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1. Introduction 

Since the discovery of the first receptor tyrosine kinase (RTK) proteins in the late 1970s and 

early 1980s, many scientists have explored the functions of these important cell signaling 

molecules. The finding that these proteins are often deregulated or mutated in diseases such 

as cancers and diabetes, together with their potential as clinical therapeutic targets, has 

further highlighted the necessity for understanding the signaling functions of these 

important proteins. The mechanisms of RTK regulation and function have been recently 

reviewed by Lemmon & Schlessinger (2010) but in this review we instead focus on the 

results of several recent studies that show receptor tyrosine kinases can function from sub-

cellular localisations, including in particular the nucleus, in addition to their classical plasma 

membrane location. Nuclear localisation of receptor tyrosine kinases has been demonstrated 

to be important for normal cell function but is also believed to contribute to the 

pathogenesis of several human diseases. 

2. Classical signaling by receptor tyrosine kinases 

The ability of a cell to receive signals from the outside, and deliver these inside so it can 

respond appropriately and in co-ordination with other cells, is required for the correct 

functioning of a multicellular organism as a whole. Cells communicate in two key ways – 

direct physical interaction or by way of communication molecules. These communication 

molecules, collectively called ligands, include those (eg steroid hormones, vitamins) that can 

pass directly through the lipid bilayer of the cell and interact with intracellular proteins and 

those such as protein hormones and peptide growth factors which cannot enter the cell 

directly. These latter ligands interact with plasma membrane-associated proteins called 

receptors to activate cascades of interactions between intracellular proteins that can result in 

a diverse range of responses and ultimately determine cell behaviour (Figure 1).  

One large family of membrane receptors, the receptor tyrosine kinases (RTKs), is 
characterised by their intrinsic protein tyrosine kinase activity, an enzymatic function which 
catalyses the transfer of the γ phosphate of ATP to hydroxyl groups on tyrosine residues on 
target proteins (Hunter, 1998). Binding of the ligand stabilises dimers of the receptors to 
allow autophosphorylation via activation of the receptors’ intrinsic tyrosine kinase activity 
that then initiates a network of sequentially acting components such as those of the 
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Ras/MAPK (mitogen-activated protein kinase) pathway, or single component systems, such 
as the STAT pathway. The combination of the activated signal transduction pathways 
constitute the mechanism by which this intracellular transfer of biochemical information is 
mediated and can determine the biological responses of cells to growth factors. Members of 
the RTK family play important roles in the control of most fundamental cellular processes 
including cell proliferation and differentiation, cell cycle, cell migration, cell metabolism and 
cell survival.  

 

Fig. 1. Classical receptor tyrosine kinase signaling. Ligand binding stablilises dimers of the 
receptors within the plasma membrane. Autophosphorylation of one intracellular kinase 
domain by the other activates a signal transduction cascade into the cell so the cell can 
respond appropriately. 

3. Protein structures of receptor tyrosine kinases 

The general structure of RTK proteins is similar and all members of the RTK family have an 

intracellular kinase domain through which signaling is mediated by phosphorylation of 

tyrosine residues. In addition to the kinase domain, all RTKs have an extracellular domain, 

usually glycosylated, separated from the cytoplasmic part, containing the kinase domain, by 

a single hydrophobic transmembrane α helix. With the exception of the insulin (IR) and 

insulin-like growth factor (IGFR) receptor families, which are disulfide linked dimers of two 

polypeptide chains (α and β) that form a heterodimer (α2β2), RTKs are normally present as 

monomers in the cell membrane. Ligand binding induces receptor dimerisation resulting in 

autophosphorylation (the kinase domain of one RTK monomer cross-phosphorylates the 

other and vice versa). Receptor dimerisation is further stabilised by receptor:receptor 

interactions and the clustering of many receptors into lipid rich domains on the cell 

membrane (Pike, 2003). Further division of the 58 human RTKs into 20 different classes is 

based on similarities in primary structure, and the combinations of further functional 

domains in both extracellular and intracellular parts of the proteins (Figure 2).  

4. Trafficking of receptor tyrosine kinases 

Ligand activation of receptor tyrosine kinases present on the plasma membrane of cells 

promotes numerous downstream signal transduction pathways that result in cell responses 

including proliferation, migration and differentiation. Following ligand activation, virtually 

all receptor tyrosine kinases are rapidly endocytosed. This would allow the cell to 
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discriminate new signals from old ones but it has been suggested that, because trafficking is 

a complex and highly regulated process, it is likely that endocytosis provides more than just 

a mechanism for removal of receptor-ligand complexes from the cell surface. Endocytosed 

receptors can be either recycled back to the membrane after disengagement of the ligand, or 

targeted for lysosomal degradation. Most receptor tyrosine kinases are internalised via 

clathrin-coated pits which then shed the clathrin and deliver the internalised receptor-ligand 

complexes to early endosomes. Bifurcation of receptor trafficking occurs in the early 

endosomes, allowing either recycling back to the plasma membrane or degradation through 

lysosomes. In some cases continued signaling from the endosomes has also been 

demonstrated (Ceresa & Schmid, 2000; Di Fiore & De Camilli, 2001; Wang et al., 2004a). 

 

Fig. 2. Domain structures of 58 human receptor tyrosine kinases determines their sub-

classification into 20 different families. The name of each family is shown above with the 

members listed below. A key indicates the various motifs common to individuals within 

that family. 

Recent data also suggest that endocytosis controls sub-cellular localisation of activated 

receptors and their signaling complexes (Beguinot et al., 1984; Sorkin & Waters, 1993). For 

example, the prototypical receptor tyrosine kinase, the Epidermal Growth Factor Receptor 

(EGFR), has been found in caveoli, Golgi, endoplasmic reticulum, lysosome-like structures 

and nuclear envelopes (Carpentier et al., 1986; Lin et al., 2001). Given the continuity of the 

endomembrane system, linking endoplasmic reticulum, Golgi membranes, the plasma 
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membrane, vesicles of both the endosomal and lysosomal systems and even the nuclear 

membrane, it is probably not surprising that receptors would be found within the 

membranes of these structures.  

It also appears that endocytosis and trafficking of vesicles is involved in localisation of 

receptor tyrosine kinases to the nucleus. Nuclear localisation of receptor tyrosine kinases has 

emerged as a highly significant occurrence in the last decade, with reports indicating that 

the EGFR (ErbB-1 and -2), FGFR1 and IGF-IR can all translocate to the nucleus as full-length 

receptors or protein fragments devoid of the extracellular domain. In some cases this has 

been found to be ligand-dependent, within as early as 2 minutes of ligand stimulation, 

although there are also cases in which nuclear translocation appears to be ligand-

independent. Nuclear localisation of several receptor tyrosine kinases has been identified in 

cells of normal tissues, including EGFR in the nucleus of regenerating liver cells (Marti and 

Wells, 2000) and ErbB-4 in the nuclei of secretory epithelium in the lactating breast (Long et 

al., 2003; Tidcombe et al., 2003). For many receptor tyrosine kinases, also including EGFR 

and ErbB-4, nuclear localisation has been linked to diseases including cancer, diabetes and 

inflammation (Citri & Yarden, 2006; Lo & Hung, 2006; Massie & Mills, 2006; Bublil & 

Yarden, 2007; Wang & Hung, 2009; Wang et al., 2010). For example, the nuclear presence of 

EGFR is associated with high grade breast and ovarian cancers and is associated with the 

development of resistance to some radio-, chemo- and monoclonal antibody-therapies (Lo et 

al., 2005a; Xia et al., 2009).  

5. Mechanisms of receptor tyrosine kinase translocation to the nucleus 

It has been hypothesised that in order for a receptor tyrosine kinase to translocate to the 
nucleus it must somehow ‘escape’ from the lipid bilayer of the cell surface and/or the 
trafficking of the endomembrane system. Exactly how this happens is only just being 
explored experimentally, but Wells & Marti (2002) have proposed three potential ‘escape’ 
mechanisms using EGFR as a model receptor tyrosine kinase. In the first, a mutant EGFR 
protein, lacking the transmembrane domain, forms a dimer with a wild-type receptor on the 
cell surface. Binding of EGF causes internalisation of the mutant-wild-type dimer via a 
clathrin-coated pit into an early endosome. The mutant EGFR is disassociated from the wild-
type protein in the endosome and released into the cytosol, and from there it is transported 
into the nucleus. In the second scenario, full-length wild-type EGFR is trafficked from the 
plasma membrane to the endoplasmic reticulum, where it interacts with an accessory 
protein that removes it from the membrane for translocation into the nucleus. In the third, 
EGFR is targeted by proteases at the plasma membrane and an intracellular fragment 
translocates to the nucleus again by interaction with nuclear transport proteins. Recently, 
Liao & Carpenter (2007) provided support for the second scenario by showing that EGFR in 

the endosome associates with an accessory protein Sec61β, a component of the Sec61 
translocon and is then retrotranslocated from the ER to the cytoplasm and from there 
translocated to the nucleus by nuclear transport proteins. 

6. Nuclear localisation sequences and importins 

Transport of proteins into the nucleus through the nuclear-pore-complex can be facilitated 

by the dedicated nuclear transport receptors of the β-karyopherin family which includes the 
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importins (Gorlich and Kutay, 1999). Proteins translocated via importins contain nuclear 

localisation signals (NLS), a short stretch of amino acids that mediates the transport of 

proteins into the nucleus (Cokol et al., 2000). NLS motifs can be either monopartite, 

characterised by a cluster of basic residues preceded by a helix-breaking residue, or 

bipartite, where two clusters of basic residues are separated by 9–12 residues (Cokol et al., 

2000). In the classical process of NLS-mediated nuclear translocation, an importin-α adaptor 

protein binds to a lysine-rich NLS in the cargo protein. An importin-β protein then binds to 

this importin-α/cargo complex through an NLS in the importin-α protein itself and guides 

the complex through the nuclear pore. Importin-β proteins are the key import mediators 

and can also bind non-classical NLS motifs, of which there are several types, to transport 

proteins without requiring importin-α interaction. In addition to basic NLSs, several other 

small epitopes have been identified that, when phosphorylated, can promote nuclear import 

(Nardozzi et al., 2010). These include the nuclear transport signal (NTS) of ERK1/2, which is 

a Ser-Pro-Ser (SPS) motif that, upon stimulation, is phosphorylated and functionally active 

as a binding site for the nuclear transport receptor importin-β7 (Chuderland et al., 2008).  

7. Receptor tyrosine kinases reported to translocate to the nucleus 

7.1 Epidermal Growth Factor Receptor (EGFR)/ErbB family 

The Epidermal Growth Factor Receptor (EGFR) family of receptor tyrosine kinases, also 
known as ErbB (named after the viral oncogene v-erb-B2) or Human Epidermal growth 
factor Receptor (HER) receptors, contains four members: EGFR/ErbB-1/HER1, ErbB-
2/HER2/Neu, ErbB-3/HER3 and ErbB-4/HER4. These receptors are expressed in various 
tissues of epithelial, mesenchymal and neuronal origin. Activation of ErbB receptors is 
controlled by the spatial and temporal expression of their 11 different ligands, all encoded 
by separate genes and all members of the EGF family of growth factors. These include EGF, 
epigen, transforming growth factor alpha (TGF-α), and amphiregulin, which bind EGFR; 
neuregulins (NRGs) 1,2,3,4, which bind ErbB-3 and/or ErbB-4, and betacellulin, heparin-
binding EGF-like growth factor, and epiregulin, which bind EGFR and ErbB-4 (Riese & 
Stern, 1998). Ligand binding induces receptor dimerisation, and both homodimers and 
heterodimers with other ErbBs may be formed, and this then leads to the activation of a 
diverse range of downstream signaling pathways depending on the dimers and cross-
activation of other ErbBs on the cell surface (Stern et al., 1986; Riese et al., 1995; Riese & 
Stern, 1998; Zaczek et al., 2005). Heterodimerisation is particularly important for signaling 
through ErbB-2, which lacks a conventional growth factor ligand, and ErbB-3, which has an 
inactive/impaired kinase domain. 

Excessive EGFR, ErbB-2 and ErbB-3 signaling, as a result of receptor over-expression, 

mutations or autocrine stimulation, is a well known hallmark of a wide variety of solid 

tumours and leads to both increased cell proliferation and resistance to growth-inhibitory 

cytokines (Hynes & Lane, 2005). In contrast, ErbB-4 appears to be associated with growth 

suppression and improved patient prognosis in breast cancer (Jones, 2008; Muraoka-Cook et 

al., 2008). In addition, all four members of the ErbB family have a sub-membrane importin 

alpha-binding basic NLS that allows transport from the cytosol to the nucleus by the 

importin α/β complex. Consequently, ErbB proteins have been detected in the nucleus of 

both normal cells and cancer cells (Marti et al., 1991; Marti & Hug, 1995; Marti & Wells, 2000; 

Citri &Yarden, 2006; Lo & Hung, 2006; Massie & Mills, 2006; Bublil & Yarden, 2007; Wang & 
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Hung, 2009; Wang et al., 2010). In multiple cancer types, nuclear accumulation correlates 

with poor patient survival, tumor grade, and pathologic stage (Lo et al., 2005a; Psyrri et al., 

2005; Junttila et al., 2005; Koumakpayi et al., 2006; Lo & Hung, 2006; Maatta et al., 2006; 

Hoshino et al., 2007; Xia et al., 2009;  Hadzisejdic et al., 2010).  

7.1.1 Epidermal Growth Factor Receptor (EGFR/ErbB-1/HER1) 

Nuclear EGFR, and its ligands EGF and proTGF-α, were first observed in hepatocytes 

during liver regeneration (Raper et al., 1987; Marti et al., 1991; Marti & Hug, 1995; Marti & 

Wells, 2000; Grasl-Kraupp et al., 2002). Translocation of EGFR to the nucleus is also induced 

by DNA damage caused by irradiation (UV and ionizing) and cisplatin treatment but this 

appears to be ligand-independent (Dittmann et al., 2005; Xu et al., 2009). Full length EGFR is 

translocated into the nucleus through interactions with importin β-1, the nucleoporin 

protein Nup358 and proteins known to be involved in endocytotic internalisation of these 

proteins from the plasma membrane. Once in the nucleus, EGFR has three different roles 

depending on the initial signal, 1) as a direct regulator of gene transcription, 2) regulating 

cell proliferation and DNA replication via its kinase function, and 3) DNA repair and 

chemo- and radio-resistance through protein-protein interactions (Lin et al., 2001; Dittmann 

et al., 2005; Wang et al., 2006; Das et al., 2007; Kim et al., 2007; Wanner et al., 2008; Hsu & 

Hung, 2007). As a direct regulator of gene transcription, the C-terminal domain of EGFR 

directly interacts with the genome through binding and activating AT-rich sequences in the 

cyclin D1, nitric oxide synthetase (iNOS), Aurora-A and B-myb promoters (Liao and 

Carpenter, 2007; Lo, 2010). Nuclear EGFR interacts with STAT5 or STAT3 to transactivate 

the expression of the Aurora-A or iNOS genes respectively (Hung et al., 2008; Lo et al., 

2005b). Nuclear EGFR can regulate cell proliferation and DNA replication by direct tyrosine 

phosphorylation of target proteins including chromatin bound proliferating cell nuclear 

antigen (PCNA) (Wang et al., 2006). EGFR kinase activity phosphorylates PCNA on tyrosine 

211, stabilising the PCNA protein and stimulating DNA replication. In its third role, nuclear 

EGFR stimulates DNA repair by forming a direct protein-protein interaction with DNA-

dependent protein kinase (DNA-PK) (Dittmann et al., 2005). 

In addition to localisation to the plasma membrane and the nucleus, EGFR has also been 

found in the Golgi Apparatus, endoplasmic reticulum and the mitochondria (Carpentier et 

al., 1986; Lin et al., 2001; Boerner et al., 2004). EGFR was first reported in the mitochondria 

by Boerner et al., (2004) who found that in the presence of EGF, Src mediated the 

phosphorylation of EGFR residue Y845. EGFR phosphorylated at Y845 was found in the 

mitochondria and interacted with cytochrome c oxidase subunit II (CoxII) to possibly 

regulate cell survival. The method by which EGFR is translocated to the mitochondria is 

unknown, but was not related to endocytotsis of the EGFR protein and did not involve the 

function of Shc adaptor proteins (Yao et al., 2010). Furthermore, deletion studies showed 

that a putative mitochondrial-targeting signal between amino acids 646 and 660 was only 

partially responsible for migration (Boerner et al., 2004).  

7.1.2 ErbB-2/HER2/Neu 

Although ErbB-2 is catalytically active, it cannot bind the heregulin (HRG) ligand directly, 

but instead dimerises with either HRG-bound ErbB-3 or ErbB-4 to form a complex that is 
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capable of signaling through either ErbB-2 or ErbB-4 (ErbB-3 is catalytically 

inactive/impaired) (Carraway et al., 1994). Upon HRG stimulation, cell-membrane 

embedded ErbB-2 migrates from the cell surface via early endosomes and is then either 

targeted to lysosomes for degradation, or recycled back to the surface. By an as yet 

undefined mechanism, ErbB-2 can also be removed from the lipid bilayer to form a complex 

with both importin β1 and EEA1 (Giri et al., 2005). This complex then moves through the 

nuclear pore complex into the nucleus. Once in the nucleus, ErbB-2 can form a complex with 

β-actin and RNA polymerase-1, enhancing binding of RNA pol 1 to rDNA, and progressing 

the early and elongation steps of transcription to expedite rRNA synthesis and protein 

translation (Li et al., 2011). The nuclear function of ErbB-2 would appear to be unrelated to 

its normal signaling role transduced through PI3-K and MEK/ERK because inhibitors to 

these kinases (LY294002 and U0126, respectively) did not affect the levels of 45S pre-rRNA 

in these cells. In addition to this role in expediting overall rRNA synthesis and protein 

translation, nuclear ErbB-2 has also been shown to bind to the promoter of the 

cyclooxygenase enzyme (COX-2) and up-regulate its expression. COX-2 catalyzes the 

conversion of lipids to inflammatory prostaglandin and contributes to increased anti-

apoptotic, pro-angiogenic, and metastatic potential in cancer cells (Vadlamudi et al., 1999; 

Howe et al., 2001; Gupta & DuBois, 2001; Half et al., 2002; Subbaramaiah et al., 2002; Turini 

& DuBois, 2002). The promoters of PRPK, MMP16 and DDX10 have also been identified as 

direct targets of nuclear ErbB-2 (Wang et al., 2004b). 

7.1.3 ErbB-3/HER3 

The kinase domain of ErbB-3 has been described as either catalytically inactive or 
impaired. Despite this ErbB-3 forms dimers with other ErbB receptors, and can recruit 
novel proteins to activate diverse signaling pathways (Guy et al., 1994; Zaczek et al., 
2005). Intact ErbB-3 was detected in nuclei of prostate cancer cells in metastatic specimens 
(Koumakpayi et al., 2006; Cheng et al., 2007). Nuclear localisation was then studied in a 
model of prostate cancer using the MDA-PC 2b cells and this demonstrated that both the 
tumour microenvironment and androgen status influenced nuclear localisation of ErbB-3 
in these cells (Cheng et al., 2007). Metastasis of prostate cancer cells to the bone and 
depletion of androgens from subcutaneous tumours both increased the nuclear 
translocation of ErbB-3. This also correlated with a decrease in cell proliferation. Once the 
tumours resumed aggressive growth, ErbB-3 then relocalised from the nucleus to the 
membrane and cytoplasm of the prostate cancer cells. This suggests that nuclear ErbB-3 
may be involved in the progression of prostate cancer in bone after androgen-ablation 
therapy. ErbB-3 has also been identified in the nucleus, and possibly within the nucleolus, 
of both normal and malignant human mammary epithelial cells (Offterdinger et al., 2002). 
The role of nuclear ErbB-3 in these cells has not been determined but yeast two-hybrid 
approaches have been used to identify several transcription factors that associate with 
ErbB-3 including p23/p198 (Yoo & Hamburger, 1999), early growth response-1 (Thaminy 
et al., 2003) and the zinc finger protein ZNF207 (Thaminy et al., 2003) suggesting a gene 
regulation function. Finally, alternative transcription initiation of the ErbB-3 gene in 
Schwann cells leads to the production of a nuclear targeted variant of ErbB-3 that binds to 
chromatin and regulates the transcriptional activity of the ezrin and HMGB1 genes 
(Adilakshmi et al., 2011). 
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7.1.4 ErbB-4/HER4 

ErbB-4 has multiple functions during embryogenesis (Gassmann et al., 1995) and expression 

has recently been shown to be essential during breast development and lactation. In the 

lactating breast, ErbB-4 localizes to the nuclei of secretory epithelium (Long et al., 2003; 

Tidcombe et al., 2003). A unique proteolytic cleavage mechanism leads to the nuclear 

translocation of an intracellular fragment of ErbB-4. Cell membrane expressed ErbB-4 is 

successively cleaved by TACE/ADAM17, to release the ectodomain, and then γ-secretase to 

release an 80 kDa soluble intracellular fragment (s80) (Ni et al., 2001). This active kinase 

fragment binds to YAP (Yes-associated protein) which facilitates its translocation to the 

nucleus (Komuro et al., 2003). ErbB-4 also has three potential polycationic NLSs in its 

carboxy-terminal part which may provide an alternative route for nuclear translocation 

(Williams et al., 2004). The ErbB-4 s80 fragment functions as a nuclear chaperone for the 

STAT5A, co-translocating this transcription factor and regulating the expression of target 

genes including β-casein by binding with STAT5 to the β-casein promoter (Long et al., 2003; 

Williams et al., 2004). ErbB-4 also contains a nuclear export signal (NES) recognised by 

exportin proteins allowing transport of the protein out of the nucleus as well. 

7.2 Fibroblast growth factor receptor family  

The fibroblast growth factor (FGF) family consists of 18 secreted polypeptidic growth factors 

that bind to four high-affinity receptors (FGFR1-4) and assist in the regulation of cell 

proliferation, survival, migration and differentiation during development and in adult 

tissue homeostasis (Wesche et al., 2011). FGFs also bind to low-affinity heparan sulfate 

proteoglycans (HSPGs) present on most cells, which assist in the formation of the FGF-FGFR 

complex and protect the ligands from degradation. Overactivity of FGFR signaling is 

associated with several developmental disorders and cancer (Wesche et al., 2011). 

7.2.1 FGFR1 (Fibroblast growth factor receptor 1) 

Nuclear localisation of full length FGFR1 has been reported in astrocytes, glioma cells, 
neurons, fibroblasts and retinal cells and has been shown to be important for neuronal 
differentiation in the central nervous system (Stachowiak et al., 2003a; Stachowiak et al., 
2003b). Nuclear accumulation is induced by many different stimuli including activation of 
acetylcholine receptors, stimulation of angiotensin II receptors, activation of adenylate 
cyclase or protein kinase C. Biotinylation of cell surface proteins showed that nuclear FGFR1 
was unlikely to have been derived from the cell surface (Stachowiak et al., 1997; Peng et al., 
2002). Because nuclear FGFR1 is glycosylated the suggestion is that the protein is at least 
partially processed through the ER-Golgi but that it is not stable in the endomembrane 
system and is released into the cytosol (Myers et al., 2003). It is also not clear how FGFR1 is 
then translocated to the nucleus as it lacks a typical NLS. However, several members of the 
fibroblast growth factor (FGF) family, including FGF-1 and FGF-2, lack signal peptide 
sequences and are therefore found in trace amounts, if at all, outside of cells. Some of these, 
for example FGF-2, have nuclear localisation sequences and are highly concentrated in the 
cell nucleus and it is believed that these FGF ligands act as chaperones for the translocation 
of receptors like FGFR1 into the nucleus (Myers et al., 2003). Although FGFR1 in the nucleus 
has been demonstrated to have FGF-regulated kinase activity and is phosphorylated, there 
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appears to be limited co-localisation of FGF-2 and FGFR1 in the nucleus (Peng et al., 2002). 
Nuclear FGFR1 physically interacts with Ribosomal S6 Kinase isoform 1 (RSK1) and 
regulates its transcriptional activity (Hu et al., 2004). Target genes include FGF-2, c-jun, 
cyclin D1 and MAP2, genes that are involved in cell growth and differentiation (Reilly & 
Maher, 2001). FGFR1 has also been shown to be involved in the activation of the tyrosine 
hydroxylase promoter that is mediated through a cAMP responsive element (CRE) (Fang et 
al., 2005).  

7.2.2 FGFR2 

FGFR2 has been identified in the nuclei of quiescent Sertoli cells in the testes (Schmahl et al., 

2004). In this study of FGF-9 knock-out mice, FGFR2 nuclear localisation was shown to 

correlate with male sex determination in the early gonads. The presence of FGFR2 in the 

nucleus coincides with the expression of the sex-determination gene Sry and the 

differentiation of progenitor cells in the gonads into Sertoli cells. 

7.2.3 FGFR3 

FGFR3 is a major negative regulator of linear bone growth and gain of function mutations 

cause the most common forms of dwarfism in humans as these are anti-proliferative (Colvin 

et al., 1996; Deng et al., 1996). Somatic mutations have been detected in several cancers 

where, by contrast, they are believed to drive proliferation and inhibit apoptosis (Trudel et 

al., 2004). Binding of FGF-1 to FGFR3 induces endocytosis via a dynamin/clathrin-mediated 

process to an endosomal compartment. Here the ectodomain is proteolytically cleaved 

possibly by an endosomal cathepsin although this has not yet been confirmed. The 

membrane anchored intracellular fragment is then cleaved in a second event by γ-secretase 

to generate a soluble intracellular domain that is released into the cytosol and can 

translocate to the nucleus. This requirement for endocytosis distinguishes FGFR3 proteolysis 

from that of most other RTKs. 

7.3 VEGFR (Vascular endothelial growth factor receptor) 

Cellular responses to the ligand vascular endothelial growth factor (VEGF) are activated 

through two structurally related receptors, VEGFR-1 (Flt-1) and VEGFR-2 (KDR) and are 

critically important in the regulation of endothelial cell growth and function (Cross et al., 

2003). Stimulation of endothelial cells with VEGF induced the translocation of VEGFR-2, 

eNOS and caveolin-1 into the nucleus (Feng et al., 1999). The consequences of nuclear 

localisation of these three proteins have yet to be clarified. Non-endothelial expression of 

VEGFR-2 has also been reported (Stewart et al., 2003). A recent study by Susarla et al., (2011) 

identified VEGFR-2 expression on normal thyroid follicular cells. The VEGFR-2 expressed 

by these cells was phosphorylated and, although there was some staining in the cytoplasm, 

the highest concentration of VEGFR-2 was seen in most nuclei. VEGFR-1 and VEGFR-3 

immunoreactivity was also seen predominantly in the nucleus with VEGFR-1 also localised 

at points of cell to cell contact. The role that VEGF receptors play in the nucleus has not been 

determined but the intranuclear staining was not co-incidental with chromatin and it is 

therefore unlikely that VEGFR proteins act as transcription factors. 
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7.4 Insulin receptor  

Insulin is secreted by pancreatic β-cells in response to an increase in circulating glucose level to 
trigger tissues to increase glucose uptake and suppress hepatic glucose release. This biological 
action of insulin is initiated by binding to the insulin receptor InsR (Youngren, 2007). The 
presence of InsR in the nucleus was first reported in 1987 by Podlecki et al., but more recently 
this was further characterised by Rodrigues et al., (2008) who demonstrated that the insulin 
receptor appears in the nucleus of hepatocytes within 2.5 min of stimulation with insulin. This 
translocation event was associated with selective hydrolysis of nuclear PIP2 and formation of 
InsP3-dependent Ca2+ signaling within the nucleus that regulates glucose metabolism, gene 
expression and cell growth (Poenie et al., 1985; Hardingham et al., 1997; Nathanson et al., 1999; 
Pusl et al., 2002; Rodrigues et al., 2007). Nelson et al., (2011) have identified two potential gene 
targets for InsR in the nucleus, the early growth response 1 (egr-1) gene that is involved in the  
mitogenic response, and the glucokinase (Gck) gene which encodes a key metabolic enzyme. 

7.5 IGF-1R (Insulin-like growth factor 1 receptor) 

The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in development and is 
often over-expressed in cancer. Stimulation with insulin-like growth factor 1 (IGF-I) or 2 
(IGF-II) promotes cell proliferation, anti-apoptosis, angiogenesis, differentiation and 
development. Over-expression of IGF-1R is common in cancer but the mechanisms 
underlying the role of IGF-1R are not fully understood. Recently, Sehat et al., (2010) showed 
that IGF-I promotes the modification of IGF-1R by small ubiquitin-like modifier protein-1 
(SUMO-1) and this then mediates translocation of IGF-1R to the nucleus. Nuclear import 
was also enhanced by stimulation with IGF-II but only modestly by insulin, in keeping with 

the affinity of IGF-1R for these ligands. Full length IGF-1Rα and IGF-1Rβ chains which make 
up the multi-subunit IGF-1R are found in the nucleus (Aleksic et al., 2010). Although it has 
been reported that IGF-1R binds to chromatin and acts directly as a transcriptional enhancer, 
direct transcriptional effects of nuclear IGF-1R are yet to be identified. 

SUMOylation is initiated by a SUMO activating enzyme, such as SAE1 or SAE2, followed by 
a transfer of the active SUMO to Ubc9, the only known SUMO-conjugating enzyme, which 
then catalyses the transfer of SUMO to the target protein (Wilkinson and Henley, 2010). 
Seventy-five percent of known SUMO targets are modified within the consensus motif 
ψKxD/E where ψ is a hydrophic amino acid and x is any residue (Xu et al., 2008). Four 
SUMO isoforms have been identified in mammalian cells and SUMO-1 is the most widely 
studied member. Modification by SUMO-1 can result in a variety of functional consequences 
ranging from transcriptional repression (Garcia-Dominguez & Reyes, 2009) to DNA repair, 
mainly through targeting of p53 and BRCA1 (Bartek & Hodny, 2010), protein stability (Cai 
& Robertson, 2010) and cytoplasmic-nuclear shuttling (Salinas et al., 2004; Miranda et al., 
2010; Sehat et al., 2010). Currently, IGF-1R is the only receptor tyrosine kinase for which 
nuclear translocation may be regulated by SUMOylation.  

7.6 Eph receptors 

Eph receptors are the largest group of transmembrane receptor tyrosine kinases with 14 
human members divided into 2 subclasses, EphA (EphA1–EphA8, EphA10) and EphB 
(EphB1–EphB4, EphB6) (Pitulescu & Adams, 2010). Eph receptors are activated by their 
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ligands the ephrins, proteins that are anchored to the plasma membrane of a neighbouring 
cell by either a glycosylphosphatidylinositol (GPI) anchor (type A) or a transmembrane 
amino acid sequence (type B). Eph-ephrin signaling plays important roles in neuronal and 
vascular development and many are over-expressed in various cancers (Flanagan & 
Vanderhaeghen, 1998; Adams & Klein, 2000; Stephenson et al., 2001; Lee et al., 2005; 
Pasquale, 2005; Chen et al., 2008). 

To date only a single member of the Eph family, EphA4, has been reported in the nucleus 
(Kuroda et al., 2008). EphA4 is critically involved in development of neural tissue and more 
recently has been identified in hypertrophic chondrocytes and osteoblasts in the growth 
plate of developing mouse long bones (Kuroda et al., 2008). In the human osteoblastic cell 
line SaOS-2, EphA4 was found on the plasma membrane as expected, but also in the 
cytoplasm and in the nucleus. EphA4 accumulated in particular areas in the nucleus, but 
these were distinct from the nucleolus. It is not clear whether the EphA4 in the nucleus is 
full-length or a processed intracellular fragment and the role of EphA4 in the osteoblast 
nucleus has not been explored to date. 

7.7 Ryk (Related to Receptor Tyrosine Kinase) 

Ryk is a Wnt receptor that plays an important role in neurogenesis, neurite outgrowth, and 
axon guidance. Although a catalytically inactive receptor tyrosine kinase, Ryk is believed to 
signal via heterodimerisation with other receptor tyrosine kinases and has been shown to 
bind two members of the Eph receptor family, EphB2 and EphB3 (Halford et al., 2000). In 
neural progenitor cells, upon binding of Wnt3a, Ryk is cleaved at an intracellular site and 
the C-terminal cleavage product, Ryk ICD, translocates to the nucleus. Recently it was 
shown that Cdc37, a subunit of the molecular chaperone Hsp90 complex, binds to the Ryk 
ICD, promoting stabilization of the ICD fragment and providing the mechanism for nuclear 
translocation. Once in the nucleus, Ryk ICD regulates the expression of the key cell-fate 
determinants Dlx2 (stimulated) and Olig2 (inhibited) to promote GABAergic neuronal 
differentiation and inhibition of oligodendrocyte differentiation (Zhong et al., 2011). 

7.8 Ror (RTK-like orphan receptor) 

Ror1 and Ror2 receptor tyrosine kinases are involved in the development of mammalian 
central neurons (Paganioni & Ferreira, 2003; Paganioni & Ferreira, 2005). Although the ligand 
of Ror2 has been identified as Wnt-5A (Liu et al., 2008), Ror1 remains an orphan receptor 
protein tyrosine kinase without an identified interacting ligand. Tseng et al., (2010) used an in 
silico approach to predict receptor tyrosine kinases with likely nuclear localisation. Ror1 and 
Ror2 were identified in a panel that included receptors with known nuclear localisation 
including ErbB proteins, FGFR proteins and VEGFR proteins. The juxtamembrane domain of 
Ror1, responsible for nuclear localisation of this protein, was identified using deletion reporter 
constructs and the small GTPase Ran was identified as playing a key role in the nuclear 
transport. The function of Ror1 in the nucleus remains to be determined. 

7.9 Trk (Tropomyocin Receptor Kinase) 

Neurotrophins are a family of protein nerve growth factors that are critical for the 

development and functioning of the nervous system, regulating a wide range of biological 
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processes. The receptors for neurotrophins are the Trk receptors - TrkA (or NTRK1), TrkB 

(or NTRK2), and TrkC (or NTRK3). Binding of neurotrophins to Trk receptors promotes 

both neuronal cell survival and death by activating signal transduction cascades including 

Ras/MAPK (mitogen-activated protein kinase) pathway and the PI3K (phosphatidylinositol 

3-kinase) pathway. TrkA accumulates in the nucleus and on the mitotic apparatus of the 

human glioma cell line U251 after binding the neurotrophin ligand, nerve growth factor 

(NGF) (Gong et al., 2007). Translocation of phosphorylated TrkA is via carrier vesicles which 

sort and concentrate the receptors. These vesicles then interact with the nuclear envelope 

but how the TrkA protein is then removed from the membrane to move into the 

nucleoplasm is unclear. Once in the nucleus of the U251 glioma cells, TrkA co-localises with 

α-tubulin at the mitotic spindle. Interestingly, it has been shown that NGF co-localises with 

γ-tubulin at the centrosomes or spindle poles. Zhang et al., (2005) suggest that NGF 

concentrated to the centrosome can recruit its receptor TrkA from the nucleoplasm, activate 

the tyrosine kinase activity of the receptor to phosphorylate the tubulin and promote the 

mitotic spindle assembly that modulates the mitosis of human glioma cells. 

7.10 HGFR (Hepatocyte growth factor receptor) 

The HGFR family includes three members, MET, RON and SEA, produced mainly by cells 

of epithelial origin, which bind hepatocyte and hepatocyte-like growth factors secreted by 

mesenchymal cells, to regulate cell growth, cell motility, and morphogenesis (Comoglio & 

Boccaccio, 1996). Members of the HGFR family are described as oncoproteins because over-

expression and/or abnormal activity correlates with the poor prognosis of many cancers 

(Accornero et al., 2010). 

7.10.1 MET  

Hepatocyte growth factor (HGF) secreted by stromal cells is a mitogenic factor and binds to 

MET on hepatocytes to activate pathways involved in cell proliferation, differentiation, and 

related activities that aid tissue regeneration in the liver. Other cell targets of HGF include 

epithelium, endothelium, myoblasts, spinal motor neurons, and hematopoietic cells. MET 

over-expression and hyper-activation are reported to correlate with metastatic ability of the 

tumor cells of several different tissue origins. Gomes et al., (2008) used the SkHep1 liver cell 

line to show that stimulation of cells with HGF caused the rapid translocation of 

phosphorylated MET from the plasma membrane to the nucleus, with peak levels detected 

after only 4 min of HGF exposure. Translocation of MET to the nucleus was mediated by 

binding of Gab1, an adaptor protein that contains a NLS for importin-driven translocation. 

In the nucleus, MET was shown to initiate nuclear Ca2+ signaling that stimulates cell 

proliferation (Rodrigues et al., 2007). 

7.10.2 RON (Recepteur d'origine nantais) 

RON is a receptor tyrosine kinase whose expression is highly restricted to cells of 

epithelial origin (Wang et al., 2010). Its ligand is the HGF-like macrophage stimulating 

protein (MSP) which stabilises two monomers of RON as a homodimer on the cell 

membrane. RON has been shown to be aberrantly expressed or mutated in many cancers 
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including those from the bladder, breast, colon, lung, ovary, pancreas and prostate, 

particularly in aggressive tumours associated with poor patient survival (reviewed in 

Wang et al., 2010). Activated RON can promote c-Src activities that mediate cell-cycle 

progression, angiogenesis and survival of tumor cells (Danilkovitch-Miagkov et al., 2000; 

Feres et al., 2009). In bladder cancer cells, under conditions of serum starvation, RON has 

been shown to migrate from the cell membrane to the nucleus in a complex with EGFR 

with passage through the nuclear pore complex mediated by importins. In the nucleus, 

RON and EGFR co-operate in the transcriptional regulation of at least 134 different target 

genes known to participate in three stress-responsive networks: p53 (genes included 

RBBP6, RB1, TP53BP2 and JUN), stress-activated protein kinase/c-jun N-terminal kinase 

(JUN, MAPK8IP3, NFATC1 and TRADD) and phosphatidylinositol 3-kinase/Akt (GHR, 

PPP2R3B and PRKCZ) (Liu et al., 2010). Nuclear translocation of RON was therefore 

suggested to be a response to physiological stress. Furthermore, because MSP stimulation, 

homodimerisation and phosphorylation were not required for nuclear translocation, this 

is a ligand-independent response in these cells. A consensus sequence for binding nuclear 

RON was identified as GCA(G)GGGGCAGCG in genes that were both confirmed up-

regulated (FLJ46072, JUN, MLXIPL, NARG1 and SSTR1) and down-regulated (RBBP6 and 

POLRMT) after serum starvation. 

8. Conclusion 

Although early reports of the presence of receptor tyrosine kinases in the nucleus of cells 

was met with scepticism, a significant collection of data now supports a role for many of 

these proteins in the nucleus of both normal and dysplastic cells. To date, 18 of the 58 

human receptor tyrosine kinases have been found within nuclei and it is likely that more 

will be found. In general, the result of nuclear translocation of receptors is alterations to 

gene expression, but the full consequences of the presence of these proteins in the nucleus 

have yet to be determined. Only through further exploration can the complexity that nuclear 

localisation provides to receptor tyrosine kinase functions be determined.  
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