f is the only inference rule in the CNPC(D) calculus that

depends on the program, while all the other inference rules are correct with respect to arbitrary

interpretations. For this reason, abbreviated proof trees will omit the inference steps related

to the CNPC(D) inference rules other than (DF) f . More precisely, given a NPT T witnessing

a CNPC(D) proof P− ⊢CNPC(D) G ⇒ D, its associated Abbreviated Negative Proof Tree (shortly,

ANPT) AT is constructed as follows:
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(1) The root of AT is the root of T .

(2) The children of any node N in AT are the closest descendants of N in T corresponding to

boxed acas introduced by (DF) f inference steps.

Fig. 6. NPT for the declarative diagnosis of missing answers

As already explained, declarative diagnosis methods search a given CT looking for a buggy

node whose result is unexpected but whose children’s results are all expected. In our present

setting, the CTs are ANPTs, the “results" attached to nodes are acas, and a given node N

is buggy iff the aca at N is invalid (i.e., it represents an incomplete recollection of computed

answers in the intended interpretation IP ) while the aca at each children node Ni is valid (i.e.,

it represents a complete recollection of computed answers in the intended interpretation IP ).

As a concrete example, Fig. 6 displays a NPT which can be used for the diagnosis of missing

answers in the Example 2. Buggy nodes are highlighted by encircling the acas attached to

them within double boxes. The CT shown in Fig. 7 is the ANPT constructed from this

NPT. In this case, the programmer will judge the root aca as invalid because he did not

expect finite failure. Moreover, from him knowledge of the intended interpretation, he will

decide to consider the acas for the functions gen, even, and (//) as valid. However, the
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aca fDiff (2:2:1:G) → F2 ⇒ (F2 �→ ⊥) asserts that the undefined value ⊥ is the only

possible result for the function call fDiff (2:2:1:G), while the user expects also the result

2. Therefore, the user will judge this aca as invalid. The node where it sits (enclosed within

a double box in Fig. 7) has no children and thus becomes buggy, leading to the diagnosis of

fDiff as incomplete. This particular incompleteness symptom could be mended by placing

the third rule for fDiff within the program. Our last result is a refinement of Theorem 7. It

Fig. 7. CT for the declarative diagnosis of missing answers

guarantees that declarative diagnosis with ANPTs used as CTs leads to the correct detection

of incomplete program functions.

Theorem 8. (ANPTs Lead to the Diagnosis of Incomplete Functions) As in Theorem 7, assume

that an incompleteness symptom has been observed for a given CFLP(D)-program P as explained

in Definition 4, with intended interpretation IP , admissible initial goal G, and finite disjunction of

answers D =
∨

i∈I Si, computed by an admissible goal solving system. Then P− ⊢CNPC(D) G ⇒ D,

and the ANPT constructed from any NPT witnessing this derivation, has some buggy node. Moreover,

each such buggy node points to an axiom ( f )−P which is incomplete with respect to the user’s intended

interpretation IP .

7. A declarative debugging tool of missing answers in T OY

In this section, we discuss the implementation in the T OY system of a tool based on the

debugging method presented in the previous section. The current prototype only supports

the Herbrand constraint domain H, although the same principles can be applied to other

constraint domains D.

We summarize first the normal process followed by the T OY system when compiling a source
program P .toy and solving an initial goal G with respect to P . During the compilation process
the system translates a source program P .toy into a Prolog program P .pl including a predicate
for each function in P . For instance the function even of our running example is transformed
into a predicate

even(N,R,IC,OC):- ... code for even ... .

where the variable N corresponds to the input parameter of the function, R to the function

result, and IC,OC represent, respectively, the input and output constraint store. Moreover,

each goal G of P is also translated into a Prolog goal and solved with respect to P .pl by the

underlying Prolog system. The result is a collection of answers which are presented to the

user in a certain sequence, as a result of Prolog’s backtracking.

If the computation of answers for G finishes after having collected finitely many answers,

the user may decide that there are some missing answers (incompleteness symptom, in the
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terminology of Definition 4) and type the command /missing at the system prompt in order

to initiate a debugging session. The debugger proceeds carrying out the following steps:

1. The object program P .pl is transformed into a new Prolog program PT. pl. The debugger

can safely assume that P .pl already exists because the tool is always initiated after some

missing answer has been detected by the user. The transformed program PT behaves

almost identically to P , being the only difference that it produces a suitable trace of the

computation in a text file. For instance here is a fragment of the code for the function even

of our running example in the transformed program:

1 % this clause wraps the original predicate

2 even(N,R,IC,OC):-

3 % display the input values for even

4 write(’ begin(’), write(’ even,’), writeq(N), write(’,’),

5 write(R), write(’, ’), writeq(IC), write(’).’), nl,

6 % evenBis corresponds to the original predicate for even

7 evenBis(N,R,IC,OC),

8 % display an output result

9 write(’ output(’), write(’ even,’), writeq(N), write(’,’),

10 write(R), write(’, ’), writeq(OC), write(’).’), nl.

11 % when all the possible outputs have been produced

12 even(N,R,IC,OC):-

13 nl, write(’ end(even).’), nl,

14 !,

15 fail.

16 evenBis(N,R,IC,OC) :- ... original code for even ... .

As the example shows, the code for each function now displays information about the

values of the arguments and the contents of the constraint store at the moment of invoking

any user defined function (lines 4-5). Then the predicate corresponding to the original

function, now renamed with the Bis suffix, is called (line 7). After any successful function

call the trace displays again the values of the arguments and the result, which may have

changed, and the contents of the output constraint store (lines 9, 10). A second clause (lines

12-15) displays the value end when the function has exhausted its possible outputs. The

clause fails in order to ensure that the program flow is not changed. The original code

for each function is kept unaltered in the transformed program except for the renaming

(evenBis instead of even in the example, line 16). This ensures that the program will

behave equivalently to the original program, except for the trace produced as a side-effect.

2. In order to obtain the trace file, the debugger repeats the computation of all the answers for

the goal G with respect to PT . After each successful computation, the debugger enforces

a fail in order to trigger the backtracking mechanism and produces the next solution for

the goal. The program output is redirected to a file, where the trace is stored.

3. The trace file is then analyzed by the CT builder module of the tool. The result is the

Computation Tree (an ANPT), which is displayed by a Java graphical interface.

4. The tree can be navigated by the user either manually, providing information about the

validity of the acas contained in the tree, or using any of the automatic strategies included

in the tool which try to minimize the number of nodes that the user must examine (see

(Silva, 2006) for a description of some strategies and their efficiency). The process ends

when a buggy node is found and the tool points to an incomplete function definition, as
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explained in Section 6, as responsible for the missing answers. The current implementation

of the prototype is available at http://gpd.sip.ucm.es/rafav/.

Fig. 8. Snapshots of the prototype of missing answers

Fig. 8 shows how the tool displays the CT corresponding to the debugging scenario discussed

in Section 2. The initial goal is not displayed, but the rest of the CT corresponds to Fig.

7, whose construction as ANPT has been explained in Section 6. When displaying an aca

f tn → t✷ S ⇒
∨

i∈I Si, the tool uses list notation for representing the disjunction
∨

i∈I Si

and performs some simplifications: useless variable bindings within the stores S and Si are

dropped, as in the aca displayed as gen 2 1 -> A ==> [A = 2:1:_] in Fig. 7; and if t

happens to be a variable X, the case {X �→ ⊥} is omitted from the disjunction
∨

i∈I Si, so

that the user must interpret the aca as a collection of the possible results for X other than the

undefined value ⊥. The tool also displays the underscore symbol _ at some places. Within

any aca, the occurrences of _ at the right hand side of the implication ⇒ must be understood

as different existentially quantified variables, while each occurrence of _ at the left hand side

of ⇒ must be understood as ⊥. For instance, 1 // _ -> A ==> [A = 1] is the aca 1 //

⊥ → A ⇒ {A �→ 1} as displayed by the tool. Understanding the occurrences of _ at the left

hand side of ⇒ as different universally quantified variables would be incorrect. For instance,

the aca 1 // ⊥ → A ⇒ {A �→ 1} is valid with respect to the intended interpretation IPfD
of PfD, while the statement ∀X. (1 // X → A ⇒ {A �→ 1}) has a different meaning and is

not valid in IPfD .

In the debugging session shown in Fig. 8 the user has selected the Divide & Query strategy

(Silva, 2006) in order to find a buggy node. The lower part of the left-hand side snapshot

shows the first question asked by the tool after selecting this strategy, namely the aca fDiff

1:2:2:1:_ -> A ==> [A = 1]. According to her knowledge of IPfD the user marks

this aca as invalid. The strategy now prunes the CT keeping only the subtree rooted by

the invalid aca at the previous step (every CT with an invalid root must contain at least

one buggy node). The second question, which can be seen at the right-hand side snapshot,

asks about the validity of the aca fDiff 2:2:1:_ -> A ==> [] (which in fact represents

fDiff 2:2:1:⊥ → A ⇒ {A �→ ⊥}, as explained before). Again, her knowledge of IPfD
leads the user to expect that fDiff 2:2:1:⊥ can return some defined result, and the aca is

marked as invalid. After this question the debugger points out at fDiff as an incomplete

function, and the debugging session ends.

Regarding the efficiency of this debugging method our preliminary experimental results show

that:
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1. Producing the transformed PT. pl from P .pl is proportional in time to the number of

functions of the program, and does require an insignificant amount of system memory

since each predicate is transformed separately.

2. The computation of the goal for PT. pl requires almost the same system resources as for

P .pl because writing the trace causes no significant overhead in our experiments.

3. Producing the CT from the trace is not straightforward and requires several traverses of

the trace. Although more time-consuming due to the algorithmic difficulty, this process

only keeps portions of the trace in memory at each moment.

4. The most inefficient phase in our current implementation is the graphical interface.

Although it would be possible to keep in memory only the portion of the tree displayed

at each moment, our graphical interface loads the whole CT in main memory. We plan to

improve this limitation in the future. However the current prototype can cope with CTs

containing thousands of nodes, which is enough for medium size computations.

5. As usual in declarative debugging, the efficiency of the tool depends on the computation

tree size, which in turn usually depends on the size of the data structures required and not

on the program size.

A different issue is the difficulty of answering the questions by the user. Indeed in complicated

programs involving constraints the acas can be large and intricate, as it is also the case with

other debugging tools for CLP languages. Nevertheless, our prototype works reasonably well

in cases where the goal’s search space is relatively small, and we believe that working with

such goals can be useful for detecting many programming bugs in practice. Techniques for

simplifying CTs should be worked out in future improvements of the prototype. For instance,

asking the user for a concrete missing instance of the initial goal and starting a diagnosis

session for the instantiated goal might be helpful.

8. Conclusions and future work

We have presented a logical and semantic framework for the declarative diagnosis of wrong

and missing computed answers in CFLP(D), a generic scheme for Constraint Functional-Logic

Programming over a given constraint domain D which combines the expressivity of lazy FP

and CLP languages. The diagnosis technique of wrong answers represents the computation

which has produced a wrong computed answer by means of an abridged proof tree whose

inspection leads to the discovery of some erroneous program rule responsible for the wrong

answer. The logical correctness of the method can be formally proved thanks to the connection

between abbreviated proof trees and program semantics. The method for missing answers

relies on computation trees whose nodes are labeled with answer collection assertions (acas).

As in declarative diagnosis for FP languages, the values displayed at acas are shown in the

most evaluated form demanded by the topmost computation. Following the CLP tradition,

we have shown that our computation trees for missing answers are abbreviated proof trees in

a suitable inference system, the so-called Constraint Negative Proof Calculus. Thanks to this fact,

we can prove the correctness of our diagnosis method for any admissible goal solving system

whose recollection of computed answers can be represented by means of a proof tree in the

constraint negative proof calculus. As far as we know, no comparable result was previously

available for such an expressive framework as CFLP.
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Intuitively, the notion of aca bears some loose relationship to programming techniques related

to answer recollection, as e.g., encapsulated search (Brassel et al., 2004). However, acas in our

setting are not a programming technique. Rather, they serve as logical statements whose

falsity reveals incompleteness of computed answers with respect to expected answers. In

principle, one could also think of a kind of logical statements somewhat similar to acas, but

asserting the equality of the observed and expected sets of computed answers for one and the

same goal with a finite search space. We have not developed this idea, which could support

the declarative diagnosis of a third kind of unexpected results, namely incorrect answer sets as

done for Datalog. In fact, we think that a separate diagnosis of wrong and missing answers is

pragmatically more convenient for users of CFLP languages.

On the practical side, our method can be applied to actual CFLP systems such as Curry or

T OY , leading to correct diagnosis under the pragmatic assumption that they behave as

admissible goal solving systems. This assumption is plausible in so far as the systems are

based on formal goal solving procedures that can be argued to be admissible. A debugging

tool called DDT , which implements the proposed technique for wrong answers over the

domain R of arithmetic constraints over the real numbers has been implemented as a

non-trivial extension of previously existing debugging tools. DDT provides several practical

facilities for reducing the number and the complexity of the questions that are presented to

the user during a debugging session. Moreover, a prototype debugger for missing answers

under development is available, which implements the method in T OY .

As future work, we plan several improvements of DDT , such as enabling the diagnosis

supporting finite domain constraints (Estévez et al., 2009; Fernández et al., 2007), and providing

new facilities for simplifying the presentation of queries to the user. In this sense, some

important pragmatic problems well known for declarative diagnosis tools in FP and CLP

languages also arise in our context: both the CTs and the acas at their nodes may be very

big in general, causing computation overhead and difficulties for the user in answering the

questions posed by the debugging tool. In spite of these difficulties, the prototype works

reasonably well in cases where the goal’s search space is relatively small, and we believe that

working with such goals can be useful for detecting many programming bugs in practice.
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