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1. Introduction 

Semantic caching (Ren, Q et al., 2003),(Dar et al., 1996) is said to be a technique for storing 
data and their corresponding semantic descriptions. Concept of semantic cache itself is quite 
simple but the reasoning required to evaluate any query over a semantic cache can be very 
complex (Godfrey P. and Gryz J., 1997). The reasoning over stored semantics is a 
determination process to know how query and cache formulas are related semantically. This 
reasoning is termed as semantic cache query processing (Ren, Q et al., 2003),(Dar et al., 
1996). In this chapter we demonstrate several semantic cache query processing techniques 
for relational queries, web queries, xml queries, answering queries form materialized views 
and logic based subsumption analysis queries.  

Mainly there are two types of semantic query processing approaches, structured-semantics 

and unstructured-semantics. In structured-semantics original problem or query is 

represented in a structure that has the ability to contain semantics along with its structure. 

Examples of structured-semantics are ontology, resource description framework (RDF) and 

extensible markup language (XML) etc. Unstructured-semantics approaches perform 

reasoning for semantic extraction from structures that do not posses semantics in their 

representations. Semantic cache query processing is an example of unstructured-semantics 

reasoning. Since standard query language (SQL) is structured but it do not contains 

semantics of data to be answered against a query and query itself. 

In this chapter we demonstrate several semantic cache reasoners for unstructured-

semantics. All of these semantic cache reasoning techniques represent query language to a 

mediate structured-semantic representation for semantic extraction. 

2. Semantic cache query processing 

In general research a semantic cache system can be grouped into two parts i) cache 
management and ii) query processing. Strategies for data management, replacing, 
coalescing, and indexing results of previously evaluated queries are mainly the part of 
semantic cache management. Query processing involves techniques that compute available 
and unavailable data from a semantic cache by performing some sort of reasoning over 
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semantic descriptions. Also query processing technique handles local query execution, 
retrieval of unavailable data from a remote server and formulation of the end results. In this 
chapter we focus on semantic cache query processing. 

At finer granularity semantic cache is a collection of semantic regions or semantic segments. 
Associated semantics for a cached query, which is a query specification (Lee et al., 1999) are 
stored in semantic cache along with resultant data is called a semantic region (Dar et al., 
1996) or semantic segment (Ren et al., 2003). 

 

Fig. 1. Relationship between Cached Query (QC) and User Query (QU). 

Formal definition of semantic segment can be seen in (Ren et al., 2003). A query processing 

technique can perform reasoning over semantic segments to determine whether cached data 

fully or partially or do not contributes to an incoming query. If the incoming query is fully 

answerable from a semantic cache, then no communication with the server is required. 

Similarly a partial answer to a query will reduce the amount of data retrieved from the 

server. 

In case of a partial answer, the user query is trimmed into two disjoint sub queries (Keller 

A.M. and Basu J., 1996): the query executed locally called Probe Query (ProbQ) and the 

query sent to the server named Remainder Query (RemQ) (Dar et al., 1996). The previous 

literature (Ren, Q et al., 2003),(Dar et al., 1996),(Lee et al., 1999),(Godfrey P. and Gryz J., 

1997),(Keller A.M. and Basu J., 1996) shows that this trimming is performed on the basis of 

relationship between the content of a semantic segment and the result required by an 

incoming query. Possible cases of the relationship between the incoming query and the 

semantics stored in the cache (as reported in the literature) is shown in Figure 1. White 

boxes represent previously stored query results and gray boxes shows incoming user 

queries. In Figure 1 rows (tuples) are represented horizontally and columns (attributes) are 

vertically and only select-project queries are considered. In each case a user query overlaps 

semantic cache region in a certain way. Case 2 depicts a horizontal partition in which some 

part of the incoming query tuples satisfied by cache semantics. Where in case 3, a projection 

of the query is available in cache and some attributes are missing, this situation is called a 

vertical partition. This figure represents that a partial answer is possible in case 2,3 and 4, 

where a user query can be fully answered from the cache in case 1. This figure is used to 

evaluate a semantic cache query processing scheme, too, i.e. whether a scheme incorporates 

all the cases or not. We argue that due to this misleading diagram, the missing implicit 

semantics are not being considered in the previous query processing techniques. Therefore, 

in this thesis we have adopted a new way of comparing the semantics of a user query and 

the cache semantics in the coming sections.t) 
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2.1 Semantic cache query processing criteria 

Previous surveys (Bashir M. F. and Qadir M. A., 2006a), (Ahmad, M and Qadir, M.A., 2008), 
(Jónsson B. Þór et al., 2006), (Hao X et al., 2005), (Halevy, A.Y., 2001), (Makki K. S and 
Andrei S, 2009) conducted over semantic cache query processing identified two main 
parameters for evaluation i.e. Maximum Data Retrieval (MDR) and fast query processing. 
Quantification of the MDR was not given in those surveys. Here we quantify it with the test, 
data from server (Ds) intersection data from cache (Dc) should be empty set i.e. Ds ∩ Dc = Φ. 
In general any technique which retrieves maximum possible or complete results from local 
cache in tractable time with this given quantification is said to be an efficient semantic cache 
query processing technique. 

2.2 Query 

A select-project query is a tuple < QUA, QUR, QUP,QUD>, where QUA is Select Clause of query 
which contains projected attributes. QUR is the From Clause which contains relation of a 
database D, from which data is to be retrieved. QUP is Where Clause which contains 
conjunctive or disjunctive compare predicates, a compare predicate is of the form P = a op c, 

where a   A {Attributes Set}, op   {  ,,,, }, c is a constant in a specific domain (Ren 

et al., 2003), QUD is the resultant data of this query. A query can be represented as π QUA σ QUP 
(QUR) in relational algebra. 

2.3 Amending query 

A query that only request a key attribute of a relation from a remote server to extract known 
available data from cache is called an amending query. When we know that some data is 
available in semantic cache but could not extract it precisely. Than we request the server for 
a key attribute for a user query and extract cached attributes (data) against those keys from 
cache. Requesting only keys require less computation on database server and low 
bandwidth over network, in general. 

Consider the following employee database information provided in example 1 below, which 
shall be used throughout evaluation in this chapters. The semantic cache model we follow is 
similar to the relational database model. The basic building blocks of the relational model 
are attributes (columns), rows (tuple), tables (relations) and relation schema. The schema 
defines the relations and the attributes with their data type in each relation. A row or a tuple 
is a set of attribute’s instances. 

2.4 Example 1 

Consider an employee database with a relation name Emp (Empid, Ename,Department, Age, 
Salary,Exp). The domain of the Age, Salary, Department and Exp attributes of Emp are 
{20,…,100},{0.1K,…,1K,…15K},{CS, EE, BI, BA},{1,..,50} respectively as shown in Figure 2.  
Also suppose that a cache already has following cached queries shown in Figure 3. 

3. Query processing techniques 

Work on query processing over semantic cache is mainly classified in query intersection 
(Lee et al., 1999), query trimming (Keller A.M. and Basu J., 1996),(Ren, Q et al., 2003), 
answering queries using views (Levy A.Y et al., 1996), (Duschka O.M. and Genesereth M.R.  
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Emp

Empid Ename
Depart

ment

Age

SalaryExp
 

Fig. 2. Employee relation. 

QC1 ← π Ename, Department σ Age ≥ 50 (Emp); 

QC2 ← π Age, Department (Emp); 

QC3 ← π Ename, Department σ Salary>10k (Emp); 

QC4 ← π Age, Salary σ Salary ≤ 30k (Emp); 

QC5 ← π Ename, Salary, Exp (Emp); 

QC6 ← π Age σ Age < 70 (Emp); 

QC7 ← π Age,Salary,Exp σ Salary≥1K Salary<=40K  

Fig. 3. Cached Queries. 

1997), (Pottinger R. and Levy A. 2000), semantic cache for web queries (Chidlovskii B and 
Borghoff U. M., 2000), (Qiong L and Jaffrey F. N., 2001), xml based semantic cache 
(Mandhani B. and Suciu D., 2005), (Sanaullah, M., 2008) and description logic based 
subsumption analysis in semantic cache (Baader et al., 1991a) (Hollunder et al., 1990) 
techniques. 

3.1 Query intersection 

Query processing for the five scenarios similar to Figure 1 and one additional scenario 

which shows cache as a subset of incoming queries (reverse of case 1 of Figure 1) was 

presented by Lee (1999, pp.28-36). Against each scenario probe and remainder query were 

computed based on cache and query intersection or difference. Intersection and difference of 

cache semantics and a posed query were mentioned at a very abstract level.  

Definition of intersection (Lee et al., 1999) between semantics of cache region QC and a user 

query QU on relation R is shown in statement (i) of Figure 4. This intersection consists of two 

parts. One is the common projected attributes while the other is combined condition of a 

user and cached query predicates (Shown in statement (ii) of Figure 4). A query or cache 

semantics are represented as a triple < πQ, σQ, operandQ >. πQ is the projected attributes, 

operandQ is the base relation. Where any predicate condition (σQ) is represented as a value 

domain list {dQ,1, dQ,2, ..., dQ,n} and a condition is satisfiable if none of the value domain is 

null. We elaborate this concept with an example. 

Consider the database schema information provided in example 1 above. A user query QU 
over cached query QC1 of Figure 3 are represented as triple < πQ, σQ, operandQ > in statement 
(iv) and (iii) of Figure 4 respectively. The query QU is statisfiable (or completely answerable) 
from QC1 because intersection of projected attributes is not empty and there is no null value 
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domain in predicate condition. According to Lee (1999, pp.28-36) two queries are disjoint if 
either intersection of their projected attributes is empty or there is no combined condition 
between user and cached query predicates. 

QU ∩ QC = <QUA ∩ QCA, QUP ∩ QCP, R>              (i) 

πQUA ∩ QCA , σQUP ∩ QCP               (ii) 

QC1 = <{Ename,Department}, {-,-,-,{50,…,100},-}, Emp> (iii) 

QU = <{Ename,Department}, {-,-,-,{55,….,100},-}, Emp> (iv)  

Fig. 4. Query Intersection (Lee et al., 1999). 

3.2 Query trimming 

The concept of query trimming was introduced by (Keller A.M. and Basu J., 1996) and 
formally given by Ren (2003, pp.192-210). Ren (2003, pp.192-210) gave a comprehensive 
algorithm for query processing.  In the start of the algorithms it is checked if the user query 
attributes are subset of cached semantics attributes, then perform query trimming based 
upon the implication or satisfiability of predicates. If the user query attributes is not a subset 
of cached semantics attributes, then there may be some common attributes. In this case, if 
query predicate implies cache predicates or there are common predicates between the query 
and cache semantics, then form the probe and remainder query as per the logic given by the 
algorithm. In other words the logic is based on checking implication and satisfiability of a 
user and cached query predicates (based upon the already published material, as explained 
in the next section) and finding common part between the user and cached query attributes. 

Much work has been contributed towards finding implication and satisfiablity between a 
user and cached query predicates (Guo S et al., 1996), (Härder T. and Bühmann A., 2008). 
Simplified concept of implication and satisfiability is, let us have a user query predicate QUP 
and semantic segment predicate QCP, then there are three scenarios: 

 QUP   QCP, i.e. User predicate implies segment predicates, implying that the whole 

answer of QUP is contained in QCP.  

 (QUP   QCP is satisfiable), implying that part of QUP answer is contained in QCP.  

 (QUP   QCP is unsatisfiable), implying that there is no common part between QUP and 
QCP. 

Remainder queries were trimmed again after comparing with other semantic cache 

segments with the same algorithm. It continues until it is decided that the cache does not 

further contribute to the query answering. This approach forms an iterative behavior, which 

was handled by a proposed query plan tree structure. This plan tree expresses the 

relationship of cache items and query subparts.  

Query trimming techniques have some short comings, such as time and space efficiency, 

and complexity of the trimming process (Makki K. S and Andrei S, 2009), (Makki K. S and 

Rockey M., 2010). When query is trimmed into probe (QUP QCP) and remainder (QUP 

  QCP) part, the negation of the cached query predicate in remainder part make it much 

more expanded term if it contains disjunctions. This expansion created by negation of a term 

was shown with example (Makki K. S and Andrei S, 2009). 
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A relational query can be visualized as a rectangle with boundaries set by query predicate 
values. So according to (Makki K. S and Andrei S, 2009), (Makki K. S and Rockey M., 2010) 
semantic cache query processing based on query trimming is problem of finding 
intersection between two finite rectangles. Six cases that are extended form of Figure 1.1 are 
given in (Makki K. S and Andrei S, 2009), (Makki K. S and Rockey M., 2010) to show 
relationship between rectangles of user and cached queries. These rectangular 
representations do not depict implicit knowledge present in the semantics of user and 
cached queries. An technique named Flattening Bi-dimensional Interval Constraints (FBIC) 
was proposed (Makki K. S and Andrei S, 2009). Based on FBIC an algorithm for handling 
disjunctive and conjunctive queries was given by Makki (Makki K. S and Rockey M., 2010). 
The algorithm works for only single disjunctive case, where conjunctive cases are same as 
provided by (Makki K. S and Andrei S, 2009). 

Finding intersection between rectangles of user and cached queries was done by comparing 
Bounds (Lower or Upper) of both rectangles. But computing comparable bounds were not 
given (Makki K. S and Andrei S, 2009), (Makki K. S and Rockey M., 2010). 

3.3 Satisfiability and implication 

Finding whether there exists a satisfiable part between two formulas or whether one implies 
the other is central to many database problems such as query containment, query 
equivalence, answering queries using views and database cache. So according to Guo (Guo 
S et al., 1996) implication is defined as “S implies T, denoted as S   T, if and only if every 

assignment that satisfies S also satisfies T”. Similarly satisfiability is defined as “S is 
satisfiable if and only if there exists at least one assignment for S that satisfies T.” (Guo S et 
al., 1996) had given algorithm to compute implication, satisfiability and equivalence for 
given conjunctive formulas in integer and real domain. Let us have a formula (Salary < 20K 
AND Salary > 8K AND Department = ‘CS’) is satisfiable, because the assignment {12K/Salary , 
CS/Department} satisfies the formula. Similarly a formula (Salary >10K OR Salary < 12K) is a 
tautology, because every assignment under this formula is satisfiable. 

Satisfiability and implication results in databases (Guo et al., 1996),(J.D. Ullman, 

1989),(A.Klug, 1988),(Rosenkrantz and Hunt, 1980), (Sun et al., 1989) are relevant to the 

computation of probe and remainder query in semantic cache query processing for a class of 

queries that involve inequalities of integer and real domain. Previous work models the 

problem into graph structure. 

Rosenkrantz and Hunt (Rosenkrantz and Hunt, 1980) provided an algorithm of complexity 

O(|Q|3) for solving satisfiability problem; the expression S to be tested for satisfiability is 

the conjunction of terms of the form X op C,   X op Y, and X op Y + C. 

Guo et al. (Guo et al., 1996) provided an algorithm (GSW) for computing satisfiability with 

complexity O(|Q|3) involving complete operator set and predicate type X op C, X op Y and 

X op Y + C. Here we demonstrate GSW algorithm (Guo et al., 1996) for finding implication 

and satisfiability between two queries. 

The GSW algorithm starts with transforming all inequalities into normalized form through 
given rules. It was proved by Ullman (J.D. Ullman, 1989) that these transformations still 
holds equality. After these transformation remaining operator set become {≤ ,≠ }. 
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(1) (X ≥ Y+C)   (Y ≤ X – C) 
(2) (X < Y +C)   (X ≤ Y + C)  (X ≠ Y + C) 
(3) (X > Y + C)   (Y ≤ X – C)  (X ≠ Y + C) 
(4) (X = Y + C)   (Y ≤ X – C)  (X ≤ Y + C) 
(5) (X < C)   (X ≤ C)  (X ≠ C) 
(6) (X > C)   (X ≥ C)  (X ≠ C) 
(7) (X = C)   (X ≤ C)  (X ≥ C) 

Satisfiability of a conjunctive query Q is computed by constructing a connected weighted-
directed graph GQ=(VQ,EQ) of Q after above transformation. Where VQ are the nodes 
representing predicate attributes of an inequality and EQ represent an edge between two 
nodes. An inequality of the form X op Y + C has X and Y nodes and an edge between them 
with C weight. The inequality X op C is transformed to X op V0 + C by introducing a 
dummy node V0. 

According to GSW (Guo et al., 1996) algorithm, for any query Q if a negative-weighted cycle 
(a cycle whose sum of edges weight is negative) found in GQ then Q is unsatisfiable. 
Otherwise Q is satisfiable. Testing satisfiability among user query QU and cached segment 
QS require us to construct a graph (GQu  Qs) of (QU  QS) and check GQu  Qs for any 
negative weighted cycle. Negative weighted cycle is found through Floyd-Warshall 
algorithm (R.W. Floyd, 1962). Complexity of Floyd-Warshall algorithm is O(|V|3), so 
finding satisfiability become O(|QU  QS |3).  

An algorithm with O(|S|3 + K) complexity for solving the implication problem between two 
conjunctive inequalities S and T was presented by Ullman (J.D. Ullman, 1989)  and Sun (Sun 
et al., 1989). Conjunctive queries of the form X op Y were studied by (A.Klug, 1988) and (Sun 
et al., 1989). Implication between conjunctive queries of the form X op Y +C was addressed 
by GSW algorithm (Guo et al., 1996) with complexity O(|QU|2 + |QC|). GSW Implication 
(Guo et al., 1996) requires that QU is satisfiable. At first the implication algorithm constructs 
the closure of QU i.e., a universal set that contains all those inequalities that are implied by 
QU. Then, QU  QS if QS is a subset of the QU closure. 

 

     

[(V0 ≤ Salary -1), (Salary ≤ V0 +40), (V0 ≤ Salary -20), (V0 ≤ Age -30), (Age ≤ V0 +80), (Exp ≤ V0 +40)]  

 

 

Fig. 5. (a) [QU1  QS] and GQU1  QS (b) Shortest Path Table 

Example 2: Let us have a user query QU1 =  Age,Salary,Exp  Salary≥20K  Age≥30  Age≤80  Exp≤40 

over cached segment QC7 of Example 1. The directed weighted graph GQU1  QC7 of QU1  QC7 
is shown in Figure 5(a). QU1 is satisfiable with respect to QC7, as there is no negative 
weighted cycle in GQU  QC7. 
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3.4 Bucket algorithm 

As discussed earlier, a user of data integration system poses query in term of mediated 
schema, because root sources are transparent in such systems. A module of data integration 
system translate/reformulate a user query that refers directly to the root sources. Several 
reputed algorithms exist for such query reformulation/rewriting (Levy A.Y et al., 1996), 
(Duschka O.M. and Genesereth M.R. 1997), (Pottinger R. and Levy A. 2000). In context of 
semantic cache the root sources are the cache segments and the mediated schema is the 
cache description. The goal of the bucket algorithm (Levy A.Y et al., 1996) is to reformulate a 
user query that is posed on the mediated (virtual) schema into a query that refers directly to 
the available (local/cached) data sources. This reformulation is known as query-rewriting. 
Both the query and the sources are described by select-project-join queries that may include 
atoms of arithmetic comparison predicates. The bucket algorithm returns the maximally-
contained rewriting of the query using the views. This rewriting is a maximally-contained 
but not an equivalent one. 

We demonstrate working (in context of semantic cache query processing) of bucket 
algorithm with example. 

QC1 ← π Ename, Department σ Age ≥ 50 (Emp); 

QC2 ← π Age, Department (Emp); 

QC3 ← π Age, Department σ Exp < 15 (Emp); 

QU ← π Age, Department σ Exp > 20   Age < 70 (Emp); 
 

Fig. 6. User Query (QU) Over Cached Queries 

Let us have QC1, QC2 and QC3 (shown in Figure 6) in cache, and a user query QU (shown in 
Figure 6) is posed over them. As shown in Table 1 below, according to bucket algorithm 
both cached queries QC1 and QC2 are candidate selection for its bucket. Since there is no 
inconsistency between user query predicate and cached queries (i.e. Age ≥55 consistent with 
Age < 70) when compared in isolation (atomically). Where QC3 is excluded due to predicate 
inconsistency (i.e. Exp < 15 inconsistent with Exp > 20). In second step of bucket algorithm, 
elements of buckets are combined together to form a rewriting of the user query. The 
rewritten query (Q’) in this case is shown in Figure 7 below.  

 

Table 1. Contents of Bucket. The attribute not required by user query is shown as primed 
attribute. 
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Q’← π Age, Department σ Age < 70 (QC1,QC2);
 

Fig. 7. Rewritten Query Q’. 

3.4.1 Example 

We follow the results produced by maximally-contained query rewriting algorithm named 

bucket algorithm (Levy A.Y et al., 1996) provided above. The predicate (Exp > 20) is pruned 

because query cannot be executed over cached data as there is no information present 

against Exp attribute. Further more if the rewritten query (Q’ shown in Figure 7) executed 

locally, it will give unnecessary/incorrect results. These results are maximally-contained or 

maximum data retrieval (MDR) but the results contain tuples that are not part of the actual 

user query (QU). Figure 8 (a) shows the collective dataset of cached queries QC1 and QC2 

(Figure 6). The rewritten query (Q’) executed over cached data is shown in Figure 8 (b). The 

data items shown as strike circle ( ) in Figure 8 (b) are the required results of user query 

(QU). Where results retrieved by the rewritten query (Q’) are not the precise answer for the 

user query (QU). 

EE CS BA BI

30

40

50

60

70

80

90

100

Department

(Jhon)

(Kapy)

(Nikky)

(Mike)

(Sam)

(David)

(Sarah)

(Ronni)

(Frank)

(Gage)

(Ford)

(Mike Jr)

(Sami)

  

Fig. 8. (a) Collective Data of Cached Query QC1 and QC2. (b) Rewritten Query Q’ Over 
Cached Query QC1 and QC2. 

Bucket algorithm does not compute probe and remainder queries separately. So there is no 

way to determine the available and unavailable answer from the cache. 

3.5 Semantic reasoning for web queries 

A web-based cache system is different from data caching. In web cache, special proxy 

servers store recently visited pages for later reuse. A uniform resource locater (URL) is a 

user query that is posed over web cache system. Any page in cache is being used whenever 

a user given URL matches the cache page header. This type of caching strategy is similar to 

page-caching, where binary results (complete answer or no-answer) are possible but partial 

answer cannot be determined. 
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However, searching performed over web resources through Boolean queries (keywords 
conjunction with AND & NOT operators) do not work in a plain page caching system. 
Because the user query in this case is not a URL, and extracting qualified tuples against an 
individual keyword or whole query from page headers is not possible (Chidlovskii B and 
Borghoff U. M., 2000), (Qiong L and Jaffrey F. N., 2001). Semantic cache was introduced as 
an alternative to plain page caching where cache is managed as semantic regions. 

Web queries over web resources are different than queries posed over databases. As there is 
no attribute and predicate part in web queries, also it neither contain join operator. And the 
problem of answering web-queries can be reduced to set containment problem. 

There is a lot of research work on semantic caching for web queries. Such as (Chidlovskii B 

and Borghoff U. M., 2000) addressed both semantic cache management and query 

processing of web queries for meta-searcher systems. Their technique is based on a 

signature file method. In which a signature is given to every semantic region for processing 

all cases (similar to Figure 1) of containment and intersection. 

A cache model was proposed for database applications using web techniques (Anton J. et 

al., 2002). Cache elements were stored as web pages/sub pages called fragments and sub 

fragments with their header information called template. Fragments can be indexed or 

shared among different templates. Fragments, sub-fragments and templates were updated 

or expired based on their unique policy which included expiration, validation and 

invalidation information. In this case data retrieval is performed by matching template 

information with requested query and subsequent fragments or sub-fragments are returned. 

Partial answer retrieval is possible in this technique as sub-fragments alone can be resulted 

to a user query. But still this technique is closer to page cache technique, where each 

fragment is itself a page.  

3.6 Pattern Prime Product (PPT) reasoning for XML queries  

The information that is available on the web is unstructured, extensible mark-up language 

XML is used to provide the structure to the web information/data. As described above the 

querying mechanism for current web is keyword based search. Keyword based search is 

considered to be the non-semantic (Mandhani B. and Suciu D., 2005), (Sanaullah, M., 2008). 

A novel method of checking containment is proposed by Gang Wu and Juanzi Li (Gang Wu 

and Juanzi Li, 2010). Each node in the query is assigned a unique prime number and then 

the product of these prime numbers is calculated by a specific method. This product is 

called Pattern’s Prime producT (PPT). The query is stored in the cache along with this PPT.  

On each next issued query the same procedure is followed to assign unique prime numbers 

to each node and if any node of the query matches with any existing stored view’s node 

then the same prime number is assigned to new node as it was allotted to previously stored 

node. The PPT of the new query is calculated and then divided by the PPT of all stored 

views. If any of stored views completely divides the PPT of the query then that view is 

selected and rest are rejected. The selected view further processed to make sure whether the 

occurrences of the nodes in the query and view is similar,  i.e Qk = Vk where k is the 

position of kth axis node. The PPT of each infix is also checked. 
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3.6.1 Example  

An XML document is shown in Figure 9. A user issues a query /lib/book and as a result the  
technique loads all the results of “lib”, “book” nodes in the cache and assigns prime 
numbers to each node i.e. “lib”=2, “book”=3. After assigning the prime numbers a prime 
product is calculated as follows. 

 (2*3), here 6 is the Tree Pattern Prime Product of the view. 

Now if the user again issues the query /lib/book/author then each node in the query is 
assigned the same prime number as it was previously assigned to the nodes in the view. 
Here 2 is assigned to “lib” and 3 is assigned to “book”. “author” appeared first time so a 
new prime number i.e. 5 is assigned to author node. Dividing the prime product of query 
(90) by the prime product of view (6) will yields the result 15, means query is completely 
divided by the view. If the prime product of a view completely divides the prime product of 
a query then it further checks the following conditions. Whether the order of appearance of 
each axis node in the view and query is similar and if the answer is true then it means that 
the query is contained in the view. 

3.6.2 Example 

If a query contains predicates, for example A[b[b[a]]]/c/d the tree of this query is shown in 
figure 9. The prime product is calculated as shown below 

                

Fig. 9. Prime Product Calculation. 

PPT of b=(2*3)*(3*1)*(1*2)*(2*7) = 504 
PPT of c= (2*7)*(7*1)*(1*2)*(2*3) = 1176 

Now only the PPT of b completely divides the PPT of the query so b is selected in the first 
condition of the algorithm. 

This algorithm retrieves the results of all axis nodes given in the query for example if we 
issue following query to the document shown in figure 1 “\lib\book[price>30]”. Then apart 
from the presence of a predicate it retrieves all the result of book node and stores it in the 
cache. This action requires more cache space. 

3.7 Subsumption analysis reasoning 

Description logics (a language of logic family) DL claims that it can express the conceptual 
domain model/ontology of the data source and provide evaluation techniques. Since 
structured query language (SQL) is a structured format, it can be classified under 

www.intechopen.com



 
Semantics – Advances in Theories and Mathematical Models 

 

92

subsumption relationship. A well known technique named Tabulex provides structural 
subsumption of concepts. Description logic (DL) is assumed to be useful for semantic cache 
query processing and management (Ali et al. 2010). The relational queries can be modelled / 
translated in DL and DL inference algorithms can be used to find query containments. The 
translation of relational query to DL may have not the same spirit as that of querying 
languages for DL systems, but is sufficient for finding the query containment of relational 
queries (Ali et al. 2010). The subsumption reasoning (containment) of the semantics of the 
data to be cached is very useful in eliminating the redundant semantics and minimizing the 
size of semantic cache for the same amount of data. 

The tableaux algorithm (Baader et al., 1991a) (Hollunder et al., 1990) is instrumental to 
devise a reasoning service for knowledge base represented in description logic. All the facts 
of knowledge base are represented in a tree of branches with intra-branch logical AND 
between the facts and inter-branch logical OR, organized as per the rules of tableaux 
algorithm (Baader et al., 2003). A clash in a branch represents an inconsistency in that 
branch and the model in that branch can be discarded. The proof of subsumption or 
unsatisfiability can be obtained if all the models (all the branches) are discarded this way 
(Baader et al., 2003). 

The proposed solution (Ali et al. 2010) consists of two basic steps: First user query 
(relational) is translated into DL. The translated query is then evaluated for subsumption 
relationship with previously stored query in the cache by using the sound and complete 
subsumption algorithm given in (Baader et al., 91b) (Lutz et al., 2005). 

3.7.1 Example 

Considering, another scenario having predicates conditions with disjunctive operator in 
Figure 10. All the three branches yields to clash in checking Q3 ⊑ Q4; therefore, Q4 contain 
Q3. In first branch (Line 8 in Figure 10) after applying the Or rule, Emp and ⇁Emp yields to 
clash. In second branch (Line 9 in Figure 10) ename and ⇁ename yields to clash, and in third 
branch (Line 10 Figure 10), ≥30k(sal) and ≤19k(sal) yields to clash. All tree branches (Line 8, 9, 
10 of Figure 10) yield to clash in opening the tableaux algorithm; therefore, Q3 ⊑ Q4. 

 

 
 

Fig. 10. Query Containment using Tableux.  
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4. Conclusion 

In this chapter we demonstrated several reasoning techniques of query processing in 
semantic cache. This chapter provides overview of semantic cache application in different 
domains such as relational databases, web queries, answering from views, xml based 
queries and description logic based queries. 

Semantic cache query processing techniques are unstructured-semantics approaches, in 
which semantics are extracted from structured representations that have no semantics 
within their representations.  
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