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1. Introduction 

Recently, the Food Agricultural Organization of the United Nations (FAO, 2009) predicted 
that the world population would top eight billion by the year 2030. Therefore, the demand 
for food would increase dramatically. Fruits and vegetables will play an important role in 
providing essential vitamins, minerals and dietary fibre to the world feeding populations in 
both developed and developing countries. Organizations such as FAO have also 
recommended increasing fruits and vegetables consumption to decrease the risk of 
cardiovascular diseases and cancer. Moreover, as far as health is concerned, quality and 
safety in foods are important criteria demanded by consumers. 

Fruits and vegetables are perishable products with active metabolism during the 
postharvest period and the major limitations in their storability are senescence, fungal 
infection and water loss (Brady, 1987). Such crops are classified as being either climacteric or 
non climacteric based on their respiratory and ethylene production patterns during storage 
life. Climacteric fruits show a marked increase in respiration and increase ethylene (C2H4) 
production during their ripening whereas non-climacteric fruit and vegetables complete 
ripening without increases in respiration and independent of increase C2H4 production 
(Wills et al., 1981). There is extensive experimental evidence indicating that the increase in 
C2H4 production is linked to the main biochemical and physiological changes that occur 
during ripening, leading to a loss in skin resistance, increased water loss, senescence and 
ultimately postharvest diseases. Examples of postharvest diseases arising from quiescent 
infections include anthracnose of various tropical fruit caused by Colletotrichum spp. and 
grey mould of strawberry caused by Botrytis cinerea. Preservation of these crops in as fresh 
as possible state, with minimum loss in quality during handling and storage, will primarily 
involve retardation of the physiological and biochemical changes associated with ripening 
and senescence (Wills et al., 1981).  

Methods aimed at improving postharvest shelf-life and quality particularly for tropical 
climacteric horticultural commodities should be addressed. Some of the current methods 
employed to delay ripening and senescence and increase shelf-life of crops include:-low 
temperature storage combined with high humidity, as well as the use of modified and 
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controlled atmospheres, various coatings and waxes (Yahia, 1998). Certain fungicides have 
also been employed to control postharvest diseases and improve quality of horticultural 
crops but these have been met with resistance from consumers who want healthy, safe and 
nutritious foods. The benefits of these techniques have been reported for a wide myriad of 
fruits and vegetables however, all these techniques must be applied with refrigeration, as 
temperature is the dominant factor influencing all plant processes (Pearce, 1999). 
Developing newer techniques and technologies in order to improve postharvest longevity of 
horticultural crops has always been a challenge to researchers. With application of adequate 
technology to prevent deterioration after harvest and considering the biochemical 
characteristics of the produce, postharvest losses can be significantly reduced. 

1.1 Phytochemicals in horticultural crops 

Phytochemicals are plant components that have gained considerable attention as 

photoprotective agents in providing certain human health benefits and have been the subject 

of numerous investigations (Shahidi et al., 2011; Butt & Sultan, 2011; Heber, 2004; Ramana-

Luximon et al., 2003). Phytochemicals belong to several classes that include polyphenols, 

flavonoids, isoflavonoids, phytoalexins, phenols, anthocyanidins and carotenoids. They are 

widely distributed with different structures at the tissue, cellular and sub-cellular levels 

(Shahidi & Naczk, 2004). Frequent consumption of fruits is associated with health promoting 

effects of plant phytochemicals in particular their antioxidant properties. Phytochemicals may 

work in promoting human health and disease prevention in different ways such as: by 

stimulating the immune response, by inducing gene suppression, by blocking oxidative 

damage to DNA, by detoxifying carcinogens and by initiating selected signaling pathways or 

by other mechanisms (Adhami et al., 2008; Schreiner & Huyskens-Keil, 2006).  

Researchers have been able to isolate numerous bioactive phytochemicals which are well 

known for their powerful antioxidant and free radical scavenging potential (Jergensen et al., 

1999). Moreover, specific postharvest elicitor treatments, such as low or high temperature 

treatments, ultraviolet and gamma irradiation, altered gas composition or application of 

signaling molecules may further enhance phytochemical content (Schreiner & Huyskens-

Keil, 2006). Their possible impact on maintaining human health and prevention of diseases 

continue to be an active research (Ramana-Luximon et al., 2003).  

2. UV-C hormesis 

There is now considerable literature on the use of controlled abiotic stresses to delay 
postharvest senescence of horticultural crops. A treatment that could activate the 
mechanisms of the plant against the toll of senescence can be a useful method in the 
preservation of fresh tropical crops. One example of such technology, which is not 
expensive, simple and uses non-ionizing energy is ultraviolet (UV) radiation. UV-radiation 
has been classified as UV-C (200-280 nm), UV-B (280-320 nm) and UV-A (320-400 nm). Each 
band can induce significantly different biological effects in crops (Shama, 2007; Bintsis et al., 
2000). UV-C wavelengths are absorbed in the stratosphere and are removed from the light 
reaching the earth’s surface so long as there is ozone present. Most of the information on the 
biological effects of UV-radiation is derived from experiments using artificial UV-C, 
particularly 254 nm radiation (Bintsis et al., 2000). 
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Exposure to UV-radiation is well known to have deleterious effects of plant tissues. 
However, a biphasic dose response relationship in which low irradiation doses cause a 
stimulatory effect of beneficial responses while high doses cause detrimental (toxic) effects 
on plant tissues is termed Hormesis (Arul et al., 2001; Calabrese et al., 1987).  

UV-C radiation is mainly used as a surface treatment because it penetrates only 5-30 
microns of the tissue. It has been extensively used in the disinfection of equipment, 
glassware and air by food and medical industries for many years. Low pressure mercury 
(Hg) lamps are often called ”germicidal“ because most of their total radiation energy is at a 
wavelength of 253.7 nm, which is near the maximum for germicidal effectiveness, hence its 
usefulness in the control of microorganisms (Kowalski, 2009). While the application of 
hormesis is used in the context of this chapter on the benefits to plant tissues, hormic 
responses have also been shown in bacteria, fungi, animals and humans (Shama, 2007). 

UV-light is absorbed by certain chemical groupings of molecules (chromophores) such as 
conjugated double bonds and results in photochemical reactions. The chromophores eg. 
nucleic acids, proteins, indoleacetic acid, flavoproteins and phytochrome have key roles in 
plant cell function and structure and any alterations of these compounds due to UV might 
be expected to cause physiological alterations in plants (Caldwell, 1981). DNA is one of the 
most important target molecules for photobiological effects. UV-C light can be (1) directly 
absorbed by DNA and (2) involved in photooxidation in plants via free radical production. 
Thus damage to plants as a result of UV-C can be classified into two categories: damage to 
DNA and damage to physiological processes (Stapleton, 1992). The intrusion of activated 
oxygen species into biological systems as well as changes to DNA results ultimately in 
deleterious effects for example, too much UV damages DNA in soyabeans, destroys their 
chlorophyll and disrupts photosynthesis which leads to poor yields (Vikhanski, 1989). 
However certain crops are resistant to such adverse effects by having DNA repair systems 
by gene activation and quenching systems which can undo the damage caused by UV-C. 

Exposure to Radiation 
 

Excitation of Molecules 
 

Direct Action       Indirect Action 
 

Molecular Changes 
 
 

Physiological and Biochemical Effects 
 

Reversible       Irreversible 
 
 
Amelioration       Death 
 

 

Fig. 1. Schematic representation of the photobiological effects of UV-C radiation in plants 
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2.1 Intense light pulses 

In response to consumer preferences for high quality foods that are as close as possible to 

fresh products, athermal technologies are being developed to obtain products with high 

levels of organoleptic and nutritional quality but free of any health risks. Intense pulsed 

light (IPL) is a novel technology that rapidly inactivates pathogenic and food spoilage 

microorganisms. It appears to constitute a good alternative or a complement to conventional 

thermal or chemical decontamination processes (Elmnasser et al., 2007). Intense pulsed light 

(IPL) decontaminates food surfaces by killing microorganisms using short time high 

frequency pulses of an intense broad spectrum, rich in UV-C light. Different mechanisms 

have been proposed to explain the lethal effect of ILP, all of them related with the UV part of 

the spectrum and with its photochemical and/or photothermal effect (Anderson et al., 2000). 

The decontamination effect of pulsed light on minimally processed vegetables have been 

reported, with log reductions between 0.56 and 2.04 achieved with mesophilic aerobic 

microorganisms (Gómez-López et al., 2005). On the other hand, exposure of pea plants to 

short pulses of UV-C radiation for 10, 14 and 21 consecutive days did not cause noticeable 

activation of the major antioxidant enzymes in the youngest leaves suggesting a different 

defence system for these plants (Katerova, 2009). 

2.2 UV-C as an antimicrobial agent 

The benefits of UV-C as a germicidal agent has found practical applications in a broad 
range of antimicrobial applications including inhibiting microorganisms from the surface 
of food products, destruction of microorganisms in air and sterilization of liquids (Bintsis 
et al., 2000). UV-C radiation can inactivate the pathogens that may be present at the 
surface of fruit (Artes-Hernandez et al., 2009). Exposure of fruits and vegetables to UV-C 
light at around 254 nm has been evaluated as a possible alternative to chemical fungicides 
for the control of postharvest diseases, rather than ripening. This is principally because of 
(1) its germicidal properties, and (2) UV-C activates the mechanism of defence of crops 
against infection by the de novo synthesis of antimicrobial compounds such as 
phytoalexins. The ultraviolet light acts as an antimicrobial agent directly due to DNA 
damage (Rame et al., 1997) and indirectly due to the induction of resistance mechanisms 
in different fruit and vegetables against pathogens (Mercier et al., 2001; Nigro et al., 1998; 
Liu et al., 1993). Shama (2007), cites several references on the use of UV-C treatment and 
its beneficial effects on reducing and/or preventing postharvest storage rots including 
onions, potatoes, sweet potatoes, carrots, tomato, peaches, mangoes and strawberries. 
Several studies have been conducted on the use of UV-C radiation and its benefit as a non 
chemical decontamination agent for human pathogens that may be found in food (Bintsis 
et al., 2000). Grapes and strawberries were UV-C irradiated for 24-48 h before being 
inoculated with Botrytis cinerea and the results compared with those inoculated 
immediately before irradiation. The results showed a reduction in the postharvest 
incidence of disease after UV-C irradiation (Nigro et al., 1998, 2000).  

It was reported that the use of two sided UV-C radiation at the appropriate dose was 
effective in reducing the natural microflora and extending the shelf-life of minimally 
processed “Red Oak Leaf” lettuce (Allende et al., 2006) and in control of rots in sweet 
potatoes at certain doses (Stevens et al., 1990). UV-C treatment has been reported to induce 
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resistance against pathogens in a number of species (El Ghaouth et al., 2003; Nigro et al., 
2000; Stevens et al., 1996). The activity of the phenylalanine ammonia lyase (PAL; EC 4.3.1.5) 
enzyme was induced by UV-C radiation in several fruits (Charles et al., 2009; Nigro et al., 
2000). This UV treatment also enhanced the accumulation of flavonoids, phytoalexins, and 
phenolic antifungal compounds (Liu et al., 2009).  

The production of phytoalexins, antimicrobial compounds produced by plants in response 
to infection or physiological stimuli such as UV-radiation, is believed to be an important 
defence mechanism. One proposed hypothesis on the mechanism of induction of 
phytoalexin supposes that in normal tissue the genes involved are repressed. Agents which 
induce phytoalexin production are thought to depress these genes or promote their 
transcription by causing a conformational change in DNA (Langcake & Pryce, 1973).  

UV-C light has been used in combination with other preservation techniques to preserve the 
quality of horticultural crops. Most of these studies showed the effectiveness of microbial 
reductions in fresh-cut fruits and vegetables by using chemical disinfection, low UV-C light 
doses (from 1 to 4 kJ/m2) and storage under conventional MAP, without any detrimental 
effect on the organoleptic quality of the product. Additionally, UV-C light combined with 
other postharvest treatments such as mild thermal treatments and immersion in water at 
elevated temperatures showed improvements in keeping quality and reducing incidence of 
storage disease in various horticultural crops (Allende et al., 2006). The beneficial effects of a 
heatshock treatment to reduce browning in fresh-cut lettuce (e.g. 90 s at 45 ○C) was due to 
the redirecting of protein synthesis away from the production of wound induced enzymes 
of phenolic metabolism, and toward the production of innocuous heat shock proteins 
(Saltveit, 2000 as cited in Allende et al., 2006). The efficacy of heat treatments and UV-C light 
for controlling postharvest decay of strawberries and sweet cherries were tested. In most of 
the cases, fungal inactivation was achieved for the treatments with the highest UV-C dose 
(10 kJ/m2) combined with a long thermal treatment (15 min at 45 ○C). The sequence of the 
treatments seemed to have an influence on microbial inactivation for strawberries. The 
fungal inactivation was greater when the ultraviolet treatment preceded the thermal 
treatment. The possibility of lowering the intensity of the heat treatment when preceded by 
an ultraviolet illumination resulted in a decrease of fruit damage caused by heating. Since 
less intense thermal conditions can be used, visual damage to the strawberries was also 
reduced (Marquenie et al., 2002).  

2.3 UV-C and its role in plant tissue/organ senescence 

One of the major factors in the process of plant tissue/organ senescence is free radical 
damage. As a result of oxidation inherent in aerobic respiration, free radicals are formed and 
their targets may be cell membranes, nucleic acids, enzymes and cell walls resulting in an 
acceleration of senescence and tissue softening (Brady, 1987). These oxidation stresses 
become severe with the physiological age of the tissue and it responds by generating an 
array of detoxifying mechanisms (antioxidants and enzymes) against free radical attack. It is 
documented that short wavelength radiation exerts two pronounced effects on plant 
metabolism viz: at low intensities, it may give rise to an enhancement of secondary stress 
metabolites which can protect the plant from free radical damage, while at high intensities, 
it can cause an inhibition of these substances often leading to detrimental effects on the plant 
(Kowalski, 2009). Certain plants have repair mechanisms which involve the production of 
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secondary stress metabolites for example, antioxidant compounds such as carotenoids, 
phenols, flavonoids, and polyamines. The enzyme superoxide dismutase (SOD) is 
postulated to ameliorate the toxic effects of superoxide and this enzyme is ubiquitously 
present in aerobic organisms (Cunningham et al., 1985). These compounds, usually present 
in the plant are generally activated following stress when produced in sufficient abundance 
in pre-climacteric crops can counteract the effect of DNA and free radical damage (which 
becomes important with age) and stimulate increase longevity of harvested crops. By 
stimulating the natural defences of the crop against adverse stresses, one can improve the 
storability of such commodities. The UV doses reported to achieve beneficial effects in fruits 
and vegetables range from 0.5 kJ/m2 for strawberries to 9.0 kJ/m2 for oranges (Shama & 
Alderson, 2005). UV-C has also been documented to primarily control ripening and 
senescence in climacteric fruits (Maharaj et al., 2010; Hemmaty et al., 2006). On the other 
hand, prolonged exposure to UV irradiation has been found to accelerate ripening and 
senescence probably as a result of free radicals generated (Liu et al., 1993). Hyper UV-C 
doses have resulted in undesirable changes in skin colour, premature ripening, drying and 
infection in several crops as reported by Shama & Alderson (2005). Thus low levels or 
hormic doses of UV-C radiation can be an adjunct to refrigeration for preservation of 
horticultural crops. Effectiveness of UV-C treatments varies with plant species, stage of 
maturity, irradiation dose and duration. 

3. Phytochemicals and UV-C hormesis 

The impact of UV-C hormesis on fresh fruits and vegetables has been the subject of 
numerous studies over the last few years (Shama, 2007). Fruits contain a huge diversity of 
phytochemicals (antioxidant compounds). Of these, phenolics and carotenoids have been 
shown to protect the cellular systems from oxidative damage induced by free radicals. 
Promising results have been shown with abiotic stress treatment in positively impacting 
on phytochemicals, either by preserving its content in fruits and vegetables or increasing 
its contents following treatment. A number of factors affect the efficacy of treatment in 
maintaining or increasing photochemical content including: the type of horticultural 
product, the length of exposure and the class of phytochemicals. Non-enzymatic 
compounds consisting of lipid soluble membrane associated antioxidant (┙-tocopherol, ┚-
carotene) and water soluble reductants (glutathione, ascorbate, phenolics) and enzymatic 
antioxidants (SOD, catalase, peroxidases) are induced in response to oxidative stress 
(Jaleel et al., 2009). Changes in levels of polyamines have been linked to senescence 
suggesting that lowering of polyamine concentration is a step in triggering senescence or 
that exogenous application of polyamines could inhibit senescence (Shama & Alderson, 
2005). The latter may be due to possible inhibition of ethylene synthesis and to 
stabilization and protection of membranes by associating with negatively charged 
phospholipids (Galston & Kaur-Sawhney, 1990).  

3.1 Antioxidants: Carotenoids, lycopene and ascorbic acid 

Colour development involves a decrease in chlorophyll pigments with a concomitant 
increase in pigments (e.g. carotenoids) and is a characteristic of many plant tissues during 
both ripening and senescence (Gong & Mattheis, 2003). Tomato fruit are a rich source of 
carotenoids, especially lycopene and ┚-carotene. UV-C has been shown to retard colour 
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development, loss of chlorophyll and the development of lycopene which makes up the 
bulk of the carotenoid pigments in ripe tomato. Figure 2 illustrates the changes in lycopene 
content with storage time for both UV-treated and untreated tomato fruit stored under 
refrigeration. Lycopene is the major carotenoid in tomato accounting for more than 80% of 
the total carotenoids present in a fully ripe tomato fruit. The chloroplast seems to be one of 
the target sites for UV action and this offers evidence for reduction in the level of lycopene 
in irradiated tomatoes in comparison to the control fruits (Maharaj et al., 1999). However, 
production of total carotenoid pigments in tomato, were found to be higher in UV-treated 
fruits compared to the untreated ones. Carotenoids may be considered as an antioxidative 
phytochemical to counteract free radical damage with associated photosensitized reactions 
(Maharaj et al., 2010).  

 

Fig. 2. Colour rating values (1=mature green, 6=red) of control and UV-C irradiated tomato 
stored at 16°C. Mean for n=4 (with permission Maharaj et al., 2010). 

The impact of UV-C radiation on senescence of broccoli florets were investigated (Costa et 
al., 2006). One of the key symptoms of quality loss in broccoli is the loss of green colour of 
the sepals due to chlorophyll degradation. Apart from loss of green colour, lipid 
peroxidation, loss of antioxidant capacity, reduced nutritional value and increased tissue 
degradation are also well associated with quality loss in broccoli. Costa et al. (2006) 
subjected broccoli florets to four different UV-C dosages: 4, 7, 10 and 14 kJ m-2 as well as an 
untreated control. All samples were stored at 20 °C and evaluated after a six day storage 
period. The findings indicated that total chlorophyll loss was significantly higher in florets 
that were not radiated as compared to radiated florets having a mean chlorophyll content 
that was 53 % higher than the control. UV-C seemed to have had a positive impact in 
reducing the degradation of both chlorophyll-a and -b. It appears from the findings that UV-
C treatment reduces the activity of chlorophyllase thus maintaining a greener colour than 
the control. Untreated florets had much higher chlorophyllase activity than UV-C treated 
florets. Pheophytin a by-product of chlorophyll degradation was also lower in UV-C 
irradiated broccoli with the exception of the highest (14 kJ m-2) dose where higher levels of 
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pheophytin were detected. They suggested that at high UV-C dosage, the release of 
magnesium ions may be in part responsible for this observation. In Shitake mushrooms, 
treatment with UV-C radiation had higher level of flavonoids and ascorbic acid as well as 
reducing free radical scavenging potential and decreased peroxide (Jiang et al., 2010). 
Antioxidant enzyme activity of phenylalanine ammonia lyase (PAL), ┚-1,3-glucanase, 
superoxide dismustase, catalase and gluthione reductase were induced to high levels by 
UV-C treated Yali pears (Li et al., 2010).  

Vitamin C content is considered to be a quality index for fruits and vegetables occurs as L-
ascorbic acid and dehydroascorbic acid. Ascorbate is an electron donor and this property 
explains its function as an antioxidant or reducing agent. González-Aguilar et al. (2007) 
reported a reduction in total ascorbic acid content of UV-C irradiated fresh-cut mango fruits 
due to the oxidation of ascorbic acid by effect of the increment in UV-C exposure time.  

 

Fig. 3. Lycopene content of control and UV-C irradiated tomato stored at 16°C. Mean for n=4 
(with permission Maharaj et al., 2010). 

3.2 Phenolic compounds 

The largest category of phytochemicals and most widely distributed in the plant kingdom 
are the phenolics. Bioactive phenolic compounds are plant secondary metabolites that are 
biosynthesized through the shikimic acid pathway (Tomás-Barberán & Espín, 2001). 
Phenolic compounds embrace a considerable range of substances which possess an aromatic 
ring bearing one or more hydroxyl groups. They may be classified into different groups as a 
function of the number of phenol rings that they contain and of the structural elements that 
bind these rings to each other. They exist in higher plants in many different forms including 
hydroxybenzoic derivatives, cinnamates, flavonoids (flavonols, flavones, flavanols, 
flavanones, isoflavones, proanthocyanidins), lignans, stilbenes, and which affect the quality 
characteristics of plants such as appearance, flavour and health-promoting properties. Plant 
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phenolics are multifunctional and can act as reducing agents, metal chelators and singlet 
oxygen quenchers. Besides their role as antioxidants, phenolic compounds also possess 
antimicrobial properties and are involved in disease resistance by contributing to the 
healing of wounds by lignification of cell walls around wounded sites (Shahidi et al., 2011; 
Shahidi & Naczk, 2004; Tomás-Barberán & Espín, 2001). In addition, phenolics serve as 
substrates for browning reactions. The synthesis of certain phenols such as:- phytoalexins 
and lignins, that are all associated with local resistance processes, involves phenylalanine 
ammonia-lyase as a key step in the shikimic acid pathway (Shama & Alderson, 2005). The 
three amino acids phenylaline, tyrosine and tryptophan are the primary metabolites which 
serve as precursors for many secondary products. The enzymes phenylalanine ammonia-
lyase (PAL; EC 4.3.1.5), polyphenol oxidases (PPO; EC 1.14.18.1) and peroxidises (POD; EC 
1.11.1.7) are the main enzymes responsible for phenolic degradation that often leads to 
quality loss (Shahidi et al., 2011).  

Light intensity and wavelength have an important effect on phenolic metabolism, as they 

affect flavonoid and anthocyanin biosynthesis. Some researchers point out that UV-

radiation results in the accumulation flavonoids as they act as protective filter against 

(excessive) radiation and which may be implicated in the resistance of fruit and vegetables 

to microorganisms and senescence (Li et al., 2010; González–Aguilar et al., 2007; Shama & 

Alderson, 2005). Radiation is also known to cause depolymerisation of cell wall 

polysaccahrides resulting in higher extraction of phenols. UV irradiation during postharvest 

storage has been used to increase anthocyanin pigmentation in the skin of red apples, sweet 

cherries and strawberries leading to an increase in quality (Tomás-Barberán & Espín, 2001). 

In the case of apples, this increase correlated with an increase in both PAL and chalcone 

isomerase activities (Kataoka et al., 2003). On the other hand, no effect of postharvest UV 

irradiation on fruit pigmentation was detected in other crops such as nectarines, 

strawberries, grapes and plums showing that this treatment is not always useful for this 

purpose. In fact, UV irradiation produced necrosis and other quality losses in such 

irradiated fruits and these browning symptoms were attributed to the induced increased 

POD activity (Tomás-Barberán & Espín, 2001). 

The effects of UV-C have also been investigated on fresh cut tropical fruits. Slices of bananas 

(cv. Pisang mas,) pineapple (cv. Honey pineapple) and Thai seedless guavas were irradiated 

with UV-C light and the results compared against untreated slices (control) (Alothman et al., 

2009). In bananas and guava, exposure to UV-C radiation resulted in an increase in total 

phenols and flavonoids. In pineapples however, there was a significant increase in flavonoids 

but UV-C irradiation did not have any significant increase in total phenol content. In another 

study, mango slices were subjected to UV-C radiation at three different exposure times and its 

effect compared to untreated fruit slices (González-Aguilar et al., 2007). The study found that 

the length of exposure to radiation and storage time significantly affected phenols, flavonoids, 

┚-Carotene and vitamin C. Fresh-Cut mango slices were radiated for 1, 3, 5 and 10 minutes or 

left untreated. After 3 days of storage, slices irradiated for 1, 3 and 5 minutes showed a sharp 

increase in total phenols followed by a plateau for the rest of the storage period. Mango fruit 

slices irradiated for 10 minutes, showed progressive increase in total phenols throughout the 

15 day storage period. Slices used as control showed the smallest incremental increase after 3 

days compared to all irradiated samples and also had a plateau for the rest of the 15 day 

storage period with the smallest quantities of total phenols. Flavonoid contents were also 
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significantly affected by length of radiation exposure and storage time. Slices irradiated for 5 

and 10 minutes showed a sharp continuous increase in flavonoids over the 15 day storage 

duration compared to those irradiated for shorter times (1 and 3 minutes), which also showed 

increased flavonoids but to a lesser extent than slices irradiated for longer times (5 and 10 

minutes). Stimulation of flavonoid levels by UV-C radiation could be attributed to a defence 

mechanism in scavenging free radicals due to the reactivity of the hydroxyl groups. It has also 

been reported that UV light could be used to increase the content of health-promoting 

phenolics such as resveratrol in grapes and coumarins in grapefruit (Tomás-Barberán & Espín, 

2001). The increase in total phenols and flavonoids in these studies may be attributed to their 

antioxidant and antimicrobial roles. 

3.3 Polyamines  

Polyamines (PA) are polyfunctional components present in plant and animal cells and are 
defined as “small polycationic biogenic amines” (Nambeesan et al., 2008). Polyamines (PA) 
are fairly ubiquitous, but of rather low concentrations ranging from micromolar to 
millimolar in mature fruit tissues (Galston & Kaur-Sawhney, 1990; Heby & Persson, 1990). 
They are implicated in a variety of regulatory processes ranging from regulation of growth 
and cell division, regulating the activity of ribonucleotides and proteinase to inhibition of 
C2H4 production and senescence (An et al., 2004; Valero et al., 2002; Pandey et al., 2000; 
Galston & Kaur–Sawhney, 1987). They have been shown to enhance the ability of plants to 
resist environmental stresses (An et al., 2004). Changes in PA biosynthesis in plant tissues 
have been correlated with various stresses such as K+ deficiency, cold acclimatization, 
chemical stress and controlled atmospheres. 

Spermidine, spermine, and their precursor putrescine are the major polyamines in plants. In 
its free form, polyamines exist either as putrescine (diamine putresine), spermidine 
(triamine spermidine) and spermine (tetraamine spermine). Putrescine is the precursor for 
the synthesis of spermidine and spermine (Nambeesan et al., 2008). Apart from the three 
well known free forms of polyamines, there are some lesser known and studied polyamines 
such as 1,3-diaminopropane and homospermidine which have been detected in plants 
(Rodriguez-Garay et al., 1989), algae (Hamana & Matsuzuki, 1982), bacteria (Tait, 1985) and 
animals (Pandey et al., 2000).  

At neutral (physiological) pH 7.0, PA are polycationic, they also occur in the free form or 
bound to phenolic acids. Conjugated amines have also detected in plant cells (Martin–
Tanguy, 1997). They exist in either water soluble or forms which are insoluble in water 
(Pandey et al., 2000; Martin–Tanguy, 1997). While their exact roles are still uncertain, it is 
suggested that they act as reserve forms of amines which are released during growth at the 
point of synthesis or transported to other sites within plants as needed (Valero et al., 2002). 
In terms of the changes in polyamines in a number of crops, with few exceptions, the 
general trend is an increase in the concentration of free and bound polyamines especially 
spermine which coincides with the early stages of fruit growth at which time cell division is 
at its peak and a subsequent decrease at late fruit growth and at the time of ripening (Valero 
et al., 2002). However for crops such as avocado, pear and tomato fruit (cv. Rutgers), free PA 
levels declined during fruit development (Saftner & Baldi, 1990). 
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3.3.1 Biosynthesis and metabolism of the major polyamines 

The biosynthetic pathways for polyamines have been delineated for mammals, fungi, 
bacteria plants (Nambeesan et al., 2008; Valero et al., 2002). Polyamine biosynthesis in plants 
involves two pathways. Putrescine, the primary precursor and first member in the PA 
sequence is derived from either ornithine (direct formation) or arginine (indirect formation). 
If putrescine is derived from ornithine, the pathway involves the decarboxylation of 
ornithine in the presence of ornithine decarboxylase (ODC). When putrescine is synthesized 
from arginine, it is first converted to agmatine by decarboxylation of arginine decarboxylase 
(ADC). The enzyme arginase can convert the amino acid arginine directly to ornithine with 
a loss of urea. The enzyme ODC which is located in the cystol and nucleus can convert 
ornithine into putrescine. Ornithine can be metabolised back to arginine via the ornithine 
cycle. With respect to the indirect formation, the enzyme ADC, found in the cytosol, 
decarboxylates arginine to agmatine. The agmatine is hydrolysed to an intermediate N-
carbamoyl putrescine which then forms putrescine. Transformation of putrescine to 
spermidine (triamine) and spermine (tertaamine) requires stepwise transfer of aminopropyl 
groups from decarboxylated SAM (formed from methionine) to putrescine. The reaction is 
considered to be the rate-limiting step in PA biosynthesis. The PA 1,3-diaminopropane is 
formed by the oxidation of spermine and spermidine. Cadaverine another PA is formed via 
the decarboxylation of lysine (Slocom et al., 1984; Nambeesa et al., 2008). 

Once formed, PA may be metabolized in various ways e.g. they can be conjugated or they can 

undergo oxidation. In plants, putrescine and spermidine are often bonded via their amino 

groups with the carboxyl groups of aromatic acids such as cinnamic and coumaric acids to 

form conjugates. PAs may be oxidized by a variety of enzymes in plants called amine oxidases. 

Diamine oxidases can convert putrescine to ammonia (NH3), hydrogen peroxide (H2O2) and 

delta-pyrroline. Delta-pyrroline can be ultimately converted to succinic acid. PA oxidases can 

oxidize spermine and spermidine to 1,3-diaminopropane (Martin-Tanguy, 1997). 

Polyamines are well known for their anti-senescence properties (Panday et al., 2000) whereas 
ethylene is known to initiate ripening and eventual senescence. The anti-senescent activity of 
polyamines may also be related to their ability to be effective free radical scavengers as well as 
stabilizing DNA and membranes by associating with negative charges on nucleic acids and 
phospholipids (Droplet et al., 1986). Their role in anti-senescence is believed to be related to 
their positively charged cations which are able to interact with negatively charged anions of 
membrane. Their cationic capability as well as their antioxidant property is believed to play a 
role preserving membrane integrity (Roberts et al., 1986). Ethylene, spermidine and 
sperminine share a common precursor S-adenosyl methionine (SAM) (Nambeesan et al., 2008; 
Pandey et al., 2000). Since they both exert opposite effects, it has been suggested that both 
ethylene and polyamines compete for this common precursor SAM. SAM is a substrate for 1-
aminocyclopropane-1-carboxylic acid (ACC) in the synthesis of ethylene. SAM is also a 
substrate for SAM decarboxylase in a pathway that leads to the synthesis of PA. Thus the 
possibility exists that the biosynthesis of both may be closely linked (Panday et al., 2000; 
Saftner & Baldi, 1990). PA have shown inhibitory effects on ethylene synthesis in a variety of 
plant tissues as described by Nambeesan et al. 2008. Elevated PA (putrescine) levels have been 
correlated with prolonged storage characteristics in tomato fruit. From a postharvest 
physiological and quality perspective, free polyamines that are endogenously synthesized or 
exogenously applied have been found to exert its anti-senescence effect on a range of 
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horticultural crops (Valero et al., 2002). These effects have been shown in retardation of colour 
changes, enhanced mechanical resistance, reduction in chilling injury, increase in fruit 
firmness and delayed respiration and ethylene production. The biosynthetic pathways of 
ethylene, spermidine and spermine are given in Figure 3. 

 

Fig. 4. Pathways (and related enzymes) of the ethylene and polyamine biosynthesis 
(adapted from Tassoni et al., 2006). ADC-arginine decarboxylase, ODC-ornithine 
decarboxylase, dcSAM-decarboxylated SAM, SAMDC-S-adenosyl methionine decaboxylase 
SAM- S-adenosyl methionine ACC- amino cyclopropane carboxylic acid 

3.3.2 The effect of polyamines and UV-C stress 

The intricate balance of polyamines and ethylene is suggested to play a central role in 
accelerating or retarding ripening and senescence (Pandey et al., 2000). A number of studies 
have been conducted to determine the possible effect of exogenous application of 
polyamines on ethylene production, senescence and other physio-chemical changes in fruit 
and vegetables and cut flowers. Four varieties of Japanese plums were treated with 
polyamines and their effects on ethylene production were measured (Serrano et al., 2003). 
Three varieties were typical climacteric types. In these varieties, treatment with polyamines 
resulted in a reduction and/or delay in the ethylene peak. One variety “Golden Japan” was 
known to behave in a non-climacteric fruit manner and therefore ethylene production 
remained low in treated and controlled fruits. Spermine and spemidine were more effective 
in inhibiting ethylene than putrescine in peaches when the application of polyamines to the 
canopy of the tree was studied (Breglio et al., 2002). In apricots, treatment with putrescine 
inhibited ethylene production during postharvest storage when compared to untreated fruit 
(Martinez-Romero et al., 2002). Application of exogenous polyamines on apple fruits 
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however did not affect ethylene production when compared to untreated fruits (Wang et al., 
1993). Valero et al. (2002) suggested that the difference in responses to exogenous 
application of ethylene production in climacteric fruits, may be explained by an 
understanding of the intrinsic ethylene production capacity of a particular horticultural 
commodity of a cultivar within a specific class of fruit. In commodities with low levels of 
ethylene production, treatment with polyamines result in the inhibition or delay in ethylene 
production while commodities with high levels of ethylene production, polyamines are not 
effective in delaying or inhibiting ethylene production. 

However, in spite of well-documented protective role of PA in plants under damaging 

action of various stressors (high and low temperature, salinity, drought and others), 

molecular mechanisms of PA defensive effects and their biological significance in plant 

survival and adaptation remain obscure. Further only a few publications concerning PA 

oxidative degradation under the effect of UV-C irradiation have been reported. A high level 

of endogenous PA and plant tolerance to oxidative stress can be based not only on stress-

induced but also on the constitutively high PA biosynthesis. It was reported that UV-C 

irradiation increased polyamine levels in the skin tissue of mango fruit. Higher levels of 

polyamines (putrescine and spermidine) were noted in mango fruits treated with UV-C for 

10 minutes compared to controls and those irradiated for a longer period of 20 minutes 

(González-Aguilar et al., 2001). UV-C treated tomato fruits were firmer in texture and less 

red in colour indicating a delay in ripening (Liu et al., 1993). Similar results were noted in 

tomato fruit colour in addition, there was a delay in the appearance of the climacteric phase 

in irradiated fruit as well as reduced rates of CO2 and C2H4 when compared to the controls. 

Further, optimal doses of UV-C produced higher levels of free and conjugated polyamines, 

particularly putrescine when compared to the control in tomato fruits during storage at 

16○C (Maharaj et al., 1999). It has been reported that polyamines are not directly associated 

with a delay in tomato fruit ripening, but may prolong the fully-ripe stage before the fruit 

tissues undergo senescence (Tassoni et al., 2006). Thus the anti-senescent activity of 

polyamines may be related to their effectiveness as free radical scavengers more so than 

exerting opposite physiological effect to ethylene. Table 1 illustrates the increase in free PA 

in tomato pericarp subjected to UV-C hormic dose. In another study, UV-treated tomato 

during the first 5 days after irradiation, exhibited a significant induction of lipid 

peroxidation markers, suggesting that cell membrane was the primary target of UV-C 

irradiation. The levels then dropped lower than in control fruits suggesting the induction of 

a defence or repair mechanism. Treated fruits exhibited significantly less cell wall degrading 

enzymes (CWDE) activity compared to controls (Barka, et al., 2000a, 2000b). 

 Free Putrescine in Tomato Pericarp (nmoles/g fw) 

Storage Time (days) Control UV-3.7 Merg/cm2 UV-24.4 Merg/cm2 

0 123.8 125.0 120.0 

7 306.7 418.1 386.4 

14 374.5 513.0 400.7 

21 39.0 452.0 292.8 

SEM-Pooled 20.5   

Table 1. Effect of UV-C radiation on free putrescine levels in tomato pericarp during storage 
at 16○C. (n=3). 
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4. Conclusion  

One of the primary objectives of postharvest interventions is to maintain the quality and 
safety of horticultural products along the value chain. Fruits and vegetables undergo a series 
of physiological changes from the point of harvest to final consumption. These processes 
eventually lead to senescence and ultimately death of the tissue. Over the last few decades, 
attention has shifted from quality maintenance of harvested crops to enhancement of health-
promoting properties of phytochemicals. This has also shifted focus in developing 
technologies that may enhance shelf life and preserve the availability of such phytochemicals 
for the benefit of consumers. Non-ionizing, artifical, germicidial UV-C radiation is one such 
emerging technology. The role of UV-C hormesis (stimulation of beneficial responses by low 
levels of stressors which otherwise cause harmful responses) in altering the biotic relationship 
of higher plants as shown by changes in plant disease susceptibility, production of anti-fungal 
compounds, its relationship to polyamines, antioxidants and phenols will no doubt be a 
continued area of active research. This technology appears to be promising in the food and 
agriculture sector in order to minimize postharvest losses of horticultural crops by delaying 
ripening and senescence and controlling the incidence of decay which is also a significant and 
important development. In fact there is a view that UV-C is at the crossroads from laboratory 
research to commercial applications.  
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