
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Semantic Cache Reasoners

Muhammad Azeem Abbas, Muhammad Abdul Qadir
and Muhammad Tanvir Afzal

Centre for Distributed and Semantic Computing,
Faculty of Engineering and Applied Sciences,
Mohammad Ali Jinnah University Islamabad,

Pakistan

1. Introduction

Semantic caching (Ren, Q et al., 2003),(Dar et al., 1996) is said to be a technique for storing
data and their corresponding semantic descriptions. Concept of semantic cache itself is quite
simple but the reasoning required to evaluate any query over a semantic cache can be very
complex (Godfrey P. and Gryz J., 1997). The reasoning over stored semantics is a
determination process to know how query and cache formulas are related semantically. This
reasoning is termed as semantic cache query processing (Ren, Q et al., 2003),(Dar et al.,
1996). In this chapter we demonstrate several semantic cache query processing techniques
for relational queries, web queries, xml queries, answering queries form materialized views
and logic based subsumption analysis queries.

Mainly there are two types of semantic query processing approaches, structured-semantics

and unstructured-semantics. In structured-semantics original problem or query is

represented in a structure that has the ability to contain semantics along with its structure.

Examples of structured-semantics are ontology, resource description framework (RDF) and

extensible markup language (XML) etc. Unstructured-semantics approaches perform

reasoning for semantic extraction from structures that do not posses semantics in their

representations. Semantic cache query processing is an example of unstructured-semantics

reasoning. Since standard query language (SQL) is structured but it do not contains

semantics of data to be answered against a query and query itself.

In this chapter we demonstrate several semantic cache reasoners for unstructured-

semantics. All of these semantic cache reasoning techniques represent query language to a

mediate structured-semantic representation for semantic extraction.

2. Semantic cache query processing

In general research a semantic cache system can be grouped into two parts i) cache
management and ii) query processing. Strategies for data management, replacing,
coalescing, and indexing results of previously evaluated queries are mainly the part of
semantic cache management. Query processing involves techniques that compute available
and unavailable data from a semantic cache by performing some sort of reasoning over

www.intechopen.com

Semantics – Advances in Theories and Mathematical Models

82

semantic descriptions. Also query processing technique handles local query execution,
retrieval of unavailable data from a remote server and formulation of the end results. In this
chapter we focus on semantic cache query processing.

At finer granularity semantic cache is a collection of semantic regions or semantic segments.
Associated semantics for a cached query, which is a query specification (Lee et al., 1999) are
stored in semantic cache along with resultant data is called a semantic region (Dar et al.,
1996) or semantic segment (Ren et al., 2003).

Fig. 1. Relationship between Cached Query (QC) and User Query (QU).

Formal definition of semantic segment can be seen in (Ren et al., 2003). A query processing

technique can perform reasoning over semantic segments to determine whether cached data

fully or partially or do not contributes to an incoming query. If the incoming query is fully

answerable from a semantic cache, then no communication with the server is required.

Similarly a partial answer to a query will reduce the amount of data retrieved from the

server.

In case of a partial answer, the user query is trimmed into two disjoint sub queries (Keller

A.M. and Basu J., 1996): the query executed locally called Probe Query (ProbQ) and the

query sent to the server named Remainder Query (RemQ) (Dar et al., 1996). The previous

literature (Ren, Q et al., 2003),(Dar et al., 1996),(Lee et al., 1999),(Godfrey P. and Gryz J.,

1997),(Keller A.M. and Basu J., 1996) shows that this trimming is performed on the basis of

relationship between the content of a semantic segment and the result required by an

incoming query. Possible cases of the relationship between the incoming query and the

semantics stored in the cache (as reported in the literature) is shown in Figure 1. White

boxes represent previously stored query results and gray boxes shows incoming user

queries. In Figure 1 rows (tuples) are represented horizontally and columns (attributes) are

vertically and only select-project queries are considered. In each case a user query overlaps

semantic cache region in a certain way. Case 2 depicts a horizontal partition in which some

part of the incoming query tuples satisfied by cache semantics. Where in case 3, a projection

of the query is available in cache and some attributes are missing, this situation is called a

vertical partition. This figure represents that a partial answer is possible in case 2,3 and 4,

where a user query can be fully answered from the cache in case 1. This figure is used to

evaluate a semantic cache query processing scheme, too, i.e. whether a scheme incorporates

all the cases or not. We argue that due to this misleading diagram, the missing implicit

semantics are not being considered in the previous query processing techniques. Therefore,

in this thesis we have adopted a new way of comparing the semantics of a user query and

the cache semantics in the coming sections.t)

www.intechopen.com

Semantic Cache Reasoners

83

2.1 Semantic cache query processing criteria

Previous surveys (Bashir M. F. and Qadir M. A., 2006a), (Ahmad, M and Qadir, M.A., 2008),
(Jónsson B. Þór et al., 2006), (Hao X et al., 2005), (Halevy, A.Y., 2001), (Makki K. S and
Andrei S, 2009) conducted over semantic cache query processing identified two main
parameters for evaluation i.e. Maximum Data Retrieval (MDR) and fast query processing.
Quantification of the MDR was not given in those surveys. Here we quantify it with the test,
data from server (Ds) intersection data from cache (Dc) should be empty set i.e. Ds ∩ Dc = Φ.
In general any technique which retrieves maximum possible or complete results from local
cache in tractable time with this given quantification is said to be an efficient semantic cache
query processing technique.

2.2 Query

A select-project query is a tuple < QUA, QUR, QUP,QUD>, where QUA is Select Clause of query
which contains projected attributes. QUR is the From Clause which contains relation of a
database D, from which data is to be retrieved. QUP is Where Clause which contains
conjunctive or disjunctive compare predicates, a compare predicate is of the form P = a op c,

where a  A {Attributes Set}, op  {  ,,,, }, c is a constant in a specific domain (Ren

et al., 2003), QUD is the resultant data of this query. A query can be represented as π QUA σ QUP
(QUR) in relational algebra.

2.3 Amending query

A query that only request a key attribute of a relation from a remote server to extract known
available data from cache is called an amending query. When we know that some data is
available in semantic cache but could not extract it precisely. Than we request the server for
a key attribute for a user query and extract cached attributes (data) against those keys from
cache. Requesting only keys require less computation on database server and low
bandwidth over network, in general.

Consider the following employee database information provided in example 1 below, which
shall be used throughout evaluation in this chapters. The semantic cache model we follow is
similar to the relational database model. The basic building blocks of the relational model
are attributes (columns), rows (tuple), tables (relations) and relation schema. The schema
defines the relations and the attributes with their data type in each relation. A row or a tuple
is a set of attribute’s instances.

2.4 Example 1

Consider an employee database with a relation name Emp (Empid, Ename,Department, Age,
Salary,Exp). The domain of the Age, Salary, Department and Exp attributes of Emp are
{20,…,100},{0.1K,…,1K,…15K},{CS, EE, BI, BA},{1,..,50} respectively as shown in Figure 2.
Also suppose that a cache already has following cached queries shown in Figure 3.

3. Query processing techniques

Work on query processing over semantic cache is mainly classified in query intersection
(Lee et al., 1999), query trimming (Keller A.M. and Basu J., 1996),(Ren, Q et al., 2003),
answering queries using views (Levy A.Y et al., 1996), (Duschka O.M. and Genesereth M.R.

www.intechopen.com

Semantics – Advances in Theories and Mathematical Models

84

Emp

Empid Ename
Depart

ment

Age

SalaryExp

Fig. 2. Employee relation.

QC1 ← π Ename, Department σ Age ≥ 50 (Emp);

QC2 ← π Age, Department (Emp);

QC3 ← π Ename, Department σ Salary>10k (Emp);

QC4 ← π Age, Salary σ Salary ≤ 30k (Emp);

QC5 ← π Ename, Salary, Exp (Emp);

QC6 ← π Age σ Age < 70 (Emp);

QC7 ← π Age,Salary,Exp σ Salary≥1K Salary<=40K

Fig. 3. Cached Queries.

1997), (Pottinger R. and Levy A. 2000), semantic cache for web queries (Chidlovskii B and
Borghoff U. M., 2000), (Qiong L and Jaffrey F. N., 2001), xml based semantic cache
(Mandhani B. and Suciu D., 2005), (Sanaullah, M., 2008) and description logic based
subsumption analysis in semantic cache (Baader et al., 1991a) (Hollunder et al., 1990)
techniques.

3.1 Query intersection

Query processing for the five scenarios similar to Figure 1 and one additional scenario

which shows cache as a subset of incoming queries (reverse of case 1 of Figure 1) was

presented by Lee (1999, pp.28-36). Against each scenario probe and remainder query were

computed based on cache and query intersection or difference. Intersection and difference of

cache semantics and a posed query were mentioned at a very abstract level.

Definition of intersection (Lee et al., 1999) between semantics of cache region QC and a user

query QU on relation R is shown in statement (i) of Figure 4. This intersection consists of two

parts. One is the common projected attributes while the other is combined condition of a

user and cached query predicates (Shown in statement (ii) of Figure 4). A query or cache

semantics are represented as a triple < πQ, σQ, operandQ >. πQ is the projected attributes,

operandQ is the base relation. Where any predicate condition (σQ) is represented as a value

domain list {dQ,1, dQ,2, ..., dQ,n} and a condition is satisfiable if none of the value domain is

null. We elaborate this concept with an example.

Consider the database schema information provided in example 1 above. A user query QU
over cached query QC1 of Figure 3 are represented as triple < πQ, σQ, operandQ > in statement
(iv) and (iii) of Figure 4 respectively. The query QU is statisfiable (or completely answerable)
from QC1 because intersection of projected attributes is not empty and there is no null value

www.intechopen.com

Semantic Cache Reasoners

85

domain in predicate condition. According to Lee (1999, pp.28-36) two queries are disjoint if
either intersection of their projected attributes is empty or there is no combined condition
between user and cached query predicates.

QU ∩ QC = <QUA ∩ QCA, QUP ∩ QCP, R> (i)

πQUA ∩ QCA , σQUP ∩ QCP (ii)

QC1 = <{Ename,Department}, {-,-,-,{50,…,100},-}, Emp> (iii)

QU = <{Ename,Department}, {-,-,-,{55,….,100},-}, Emp> (iv)

Fig. 4. Query Intersection (Lee et al., 1999).

3.2 Query trimming

The concept of query trimming was introduced by (Keller A.M. and Basu J., 1996) and
formally given by Ren (2003, pp.192-210). Ren (2003, pp.192-210) gave a comprehensive
algorithm for query processing. In the start of the algorithms it is checked if the user query
attributes are subset of cached semantics attributes, then perform query trimming based
upon the implication or satisfiability of predicates. If the user query attributes is not a subset
of cached semantics attributes, then there may be some common attributes. In this case, if
query predicate implies cache predicates or there are common predicates between the query
and cache semantics, then form the probe and remainder query as per the logic given by the
algorithm. In other words the logic is based on checking implication and satisfiability of a
user and cached query predicates (based upon the already published material, as explained
in the next section) and finding common part between the user and cached query attributes.

Much work has been contributed towards finding implication and satisfiablity between a
user and cached query predicates (Guo S et al., 1996), (Härder T. and Bühmann A., 2008).
Simplified concept of implication and satisfiability is, let us have a user query predicate QUP
and semantic segment predicate QCP, then there are three scenarios:

 QUP  QCP, i.e. User predicate implies segment predicates, implying that the whole

answer of QUP is contained in QCP.

 (QUP  QCP is satisfiable), implying that part of QUP answer is contained in QCP.

 (QUP  QCP is unsatisfiable), implying that there is no common part between QUP and
QCP.

Remainder queries were trimmed again after comparing with other semantic cache

segments with the same algorithm. It continues until it is decided that the cache does not

further contribute to the query answering. This approach forms an iterative behavior, which

was handled by a proposed query plan tree structure. This plan tree expresses the

relationship of cache items and query subparts.

Query trimming techniques have some short comings, such as time and space efficiency,

and complexity of the trimming process (Makki K. S and Andrei S, 2009), (Makki K. S and

Rockey M., 2010). When query is trimmed into probe (QUP QCP) and remainder (QUP

  QCP) part, the negation of the cached query predicate in remainder part make it much

more expanded term if it contains disjunctions. This expansion created by negation of a term

was shown with example (Makki K. S and Andrei S, 2009).

www.intechopen.com

Semantics – Advances in Theories and Mathematical Models

86

A relational query can be visualized as a rectangle with boundaries set by query predicate
values. So according to (Makki K. S and Andrei S, 2009), (Makki K. S and Rockey M., 2010)
semantic cache query processing based on query trimming is problem of finding
intersection between two finite rectangles. Six cases that are extended form of Figure 1.1 are
given in (Makki K. S and Andrei S, 2009), (Makki K. S and Rockey M., 2010) to show
relationship between rectangles of user and cached queries. These rectangular
representations do not depict implicit knowledge present in the semantics of user and
cached queries. An technique named Flattening Bi-dimensional Interval Constraints (FBIC)
was proposed (Makki K. S and Andrei S, 2009). Based on FBIC an algorithm for handling
disjunctive and conjunctive queries was given by Makki (Makki K. S and Rockey M., 2010).
The algorithm works for only single disjunctive case, where conjunctive cases are same as
provided by (Makki K. S and Andrei S, 2009).

Finding intersection between rectangles of user and cached queries was done by comparing
Bounds (Lower or Upper) of both rectangles. But computing comparable bounds were not
given (Makki K. S and Andrei S, 2009), (Makki K. S and Rockey M., 2010).

3.3 Satisfiability and implication

Finding whether there exists a satisfiable part between two formulas or whether one implies
the other is central to many database problems such as query containment, query
equivalence, answering queries using views and database cache. So according to Guo (Guo
S et al., 1996) implication is defined as “S implies T, denoted as S  T, if and only if every

assignment that satisfies S also satisfies T”. Similarly satisfiability is defined as “S is
satisfiable if and only if there exists at least one assignment for S that satisfies T.” (Guo S et
al., 1996) had given algorithm to compute implication, satisfiability and equivalence for
given conjunctive formulas in integer and real domain. Let us have a formula (Salary < 20K
AND Salary > 8K AND Department = ‘CS’) is satisfiable, because the assignment {12K/Salary ,
CS/Department} satisfies the formula. Similarly a formula (Salary >10K OR Salary < 12K) is a
tautology, because every assignment under this formula is satisfiable.

Satisfiability and implication results in databases (Guo et al., 1996),(J.D. Ullman,

1989),(A.Klug, 1988),(Rosenkrantz and Hunt, 1980), (Sun et al., 1989) are relevant to the

computation of probe and remainder query in semantic cache query processing for a class of

queries that involve inequalities of integer and real domain. Previous work models the

problem into graph structure.

Rosenkrantz and Hunt (Rosenkrantz and Hunt, 1980) provided an algorithm of complexity

O(|Q|3) for solving satisfiability problem; the expression S to be tested for satisfiability is

the conjunction of terms of the form X op C, X op Y, and X op Y + C.

Guo et al. (Guo et al., 1996) provided an algorithm (GSW) for computing satisfiability with

complexity O(|Q|3) involving complete operator set and predicate type X op C, X op Y and

X op Y + C. Here we demonstrate GSW algorithm (Guo et al., 1996) for finding implication

and satisfiability between two queries.

The GSW algorithm starts with transforming all inequalities into normalized form through
given rules. It was proved by Ullman (J.D. Ullman, 1989) that these transformations still
holds equality. After these transformation remaining operator set become {≤ ,≠ }.

www.intechopen.com

Semantic Cache Reasoners

87

(1) (X ≥ Y+C)  (Y ≤ X – C)
(2) (X < Y +C)  (X ≤ Y + C)  (X ≠ Y + C)
(3) (X > Y + C)  (Y ≤ X – C)  (X ≠ Y + C)
(4) (X = Y + C)  (Y ≤ X – C)  (X ≤ Y + C)
(5) (X < C)  (X ≤ C)  (X ≠ C)
(6) (X > C)  (X ≥ C)  (X ≠ C)
(7) (X = C)  (X ≤ C)  (X ≥ C)

Satisfiability of a conjunctive query Q is computed by constructing a connected weighted-
directed graph GQ=(VQ,EQ) of Q after above transformation. Where VQ are the nodes
representing predicate attributes of an inequality and EQ represent an edge between two
nodes. An inequality of the form X op Y + C has X and Y nodes and an edge between them
with C weight. The inequality X op C is transformed to X op V0 + C by introducing a
dummy node V0.

According to GSW (Guo et al., 1996) algorithm, for any query Q if a negative-weighted cycle
(a cycle whose sum of edges weight is negative) found in GQ then Q is unsatisfiable.
Otherwise Q is satisfiable. Testing satisfiability among user query QU and cached segment
QS require us to construct a graph (GQu  Qs) of (QU  QS) and check GQu  Qs for any
negative weighted cycle. Negative weighted cycle is found through Floyd-Warshall
algorithm (R.W. Floyd, 1962). Complexity of Floyd-Warshall algorithm is O(|V|3), so
finding satisfiability become O(|QU  QS |3).

An algorithm with O(|S|3 + K) complexity for solving the implication problem between two
conjunctive inequalities S and T was presented by Ullman (J.D. Ullman, 1989) and Sun (Sun
et al., 1989). Conjunctive queries of the form X op Y were studied by (A.Klug, 1988) and (Sun
et al., 1989). Implication between conjunctive queries of the form X op Y +C was addressed
by GSW algorithm (Guo et al., 1996) with complexity O(|QU|2 + |QC|). GSW Implication
(Guo et al., 1996) requires that QU is satisfiable. At first the implication algorithm constructs
the closure of QU i.e., a universal set that contains all those inequalities that are implied by
QU. Then, QU  QS if QS is a subset of the QU closure.

[(V0 ≤ Salary -1), (Salary ≤ V0 +40), (V0 ≤ Salary -20), (V0 ≤ Age -30), (Age ≤ V0 +80), (Exp ≤ V0 +40)]

Fig. 5. (a) [QU1  QS] and GQU1  QS (b) Shortest Path Table

Example 2: Let us have a user query QU1 =  Age,Salary,Exp  Salary≥20K  Age≥30  Age≤80  Exp≤40

over cached segment QC7 of Example 1. The directed weighted graph GQU1  QC7 of QU1  QC7
is shown in Figure 5(a). QU1 is satisfiable with respect to QC7, as there is no negative
weighted cycle in GQU  QC7.

www.intechopen.com

Semantics – Advances in Theories and Mathematical Models

88

3.4 Bucket algorithm

As discussed earlier, a user of data integration system poses query in term of mediated
schema, because root sources are transparent in such systems. A module of data integration
system translate/reformulate a user query that refers directly to the root sources. Several
reputed algorithms exist for such query reformulation/rewriting (Levy A.Y et al., 1996),
(Duschka O.M. and Genesereth M.R. 1997), (Pottinger R. and Levy A. 2000). In context of
semantic cache the root sources are the cache segments and the mediated schema is the
cache description. The goal of the bucket algorithm (Levy A.Y et al., 1996) is to reformulate a
user query that is posed on the mediated (virtual) schema into a query that refers directly to
the available (local/cached) data sources. This reformulation is known as query-rewriting.
Both the query and the sources are described by select-project-join queries that may include
atoms of arithmetic comparison predicates. The bucket algorithm returns the maximally-
contained rewriting of the query using the views. This rewriting is a maximally-contained
but not an equivalent one.

We demonstrate working (in context of semantic cache query processing) of bucket
algorithm with example.

QC1 ← π Ename, Department σ Age ≥ 50 (Emp);

QC2 ← π Age, Department (Emp);

QC3 ← π Age, Department σ Exp < 15 (Emp);

QU ← π Age, Department σ Exp > 20  Age < 70 (Emp);

Fig. 6. User Query (QU) Over Cached Queries

Let us have QC1, QC2 and QC3 (shown in Figure 6) in cache, and a user query QU (shown in
Figure 6) is posed over them. As shown in Table 1 below, according to bucket algorithm
both cached queries QC1 and QC2 are candidate selection for its bucket. Since there is no
inconsistency between user query predicate and cached queries (i.e. Age ≥55 consistent with
Age < 70) when compared in isolation (atomically). Where QC3 is excluded due to predicate
inconsistency (i.e. Exp < 15 inconsistent with Exp > 20). In second step of bucket algorithm,
elements of buckets are combined together to form a rewriting of the user query. The
rewritten query (Q’) in this case is shown in Figure 7 below.

Table 1. Contents of Bucket. The attribute not required by user query is shown as primed
attribute.

www.intechopen.com

Semantic Cache Reasoners

89

Q’← π Age, Department σ Age < 70 (QC1,QC2);

Fig. 7. Rewritten Query Q’.

3.4.1 Example

We follow the results produced by maximally-contained query rewriting algorithm named

bucket algorithm (Levy A.Y et al., 1996) provided above. The predicate (Exp > 20) is pruned

because query cannot be executed over cached data as there is no information present

against Exp attribute. Further more if the rewritten query (Q’ shown in Figure 7) executed

locally, it will give unnecessary/incorrect results. These results are maximally-contained or

maximum data retrieval (MDR) but the results contain tuples that are not part of the actual

user query (QU). Figure 8 (a) shows the collective dataset of cached queries QC1 and QC2

(Figure 6). The rewritten query (Q’) executed over cached data is shown in Figure 8 (b). The

data items shown as strike circle () in Figure 8 (b) are the required results of user query

(QU). Where results retrieved by the rewritten query (Q’) are not the precise answer for the

user query (QU).

EE CS BA BI

30

40

50

60

70

80

90

100

Department

(Jhon)

(Kapy)

(Nikky)

(Mike)

(Sam)

(David)

(Sarah)

(Ronni)

(Frank)

(Gage)

(Ford)

(Mike Jr)

(Sami)

Fig. 8. (a) Collective Data of Cached Query QC1 and QC2. (b) Rewritten Query Q’ Over
Cached Query QC1 and QC2.

Bucket algorithm does not compute probe and remainder queries separately. So there is no

way to determine the available and unavailable answer from the cache.

3.5 Semantic reasoning for web queries

A web-based cache system is different from data caching. In web cache, special proxy

servers store recently visited pages for later reuse. A uniform resource locater (URL) is a

user query that is posed over web cache system. Any page in cache is being used whenever

a user given URL matches the cache page header. This type of caching strategy is similar to

page-caching, where binary results (complete answer or no-answer) are possible but partial

answer cannot be determined.

www.intechopen.com

Semantics – Advances in Theories and Mathematical Models

90

However, searching performed over web resources through Boolean queries (keywords
conjunction with AND & NOT operators) do not work in a plain page caching system.
Because the user query in this case is not a URL, and extracting qualified tuples against an
individual keyword or whole query from page headers is not possible (Chidlovskii B and
Borghoff U. M., 2000), (Qiong L and Jaffrey F. N., 2001). Semantic cache was introduced as
an alternative to plain page caching where cache is managed as semantic regions.

Web queries over web resources are different than queries posed over databases. As there is
no attribute and predicate part in web queries, also it neither contain join operator. And the
problem of answering web-queries can be reduced to set containment problem.

There is a lot of research work on semantic caching for web queries. Such as (Chidlovskii B

and Borghoff U. M., 2000) addressed both semantic cache management and query

processing of web queries for meta-searcher systems. Their technique is based on a

signature file method. In which a signature is given to every semantic region for processing

all cases (similar to Figure 1) of containment and intersection.

A cache model was proposed for database applications using web techniques (Anton J. et

al., 2002). Cache elements were stored as web pages/sub pages called fragments and sub

fragments with their header information called template. Fragments can be indexed or

shared among different templates. Fragments, sub-fragments and templates were updated

or expired based on their unique policy which included expiration, validation and

invalidation information. In this case data retrieval is performed by matching template

information with requested query and subsequent fragments or sub-fragments are returned.

Partial answer retrieval is possible in this technique as sub-fragments alone can be resulted

to a user query. But still this technique is closer to page cache technique, where each

fragment is itself a page.

3.6 Pattern Prime Product (PPT) reasoning for XML queries

The information that is available on the web is unstructured, extensible mark-up language

XML is used to provide the structure to the web information/data. As described above the

querying mechanism for current web is keyword based search. Keyword based search is

considered to be the non-semantic (Mandhani B. and Suciu D., 2005), (Sanaullah, M., 2008).

A novel method of checking containment is proposed by Gang Wu and Juanzi Li (Gang Wu

and Juanzi Li, 2010). Each node in the query is assigned a unique prime number and then

the product of these prime numbers is calculated by a specific method. This product is

called Pattern’s Prime producT (PPT). The query is stored in the cache along with this PPT.

On each next issued query the same procedure is followed to assign unique prime numbers

to each node and if any node of the query matches with any existing stored view’s node

then the same prime number is assigned to new node as it was allotted to previously stored

node. The PPT of the new query is calculated and then divided by the PPT of all stored

views. If any of stored views completely divides the PPT of the query then that view is

selected and rest are rejected. The selected view further processed to make sure whether the

occurrences of the nodes in the query and view is similar, i.e Qk = Vk where k is the

position of kth axis node. The PPT of each infix is also checked.

www.intechopen.com

Semantic Cache Reasoners

91

3.6.1 Example

An XML document is shown in Figure 9. A user issues a query /lib/book and as a result the
technique loads all the results of “lib”, “book” nodes in the cache and assigns prime
numbers to each node i.e. “lib”=2, “book”=3. After assigning the prime numbers a prime
product is calculated as follows.

 (2*3), here 6 is the Tree Pattern Prime Product of the view.

Now if the user again issues the query /lib/book/author then each node in the query is
assigned the same prime number as it was previously assigned to the nodes in the view.
Here 2 is assigned to “lib” and 3 is assigned to “book”. “author” appeared first time so a
new prime number i.e. 5 is assigned to author node. Dividing the prime product of query
(90) by the prime product of view (6) will yields the result 15, means query is completely
divided by the view. If the prime product of a view completely divides the prime product of
a query then it further checks the following conditions. Whether the order of appearance of
each axis node in the view and query is similar and if the answer is true then it means that
the query is contained in the view.

3.6.2 Example

If a query contains predicates, for example A[b[b[a]]]/c/d the tree of this query is shown in
figure 9. The prime product is calculated as shown below

Fig. 9. Prime Product Calculation.

PPT of b=(2*3)*(3*1)*(1*2)*(2*7) = 504
PPT of c= (2*7)*(7*1)*(1*2)*(2*3) = 1176

Now only the PPT of b completely divides the PPT of the query so b is selected in the first
condition of the algorithm.

This algorithm retrieves the results of all axis nodes given in the query for example if we
issue following query to the document shown in figure 1 “\lib\book[price>30]”. Then apart
from the presence of a predicate it retrieves all the result of book node and stores it in the
cache. This action requires more cache space.

3.7 Subsumption analysis reasoning

Description logics (a language of logic family) DL claims that it can express the conceptual
domain model/ontology of the data source and provide evaluation techniques. Since
structured query language (SQL) is a structured format, it can be classified under

www.intechopen.com

Semantics – Advances in Theories and Mathematical Models

92

subsumption relationship. A well known technique named Tabulex provides structural
subsumption of concepts. Description logic (DL) is assumed to be useful for semantic cache
query processing and management (Ali et al. 2010). The relational queries can be modelled /
translated in DL and DL inference algorithms can be used to find query containments. The
translation of relational query to DL may have not the same spirit as that of querying
languages for DL systems, but is sufficient for finding the query containment of relational
queries (Ali et al. 2010). The subsumption reasoning (containment) of the semantics of the
data to be cached is very useful in eliminating the redundant semantics and minimizing the
size of semantic cache for the same amount of data.

The tableaux algorithm (Baader et al., 1991a) (Hollunder et al., 1990) is instrumental to
devise a reasoning service for knowledge base represented in description logic. All the facts
of knowledge base are represented in a tree of branches with intra-branch logical AND
between the facts and inter-branch logical OR, organized as per the rules of tableaux
algorithm (Baader et al., 2003). A clash in a branch represents an inconsistency in that
branch and the model in that branch can be discarded. The proof of subsumption or
unsatisfiability can be obtained if all the models (all the branches) are discarded this way
(Baader et al., 2003).

The proposed solution (Ali et al. 2010) consists of two basic steps: First user query
(relational) is translated into DL. The translated query is then evaluated for subsumption
relationship with previously stored query in the cache by using the sound and complete
subsumption algorithm given in (Baader et al., 91b) (Lutz et al., 2005).

3.7.1 Example

Considering, another scenario having predicates conditions with disjunctive operator in
Figure 10. All the three branches yields to clash in checking Q3 ⊑ Q4; therefore, Q4 contain
Q3. In first branch (Line 8 in Figure 10) after applying the Or rule, Emp and ⇁Emp yields to
clash. In second branch (Line 9 in Figure 10) ename and ⇁ename yields to clash, and in third
branch (Line 10 Figure 10), ≥30k(sal) and ≤19k(sal) yields to clash. All tree branches (Line 8, 9,
10 of Figure 10) yield to clash in opening the tableaux algorithm; therefore, Q3 ⊑ Q4.

Fig. 10. Query Containment using Tableux.

www.intechopen.com

Semantic Cache Reasoners

93

4. Conclusion

In this chapter we demonstrated several reasoning techniques of query processing in
semantic cache. This chapter provides overview of semantic cache application in different
domains such as relational databases, web queries, answering from views, xml based
queries and description logic based queries.

Semantic cache query processing techniques are unstructured-semantics approaches, in
which semantics are extracted from structured representations that have no semantics
within their representations.

5. Acknowledgment

We would like to acknowledge Mr. Ishtique Ahmad for providing help on XML based
semantic cache, Mr. Tariq Ali for DL based subsumption analysis, and Mr. Munir Ahmed
for providing useful feedbacks.

6. References

A. Klug, “On Conjunctive Queries Containing Inequalities,” ACM, vol. 35, no. 1, pp. 146-160,

Jan. 1988.

Ahmad, M and Qadir, M.A., (2008). “Query Processing Over Relational Databases with

Semantic Cache: A Survey”, 12th IEEE International Multitopic Conference 2008,

INMIC08.

Ahmad, M and Qadir, M.A., “Query Processing and Enhanced Semantic Indexing for

Relational Data Semantic Cache”, Center for Distributed and Semantic Computing,

Mohammad Ali Jinnah University, Islamabad, Pakistan 2007.

Ahmed M. U., Zaheer R. A., and Qadir M. A., “Intelligent Cache Management for Data

Grid”, Australasian Workshop on Grid Computing and e-Research (AusGrid 2005).

Ali, T., Qadir, M. A., Ahmed, M., Translation of Relational Queries into Description Logic

for semantic Cache Query Processing, International Conference on Information and

Emerging Technologies (ICIET) 2010.

Andrade H., Kurc T., Sussman A., Saltz J., “Active semantic caching to optimize

multidimensional data analysis in parallel and distributed environments” Elsevier

Journal on Parallel Computing, volume 33, pp 497-520, 2007.

Anton J., Jacobs L., Liu X., Parker J., Zeng Z. and Zhong T., “Web caching for database

applications with Oracle Web Cache”, Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, June 03-06, 2002, Madison,

Wisconsin.

Baader, F., Hollunder, B., A terminological knowledge representation system with complete

inference algorithm. In: Proc. Workshop on Processing Declarative Knowledge,

PDK-91Lecture Notes in Artificial Intelligence, Springer, Berlin, pp. 67–86, 1991.

Baader, F., Hanschke, P. A schema for integrating concrete domains into concept languages.

In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages452–

457, 1991.

www.intechopen.com

Semantics – Advances in Theories and Mathematical Models

94

Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P., The Description Logic Handbook:

Theory, Implementation and Applications. Cambridge University Press, 2003.

Bashir M F. and Qadir M. A., "Survey on Efficient Content Matching over Semantic Cache",

10th IEEE International Multitopic Conference 2006, INMIC06.

Bashir M F. and Qadir M. A., "HiSIS: 4-Level Hierarchical Semantic Indexing for Efficient

Content", 10th IEEE International Multitopic Conference 2006, INMIC06.

Bashir M.F., Zaheer R.A., Shams Z.M. and Qadir M.A.. "SCAM: Semantic Caching

Architecture for Efficient Content Matching over Data Grid". AWIC, Springer

Heidelberg, Berlin, 2007. pp. 41-46.

Bashir, M.F and Qadir, M.A., “ProQ – Query Processing Over Semantic Cache For Data

Grid”, Master’s Thesis, Center for Distributed and Semantic Computing,

Mohammad Ali Jinnah University, Islamabad, Pakistan 2007.

Brunkhorst I. and Dhraief H., "Semantic Caching in Schema-based P2P-Networks", DBISP2P

2005/2006, LNCS 4125, pp. 179-186, 2007. Springer-Verlag Berlin Heidelberg 2007.

Chidlovskii B and Borghoff U. M., “Signature file methods for semantic query caching”. In:

Proc. 2nd European Conf. on Digital Libraries, September, 1998, Heraklion, Greece,

Berlin Heidelberg New York: Springer, LNCS 1513, pp. 479–498

Chidlovskii B., Borghoff U. M., “Semantic caching of Web queries”, The International

Journal on Very Large Data Bases, v.9 n.1, p.2-17, March 2000.

Dar S, M. J. Franklin, B. T. Jonson, D. Srivastava, M. Tan, "Semantic Data Caching and

Replacement", in proceedings of 22nd VLDB Conference, Mumbai, 1996.

Duschka O.M. and Genesereth M.R. “Query planning in infomaster”. In: Proc.ACM

Symposium on Applied Computing. pp 109–111, San Jose, Calif., USA, 1997.

Gang Wu and Juanzi Li, “Semantic Web”, Intech Publisher 2010, pp 97-106.

Godfrey P. and Gryz J., “Semantic Query Caching for Heterogeneous Databases,” Proc.

KRDB Conf. Very Large Databases, vol. 6, pp. 1-6, 1997.

Guo S., Sun W., and Weiss M.A., “Solving Satisfiability and Implication Problems in

Database Systems,” ACM Trans. Database Systems, vol. 21, no. 2, pp. 270-293,

1996.

Halevy, A.Y., “Answering queries using views”, VLDB J., vol. 10, pp. 270-294, 2001.

Hao X., Zhang T., and Li L., “The Inter-clause Optimization Technique in Semantic Caching

Query Evaluation”, Journal of Information & Computational Science volume 2, no.

1, pp 27-33, 2005.

Härder T. and Bühmann A., “Value complete, column complete, predicate complete”, VLDB

Journal, 2008, pp 805-826.

Hector García-Molina, Jeffrey D. Ullman and Jennifer Widom., “Database Systems: the

Complete Book”, GOAL Series, 2001.

Hollunder, B., Nutt, W., Subsumption algorithms for concept languages. Research Report

RR-90-04, Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH (DFKI),

April 1990.

J.D. Ullman, Principles of Database and Knowledge-Base Systems, vol. 11. Computer

Science Press, 1989.

www.intechopen.com

Semantic Cache Reasoners

95

Jónsson B. Þór., Arinbjarnar M., Þórsson B., Franklin M. J., Srivastava D., “Performance and

overhead of semantic cache management”, ACM Transactions on Internet

Technology (TOIT), v.6 n.3, p.302-331, August 2006.

Keller A.M. and Basu J., “A Predicate-Based Caching Scheme for Client-Server Database

Architectures,” VLDB J., vol. 5, no. 2, pp. 35-47, Apr. 1996.

Lee D. and Chu W. W., "Semantic Caching via Query Matching for Web Sources", CIKM,

ACM, 1999.

Lee K.C.K, H.V. Leong, and A. Si, “Semantic Query Caching in a Mobile Environment,”

Mobile Computing and Comm. Rev., vol. 3, no. 2, pp. 28-36, Apr. 1999.

Levy A.Y., Rajaraman A., Ordille J. J., “Querying Heterogeneous Information Sources Using

Source Descriptions”, Proceedings of the 22th International Conference on Very

Large Data Bases, p.251-262, September 03-06, 1996

Levy A.Y. “Logic-based techniques in data integration”, Minker J (ed.) Logic-based artificial

intelligence. Kluwer Academic, Dordrecht, 2000, pp 575–595

Lutz, C., Milicic., M. A tableau Algorithm for Description Logics with Concrete Domains

and GCIs, Tableaux 2005, LNAI 3702, pp. 201-216, 2005

Makki K. S and Andrei S. “Utilizing Semantic Caching in Ubiquitous Environment”,

IWCMC’09, June 21-24,2009, Leipzig, Germany.

Makki K. S and Rocky M., “Query Visualization for Query Trimming in Semantic Caching”,

IEEE 24th International Conference on Advanced Information Networking and

Applications Workshops (WAINA), 2010.

Mandhani B. , Suciu D., “Query caching and view selection for XML databases”,

Proceedings of the 31st international conference on Very large data bases (VLDB),

2005, Trondheim, Norway.

Nama B., Shin M., Andrade H., and Sussman A., “Multiple query scheduling for distributed

semantic caches”, In Proc. of Journal of Parallel and Distributed Computing, 70-

(2010) pp. 598-611

Pottinger R. and Levy A. “A scalable algorithm for answering queries using views”. In: Proc.

of VLDB. pp 484-495, Cairo, Egypt, 2000.

Qiong L and Jeffrey F. N., “Form-Based Proxy Caching for Database-Backed Web Sites”,

Proceedings of the 27th International Conference on Very Large Data Bases, p.191-

200, 2001.

Ren, Q., Dunham, M.H., and Kumar, V., (2003). “Semantic Caching and Query Processing”.

IEEE Transactions on Knowledge and Data Engineering, IEEE Computer Society,

2003, pp. 192-210.

Rosenkrantz D.J. and Hunt H.B., “Processing Conjunctive Predicates and Queries,” Proc.

Conf. Very Large Databases, pp. 64- 71, 1980.

R.W. Floyd, “Algorithm 97 Shortest Path” Comm. ACM, vol. 5, no. 6, p. 345, June 1962.

Safaeei A.A, Haghjoo M. Abdi S., “Semantic cache schema for query processing in mobile

databases”, 3rd IEEE International Conference on Digital Information

Management, 2008. ICDIM 2008.

Sanaullah, M., Qadir, M.A., and Ahmad, M., (2008) “SCAD-XML: Semantic Cache

Architecture for XML Data Files using XPath with Cases and Rules ”. 12th IEEE

www.intechopen.com

Semantics – Advances in Theories and Mathematical Models

96

International Multitopic Conference, INMIC 2008, IEEE, Karachi, Pakistan,

December 2008.

Sun, X., Kamell, N. N., AND NI, L.M. 1989. Processing implication on queries. IEEE Trans.

Softw. Eng. 5, 10 (Oct.), 168–175.

The TimesTen Team Mid-tier caching: the TimesTen approach. In: SIGMOD Conference, pp.

588–593 (2002).

www.intechopen.com

Semantics - Advances in Theories and Mathematical Models

Edited by Dr. Muhammad Tanvir Afzal

ISBN 978-953-51-0535-0

Hard cover, 284 pages

Publisher InTech

Published online 25, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The current book is a nice blend of number of great ideas, theories, mathematical models, and practical

systems in the domain of Semantics. The book has been divided into two volumes. The current one is the first

volume which highlights the advances in theories and mathematical models in the domain of Semantics. This

volume has been divided into four sections and ten chapters. The sections include: 1) Background, 2) Queries,

Predicates, and Semantic Cache, 3) Algorithms and Logic Programming, and 4) Semantic Web and Interfaces.

Authors across the World have contributed to debate on state-of-the-art systems, theories, mathematical

models in the domain of Semantics. Subsequently, new theories, mathematical models, and systems have

been proposed, developed, and evaluated.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Muhammad Azeem Abbas, Muhammad Abdul Qadir and Muhammad Tanvir Afzal (2012). Semantic Cache

Reasoners, Semantics - Advances in Theories and Mathematical Models, Dr. Muhammad Tanvir Afzal (Ed.),

ISBN: 978-953-51-0535-0, InTech, Available from: http://www.intechopen.com/books/semantics-advances-in-

theories-and-mathematical-models/semantic-cache-reasoners

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

