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1. Introduction 

In recent decades the activity of conventional antibiotics against pathogenic bacteria has 

decreased due to the development of resistance. This phenomenon has generated the so-

called ‘superbugs’, which are multi-resistant bacteria. In this context, antimicrobial peptides 

(AMP) appear as an alternative to control them. AMPs have been found in several sources, 

including animals, plants and fungi, constituting the first line of host defence against 

pathogens. However, the use of AMPs as therapeutic agents has some limitations, such as 

stability, cytotoxicity and mainly their amino acid length, since amino acids are expensive 

building blocks. Despite these limitations they have compensatory properties, including 

secondary activities such as immunomodulation or antitumor ones. Several methods have 

been applied since the 1990s for rational AMPs design, in order to generate analogues with 

improved activity, looking to reduce limitations and increase advantages. Computer-aided 

identification and design of AMPs play a crucial role in this area. The discovery of AMP 

properties, through the first rational design studies, will allow the development of methods 

for prediction of AMPs, which in turn, should lead to identification prior to synthesis of 

novel analogues. Thus, this chapter will be dedicated to describing important techniques in 

prediction and rational design of AMPs and their applications for drug development. 

1.1 Multi-resistant bacteria: The ‘superbugs’ 

A number of lethal infections became tractable and curable after the discovery and 

subsequent use of antimicrobial agents in clinical therapy, as the case of syphilis, rheumatic 

fever and cellulitis. However, this success has dimmed over the course of time due to the 

uncontrolled and inappropriate use of antibiotics, including the administration of under or 

overestimated doses, the insufficient duration of treatment and mistakes in the choice of 

drugs. Currently various microorganisms are resistant to antimicrobials, leading to the 

emergence and spread of so-called ‘superbugs’ resistant to virtually all available antibiotics 

on the market (Breidenstein et al., 2011).  

Among a variety of mechanisms of bacterial resistance, the production of ǃ-lactamases is the 

main resistance factor of Gram-negative bacteria to ǃ-lactam antibiotics.  
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Indeed, resistance to ǃ-lactam antibiotics has increased in recent years, being mediated by a 
variety of mechanisms, most commonly the cleavage of ǃ-lactam ring, antibiotics efflux 
and/or reduced drug uptake due to loss of outer membrane porin proteins (Pfeifer et al., 
2010). The large number of bacteria resistant to multiple antibiotics represents a challenge in 
the treatment of infections, since the rate of obtaining new antibiotics today cannot match 
the increasingly large number of resistant strains. Our next step must include the careful use 
of antibiotics in clinical and agricultural fields as well as the search for novel drugs. 

1.2 Antimicrobial peptides 

AMPs have emerged as an alternative strategy for the treatment of infections caused by 
resistant bacteria. These peptides are evolutionarily ancient molecules that have been 
isolated from microorganisms, plants, invertebrates, fish, amphibians, birds and mammals, 
including humans. They play an important role in the innate immune system and are the 
first line of defence to protect internal and external surfaces of the host (reviewed in Silva et 
al., 2011). The AMPs may have a broad spectrum of antibacterial and antifungal activities. 
Moreover, in some cases, antiviral, antiparasitic and antitumor activities have also been 
observed (Nijnik & Hancock, 2009). Despite the enormous diversity in their sequences and 
structures, the majority of AMPs show a positive charge (+2 to +9), 12-100 amino acid 
residues and variable three-dimensional structures. Among them are included -helices (e.g., 
magainin, cecropin and cathelicidin), ǃ-sheets (e.g., hepcidin and human -defensin 1), a 
combination of -helices and ǃ-sheets (e.g., human ǃ-defensin 1 and plant defensins), head-
to-tail cyclized fold (e.g., cyclotides), as well as extended and flexible loops (e.g., indolicidins) 
(reviewed in Silva et al., 2011). In addition to their action against microorganisms, AMPs 
have activities related to innate and adaptive immunity (immunomodulatory activity) that 
include the induction or modulation of proinflammatory cytokines and chemokines 
production, chemotaxis, apoptosis, inhibition of inflammatory response, recruitment and 
stimulation of proliferation of macrophages, neutrophils, eosinophils and T lymphocytes 
(Nijnik & Hancock, 2009). 

The AMPs have a wide variety of mechanisms, showing that they clearly act bound to the 
lipid bilayer, using it as a primary target and leading to a membrane disruption (reviewed 
in Silva et al., 2011). It was at first believed that the initial AMP mechanism of action was 
solely on the cell membrane. However, AMPs can also perform their functions through 
interactions with intracellular targets or by disturbing cellular processes, as well as causing 
synthesis inhibition of the cell wall, nucleic acids or proteins (Brogden, 2005). 

The AMPs are molecules of great relevance to the pharmaceutical, biotechnology and food 
industries. The structural diversity and chemical nature displayed by these molecules is a 
condition that has led researchers to consider them as natural antibiotics, an innovative 
alternative to conventional antibiotics as a new class of drugs to prevent and treat systemic 
and topical infections (Gordon et al., 2005). Due to these facts, some AMPs are already 
utilized with clinical and commercial purposes, including ambicin (nisin), polymixin B and 
gramicidin S (Bradshaw, 2003). However a restriction on the use of AMPs for therapeutic 
use is their limited stability (especially when composed of L-amino acids), toxicity against 
eukaryotic cells, susceptibility to proteolytic degradation and development of allergies. 
Thus, the rational design of AMPs emerges as an important tool that aims to develop AMPs 
with maximum performance against resistant bacteria. 
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1.3 Computer-aided identification and design of AMPs 

Rational design of AMPs is a modern approach to antibiotic development, nevertheless, a 

more detailed target characterization is needed. Indeed, a target with sufficient 

differences between the host and the pathogen is necessary, in order to reduce or abolish 

adverse effects, according to the principle of selective toxicity. The principal barrier to the 

use of AMPs as antibiotics lies in their cytotoxicity for mammalian cells. This is perhaps 

not surprising since AMP activity is mostly dependent on membrane-peptide interaction. 

However, for AMPs become useful as broad-spectrum antibiotics it would be necessary to 

dissociate toxicity to mammalian cells from antimicrobial activity,  which could be 

reached by increasing antimicrobial activity or reducing haemolytic activity, or both 

(Chen et al., 2005). Another obstacle to the use of AMPs as antibiotics is their susceptibility 

to proteolysis, since peptides formed by L-amino acid are sensitive to degradation and 

clearance of serum components. These problems can be solved through amino acid 

substitutions, including replacement of L-amino acids to D-amino acids. These 

substitutions may promote alterations in amphipathicity/hydrophobicity, leading to a 

reduction in the cytotoxicity of the peptides to mammalian cells, without changing the 

antimicrobial activity, besides leaving the AMPs less susceptible to proteolytic 

degradation (Chen et al., 2005; Pag et al., 2004). 

The first studies of rational design of AMPs generated several analogues of known AMPs 

(e.g., cathelicidins, defensins, magainins and cecropins). Nevertheless, many of them were 

less active than the original prototype. In fact, these studies played a critical role in 

identifying the AMP properties involved in antimicrobial activity. These properties served 

as the basis for developing approaches for antimicrobial activity prediction, through several 

methods, such as support vector machine (SVM, Lata et al., 2007; Porto et al., 2010; Thomas et 

al., 2010), artificial neural network (ANN, Fjell et al., 2009; Torrent et al., 2011) and 

quantitative structure-activity relationship (QSAR, Jenssen et al., 2007) as will be further 

detailed. By using machine learning methods, this field became more scientific than 

descriptive. Nevertheless, the AMP mode of action is still an open subject since there are no 

definite models of prediction or rational design, and so novel methods tend to appear. 

Certainly, the AMPs emerge as a promising class of therapeutics, despite their limitations. 

Methods of prediction and rational design play a crucial role in improving AMP 

performance against resistant bacteria. Therefore, designing novel AMPs requires progress 

in methods for identifying the best candidate peptides prior to synthesis and then testing 

them against bacteria. Methods of rational design and prediction of AMPs emerged from 

early 90s and 2000s, respectively, and they will be reviewed in the next sections. 

2. Methods of rational design 

Rational design methods aim to create novel peptides with improved antimicrobial activity, 
lower toxicity to human cells and reduced size. In other words, it is much more specific in 
creating a pharmaceutical with higher specificity to microorganisms, avoiding side effects. 
This review classifies the rational design methods into three major classes: physicochemical, 
template-based and de novo methods. The first two methods use a previously known AMP 
as the basis for designing studies. While physicochemical approaches generate several 
analogues with different physicochemical properties, the template-based methods search for 
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size reduction, adding selectivity and/or killer activity to known sequences. Furthermore, de 
novo methods that generate AMP without a template sequence, using only frequencies or 
patterns. Essentially, these three classes define the rational design methods, but there are 
also hybrid methods. 

2.1 Physicochemical methods of rational design of AMPs 

The first rational design methods were based on the most commonly proposed AMP 

mechanism of action, which is membrane disruption. This process is first mediated by 

electrostatic interactions among positive charged residues and negatively charged lipid 

heads, and then by insertions of hydrophobic residues into the membrane. The majority of 

physicochemical methods use -helical peptides as the basis for study. Since -helical 

peptides present wide distribution and the broadest activities spectrum, their 

physicochemical properties can be easily measured. In addition to charge and 

hydrophobicity, another property that can be easily measured is the hydrophobic moment, 

given by Eisenberg’s equation (Eisenberg et al., 1982): 

   (1) 

Where ǅ is the angle separating side chains along the backbone (100° for -helix); i is the 

number of residues and Hi is the hydrophobicity of amino acid i in a determined 

hydrophobicity scale, such as Eisenberg’s (Eisenberg et al., 1982) or Kite-Doolittle’s (Kite & 

Doolittle, 1982). In fact, it is more common to use a normalized hydrophobic moment, 

dividing it by the total amino acid residues. These physicochemical properties are, 

apparently, directly involved in interactions between -helical AMPs and bacterial 

membranes, by some “rules”. First, increasing hydrophobicity boosts the lipid’s affinity. 

Second, enhancing the hydrophobic moment may favour the -helix peptide fold, and third, 

increasing the net charge could lead to a higher interaction with anionic membranes (Drin 

and Antonny, 2010). 

Using this approach, Dathe et al. (1997) developed several magainin 2 analogues and an 18-

residue model peptide with KLA repetitions, modulating their activity by changing only 

hydrophobicity, hydrophobic moment and the angle of positively charged face helix (Figure 

1). Moreover other features were conserved, such as helix propensity and total charge. This 

showed that when the hydrophobicity and hydrophobic moment increase, the antimicrobial 

and haemolytic activities from those peptides also increase (Dathe et al., 1997). It also 

showed that the angle of positively charged face has little influence on antimicrobial 

activity. Haemolytic activity increases if the angle is more obtuse than the original. 

Nonetheless, it varies according to peptide. For example, an angle of 120° applied to KLA 

model peptide increases haemolytic activity, but the same angle applied to magainin 2 does 

not affect its activity (Dathe et al., 1997). On the other hand, very low hydrophobicity 

abolishes the antimicrobial activity of those peptides, which can be compensated by 

increasing the hydrophobic moment. Therefore, while increasing those parameters the 

peptide becomes unspecific, a selective peptide may be reached with moderated 

hydrophobicity, increasing the hydrophobic moment and keeping the angle of charged face 

small. Further, the same group would show that changes in net charge of magainin 2 also 
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modulate its activity (Dathe et al., 2001). This study designed six magainin 2 analogues, 

keeping helix propensity, hydrophobicity, hydrophobic moment and the angle of charged 

residues, and changing only the net charge. So for each charge modification, one or more 

amino acid substitutions were required to keep the other parameters (i.e., the MK6 analogue 

has a charge of +7, while magainin 2 has +4; the identity between them is only 39%, but the 

other properties were very similar). A charge threshold was observed to develop an 

analogue with specificity to bacteria, and increasing the charge from +3 to +5 made the 

peptide more active against bacteria and less toxic to erythrocytes. Nevertheless increasing 

its charges to +6 or +7 could generate a very haemolytic analogue. The relation between the 

angle of charged face and haemolytic activity has a bias: the net charge must be great, but 

not too great. In the case of magainin 2 this threshold is +5. Therefore, increasing the peptide 

charge makes the peptide lose its specificity to bacterial membranes. Perhaps, when the 

charge is too positive, the neutral membrane ends up interacting with the peptide as an 

acidic membrane. 

 

Fig. 1. Schematic representation of an -helical amphipathic peptide. The angle of polar face 
is indicated by Φ. Positive charged residues are represented in pentagons, polar ones as 
circles and nonpolar as diamonds. 

Giangaspero et al. (2001) also observed similar results in their study about -helical peptides 
with non-proteinogenic amino acids. In fact, this work employs a hybrid method, first using 
a de novo technique and, subsequently, a physicochemical one. De novo design uses a model 
developed through amino acid frequencies by type of amino acid (structure determining, 
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hydrophobic, hydrophilic, positively charged, negatively charged and polar uncharged). 
Then the model was filled up with a restricted set of amino acids: norleucine to hydrophobic 
positions and ornithine, glutamine or glutamic acid to hydrophilic ones. These residues 
were chosen since they have the same side-chain length, ensuring a homogeneous cross-
section to the helix. This step generates two peptides, P19 (5) and P19 (6). In the next step, 18 
novel sequences were derived from the initial model in order to verify the effects on activity 
by charge, helicity, amphipathicity, hydrophobicity and size reduction. Four sequences were 
developed with different charges: +1, +3, +8 and +9. As observed by Dathe et al. (2001), 
charge reduction leads to a decrease in antimicrobial activity. However, Giangaspero et al. 
(2001) propose that the activity is independent of positioning of charged residues within the 
helical domain. The addition of two ornithine or glutamic acid residues to the N-terminal of 
those peptides can increase or decrease the activity, respectively: adding two ornithine 
residues to the analogue with charge +1, its charge became +3 and it became active, with a 
similar spectrum of analogue with charge +3. 

The amphipathicity and hydrophobicity were tested by developing a shuffled peptide 

version of P19 (6). This peptide has a moderate, and restricted to Gram-negative, 

antimicrobial activity when compared to P19 (6), even with the same amino acid 

composition, charge and hydrophobicity, showing that amphipathic arrangement is 

important to activity (Giangaspero et al., 2001). Size reduction also was tested, by deleting 

either N- or C-terminal from the most active peptide. This reduces or abolishes the activity, 

however, switching polar to nonpolar residues, resulting in activity recovery, being similar 

to or better than the original peptide. These data indicate that in small peptides, there must 

be equilibrium among charges, helix formers and hydrophobic residues. Helicity 

modifications were also measured, showing that an increase in the helix propensity also 

increases the antimicrobial potency. However, it has little additional effect on peptides that 

have a high helix propensity. On the other hand, decreasing the helix propensity, by proline 

or D-amino acid insertions could clearly decrease the antimicrobial activity. 

Nonetheless, Chen et al. (2005) observed a different relationship between helicity and 
antimicrobial activity in their study about analogues of V681, a designed amphipathic -helix 
antimicrobial peptide. Its nonpolar face comprises 12 amino acid residues, while the polar 
face shows 14 of these (Figure 1). The central residue from each face was chosen for 
substitutions, Ser11 and Val13 for polar and nonpolar faces, respectively. Amino acid 
substitutions were made by increasing or decreasing the peptide’s hydrophobicity and/or 
amphipathicity. Each analogue were generated by only one amino acid substitution, being 
divided in two groups, the ones with alterations in the polar face named S11X, where ‘S’ is 
replaced by ‘X’; and the second group with alterations in the nonpolar face named V13X, 
with the same logic as S11X analogues. Five L-amino acids (Leu, Val, Ala, Ser and Lys) plus 
glycine were selected to replace the central residues, representing a wide range of 
hydrophobicity, on a decreasing scale in the following order: Leu > Val > Ala > Gly > Ser > 
Lys. Moreover, D-enantiomers of each selected L-amino acid were also incorporated in the 
same positions in order to disrupt helical structures generating a total of 20 analogues. It 
was observed that some D-amino acid analogues were stronger than their L-amino acid 
equivalents. Probably, D-amino acids analogues overcome the helix disruption through 
other properties, such as hydrophobicity or amphipathicity. Moreover, they also observed 
that changes in the hydrophilic face of V681 does not reduce peptide activity against Gram-
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positive or -negative bacteria or human erythrocytes, in contrast to changes in hydrophobic 
face. A similar result was observed by Blondelle et al. (1996). 

The D-enantiomer of analogue V13K was used by Jiang et al. (2011) as the basis of another 
physicochemical study. The all-D-enantiomer analogues were developed in order to create 
peptides with specificity to Gram-negative bacteria. Five analogues (D11, D14, D15, D16 and 
D22) were designed to investigate the influence of charge (analogue D11), hydrophobicity 
(analogue D22), insertions of charged residues into nonpolar face (analogue D14) and 
composition of the nonpolar face (analogues D15 and D16). They observed that when charge 
and hydrophobicity increase (comparing V13K and D11), antimicrobial activity also 
increases, as observed by Dathe et al. (2001) and Giangaspero et al. (2001). By increasing 
hydrophobicity (comparing D11 to D22), haemolytic activity increases, confirming the data 
proposed by Dathe et al. (1997). However, by introducing a second lysine in the nonpolar 
face (comparing D22 to D14), hydrophobicity can be kept higher and haemolytic activity can 
decrease. Finally, the composition of the nonpolar face (comparing D11 and D14 to D15 and 
D16, respectively), D15 and D16 were generated by switching all large side-chain 
hydrophobic residues for leucine residues. Those changes increase hydrophobicity and 
antimicrobial activity, but they have different effects on haemolytic activity, while D15 
becomes more haemolytic and D16 becomes less haemolytic, probably due to the presence 
of second lysine residue in the polar face of D16. These data show that the same 
physicochemical rules can be applied to D- or L-enantiomers. 

Few studies with another kind of folding have been reported. In 1999, Wu & Hancock 
carried out a study based on bactenecin, a 12-amino acid residue peptide that adopts a ǃ-
turn structure cyclized via disulphide bond. Linear analogues of bactenecin show its activity 
depleted. However, C-terminal amidation partially restores the activities. In this study, 
several changes in both forms (linear and cyclic) of bactenecins were evaluated. Several 
analogues were designed to test the importance of ring size (numbers of amino acids 
between the cysteine residues), charge, and amphipathicity. The results are similar to -
helical peptides, in which it was observed that increasing the charge leads to an 
improvement in antimicrobial activity. Moreover, the same study showed that the positions 
of charged residues are more important than the number of positive charged residues. 
Increasing the ring size by insertion of a tryptophan in the middle of the ring increases the 
activities, while a proline residue insertion was able to abolish the activity. Additionally, the 
cyclic analogues also have agglutination activities, in contrast to linear versions. The linear 
analogue Bac2A-NH2 was the most desirable candidate generated in this study, due to its 
broad spectrum of activity and absence of agglutination activity. Further, several analogues 
of Bac2A were developed through point substitutions, scrambling, and deletions in 
sequence; IDR1018 is the most promising of all Bac2A analogues. Besides bactericidal 
activity, IDR1018 also displays chemokine induction activity and suppresses pro-
inflammatory responses to Gram-negative bacteria (Wieczorek et al., 2010). 

Conversely, this kind of analysis, considering the minimum inhibitory concentration (MIC) 
as a consequence of structural and physicochemical properties, leads us to false conclusions. 
MIC values can be very similar for peptides with different properties. This is easily observed 
when peptides KLA12 and KLA7 (Dathe et al., 1997) are compared. They have similar MICs; 
nevertheless, their hydrophobicity and hydrophobic moment are different. The 
hydrophobicity of KLA7 is a half of KLA12, while its hydrophobic moment is 1.15 times 
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higher than KLA12. Moreover, this kind of study is almost completely restricted to -helical 
peptides. The lack of study of other varieties of folding might bring novel information about 
the relationship between physicochemical properties and antimicrobial activities. 

2.2 Sequence template methods of rational design of AMP 

Sequence template methods involve generating novel AMPs based on a known sequence, 

whether of an active or an inactive peptide. These approaches can seek to reduce size, add 

selectivity and/or increase the activity. In several cases, the information generated by 

physicochemical methods can be used to reach these objectives, by switching residues, 

changing the net charge or pursuing minor peptides with the same properties, without 

performing a physicochemical study itself. 

In 1996, Thennarasu & Nagaraj developed three analogues of pardaxin by switching some 

amino acid residues for others with different properties. Pardaxin is a toxic peptide secreted 

by the sole fish from the genus Pardachirus. At low concentrations pardaxin is able to form 

ion channel-like structures and at high concentrations that causes cell membrane disruption. 

This toxin can also induce neurotransmitter release from neurons. Firstly, the authors 

identified the probable region responsible for membrane permeation activity. Preliminary 

studies have shown that the C-terminal region did not have this activity, since the positive 

charges were concentrated at N-terminal. Then, the first designed analogue was the N-

terminal 18 residue segment, named 18P. The second analogue, 18A, was designed by 

switching the residue Pro7 to an alanine residue, since proline residues cause structural 

distortions to helix backbone. The last analogue, 18Q, was developed switching the two 

lysines (Lys8 and Lys16) for glutamines in the 18A sequence, since glutamine residues play 

an important role in channel formation by peptides with neutral charges. Having designed 

these analogues, their activities were examined against Escherichia coli, Staphylococcus aureus 

and human erythrocytes. 18P analogue showed activity only against E. coli, while 18A 

showed haemolytic activity in addition to antimicrobial activity against E. coli. On the other 

hand, 18Q showed only haemolytic activity. No activities against S. aureus were observed. 

Although the minimum identity among the sequences was 83.3% (18P and 18Q) the 

activities were different. While 18P showed simply antimicrobial activity, 18Q had only 

haemolytic one. These differences can be explained by their intrinsic structures. Circular 

dichroism (CD) analysis showed that 18P had a low propensity to occur in helical 

conformation when compared to 18A, even though both have a typical helical CD spectrum, 

while 18Q adopted a clear ǃ-structure, probably forming an amphipathic ǃ-sheet, even in 

~65% of 2,2,2-trifluoroethanol, indicating the importance of structure-activity relationship. 

Ueno et al. (2011) developed a strategy that does not generate great conformational changes 

in relation to original sequences. This strategy is based on acid-amide substitutions by 

switching aspartic acids and glutamic acids to asparagine and glutamine, respectively. Since 

these substitutions are conservative, the structure has few changes and if the original 

peptide has basic residues, there will be an increased charge in the novel peptides. This 

strategy was successfully applied to three pro-regions of nematode cecropins. The pro-

regions are inactive against bacteria and human erythrocytes. After modifications, the 

sequences became antimicrobial peptides with slight haemolytic activity. CD spectra reveal 

that the structure of original peptides and its analogues are similar. 
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Likewise, Ahn et al. (2006) developed an AMP based on the 11-residue -helical domain 
from tenecin 1, an insect defensin isolated from Tenebrio molitor. This -helical domain, 
named L1, shows no antimicrobial activity. In defensins, the activity is related to the Ǆ-core 
motif, comprised of a ǃ-hairpin (Yount & Yeaman, 2004). However, L1 shows 
physicochemical properties similar to well-known AMPs, except the net charge. L1 has a net 
charge of +2, while AMPs have a charge of +4 or +5. Three analogues of L1 were developed 
(L2, L3 and L4) by switching some residues. L4 was the most active analogue, showing even 
greater activity than tenecin 1. L4 was developed by switching an aspartic acid and a 
histidine for lysine residues, increasing the charge to +3. Thereafter, L4 showed activity 
against bacteria and fungi, including E. coli, Pseudomonas aeruginosa and Candida albicans, 
besides activity against S. aureus and Micrococcus luteus, while tenecin 1 had no activity 
toward these pathogens. 

Another work involving defensins was developed in 2008 by Landon et al. In this study, 70 
chimeric defensins were designed by combining conserved regions of Anopheles gambiae 
defensin and variable regions of other insect defensins. From these, 45 were expressed in 
yeast Saccharomyces cerevisiae. Five of them were selected for study. These five hybrid 
defensins originated from combinations of A. gambiae defensin (DEF-AAA) with defensins 
from Belostoma gigas, T. molitor, Acrocinus longimanus and/or Drosophila melanogaster. All 
hybrid defensins have the same structural scaffold of a cysteine-stabilized ǃ motif. On the 
other hand, their activities against S. aureus multi-resistant strains were different. Two 
analogues were more effective in vitro against S. aureus (DEF-AcAA and DEF-DAA). DEF-
DAA was toxic to mice models, with a lethal dose of 30 mg.kg-1, while DEF-AcAA showed a 
lethal dose higher than 100 mg.kg-1. Indeed, since the active site of defensins consists of the 
Ǆ-core, these two hybrid defensins have an identical Ǆ-core sequence, indicating that the N-
terminal loop of defensins may also contribute to the activity. So the in vivo activity of DEF-
AcAA and DEF-AAA was evaluated against S. aureus peritonitis model on mice. The results 
showed that both defensins have the same efficacy for S. aureus multi-sensitive strain, with a 
dose of 3 mg.kg-1. Nevertheless, on the same model with a multi-resistant strain DEF-AcAA 
was shown to be the most effective with a dose of 3 mg.kg-1, while DEF-AAA needed a dose 
of 10 mg.kg-1. These results demonstrate that these AMPs are more efficient than 
vancomycin, which requires a dose ranging from 10 to 30 mg.kg-1 for treatment on the same 
model. 

Also focusing on development of peptides with potential for systemic use, Sigurdardottir et 
al. (2006) identified a 21-amino acid fragment of human cathelicidin antimicrobial peptide 
LL-37 with similar or stronger activities than the complete peptide. LL-37 is an attractive 
candidate for treatment of sepsis, due to its broad spectrum of antimicrobial activity, the 
immune system’s cell chemotactic abilities and also abilities to bind and neutralize bacterial 
lipopolysaccharides. However, LL-37 also has cytotoxic activity against eukaryotic cells. 
Therefore, using the helical propensity prediction of AGADIR (Lacroix, 1998) and the amino 
acid preference for -helix terminals, they identified a fragment starting from Gly14 going up 
to Arg34, named GKE. For comparisons, two other 21-amino acid fragments were derived, 
one from the N-terminal (LLG) and other from C-terminal (FKR). GKE was more active than 
LL-37 against bacteria and fungi. Moreover, GKE and LL-37 showed similar chemotaxis and 
inhibition of nitric oxide production activities. The same patterns were not observed for LLG 
and FKR fragments. Interestingly, all fragments showed 100% of identity to LL-37. 
However, they differed in helix propensity, although GKE and FKR do not present much 

www.intechopen.com



 
Protein Structure 

 

386 

difference in helical content and have 85.7% of identity. The amino acid preference for -
helix terminals might explain those differences in activity. 

Another successful strategy is the use of synthetic combinatory libraries (Blondelle et al., 

1996). A synthetic combinatory library is composed of a set of mixtures of peptides 

generated from a template. In this approach, several positions of template sequence were 

chosen for amino acid substitutions. One of them was chosen for individual defined 

substitutions, where each modification is controlled, generating one subset for each 

modification. Thus it can generate 20 subsets, by using the proteinogenic amino acids. The 

other selected positions are randomly filled up in each subset. Following this strategy, 

Blondelle et al. (1996) used the sequence ‘YKLLKKLLKKLKKLLKKL-NH2’ as a template for 

design of two synthetic combinatory libraries, the first one with changes in hydrophobic 

face and the second one in hydrophilic face. In hydrophobic face, Leu4 was chosen for 

individual defined substitutions (represented by “O”), while Leu7, Leu11 and Leu14 were 

chosen for random filling (represented by “X”); this library was represented by the sequence 

YKLO4KKX7LKKX11KKX14LKKL-NH2. The same logic was applied to hydrophilic face, 

being represented by the sequence YKLLKO6LLX9KLKX13LLX16KL-NH2. The assays showed 

that substitutions in hydrophobic face depleted the activity of the original peptide. During 

the second stage of design, the library with changes in polar face was redefined by changing 

the residue used for individual defined substitutions (positions 6, 9, 13 and 16). In this way, 

the best residues for each position could be selected. Thus leucine was selected at position 6 

as a representative hydrophobic residue, proline at position 9, proline and glycine at 

position 13, and phenylalanine, isoleucine and proline at position 16, six peptides being 

generated by combining those selected residues (1 x 1 x 2 x 3 = 6). Five of the six designed 

peptides showed a 10-fold improvement in activity. 

Indeed, sequence template methods can generate novel AMPs with enhanced activity 
against bacteria and lower effectiveness toward mammalian cells than original sequences. 
However, there are no directives for using this kind of method. Which residues are 
important for activities? What must be substituted to obtain a higher deleterious activity 
and lower side effects? Are the physicochemical properties useful for this kind of study? 
Can the methodology applied to peptide A be applied to peptide B? For these methods, it is 
necessary to identify the governing principle that allows the enhancement of antimicrobial 
activity. In fact, there must be something beyond switching residues or development of 
chimeric proteins. Identifying this principle will be helpful for developing novel methods of 
rational design. 

2.3 De novo methods of rational design of AMP 

De novo methods are very interesting in terms of achieving a yield from multiple AMPs with 
little amino acid conservation. Instead of using one pivotal sequence to develop analogues, 
de novo methods can use amino acid patterns or amino acid frequencies and positioning 
preferences, generating several sequences with no clear relation. 

Tossi et al. (1997) developed a de novo method that considers the length of the peptide, its 
cationicity, its amphipathicity and its helicity, in addition to sequence patterns. First, 20 
residues from the N-terminal of 85 natural -helical AMPs were aligned without gap 
insertions or any attempt to improve the alignment. Based on this alignment, frequencies 
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and kinds of amino acids were extracted, in order to create a novel pattern. Despite the 
simplicity of this method, a well-defined pattern of residue distribution was developed. 
Next, the pattern was filled up with the most frequent amino acids in each position, 
generating an AMP with 20 amino acid residues. The same method was applied to 
mammalian cathelecidin with some modifications, using a reduced number of sequences 
and adding gaps in the alignment, creating three novel patterns ranging from 18 to 22 amino 
acids (Tossi et al., 1997). Thus, the patterns were filled up with the most frequent amino 
acids. The helicity was evaluated by using secondary structure predictions and helical wheel 
diagrams. The four designed peptides showed a potent and broad-spectrum activity against 
Gram-positive and Gram-negative bacteria. 

Some years later, Loose et al. (2006) developed a similar but more sophisticated de novo 

method, the linguistic model. According to this model, AMPs seem to be a formal language 

with grammar composed of several rules (patterns) and a vocabulary (amino acids). Instead 

of using alignments to define the patterns, the TEIRESIAS algorithm was used for pattern 

discovery (Rigoutsos & Floratos, 1998). Thus, ~700 grammars sequences were established, 

and then all possible grammar sequences with 20 amino acid residues were written out. 

Sequences with at least 60% of identity with natural AMPs were removed, resulting in 12 

million remaining sequences. Next, by removing sequences with at least 70% of identity, 41 

candidates were obtained. From these, one peptide was insoluble, but 18 had MIC at 

maximum of 256 μg.ml-1 and the remaining peptides showed no activity against E. coli and 

Bacillus cereus. Through this method, novel antimicrobial peptides were designed without 

any information about their structures (Loose et al., 2006). In fact, as well as generating novel 

AMPs, this work was of great importance in that it explained some results of 

physicochemical methods of rational design. For each grammatical peptide, a non-

grammatical peptide was designed with the same amino acid composition, by shuffling the 

sequence. Giangaspero et al. (2001) had already used this strategy and the shuffled peptide 

showed a reduced activity. However, Loose et al. (2006) generated shuffled peptides with no 

grammars, expecting that they had no activity because they were non-grammatical peptides. 

As result, only two shuffled peptides were active. From this, it could be seen that there are 

no direct relations between scalar physicochemical properties and antimicrobial activity, 

because shuffled and grammatical peptides have the same charge, hydrophobicity, size and 

molecular mass (Loose et al., 2006). This explains why the conclusions of physicochemical 

methods were not completely correct, and in some cases, controversial (i.e., equal MICs but 

different physicochemical properties and vice-versa). The scalar physicochemical properties 

had led researchers to false conclusions because they have a secondary role in activity.  

On the other hand, a property widely used in physicochemical methods does change when 

the sequence is shuffled, and that is the hydrophobic moment, a vector property. Loose et al. 

(2006) also used the hydrophobic moment. In a second step of rational design, the best 

designed sequence was submitted to a redesign process to increase its activity using a 

heuristic approach, and one of proposals of this redesign process was to “improve the 

segregation of positive and hydrophobic residues based on a helical projection” or, in other 

words, to improve the hydrophobic moment. The fact that no structural information is 

needed is certainly an advantage, but this method has some limitations, such as the 

difficulty in designing larger proteins with complex structures. So this method is restricted 

www.intechopen.com



 
Protein Structure 

 

388 

to generating AMPs similar to those that are deposited in the main data set, i.e., the two 

most active peptides obtained through this method have 50 and 60% of identity to natural 

AMPs. 

All these methods have been helpful, in their time, in reaching a better understanding of 
relationships between sequence, structure, physicochemical properties and antimicrobial 
activity. Overall, these methods have been effective in designing potent AMPs able to kill 
bacteria at low concentrations. Furthermore, they have also been helpful in the development 
of antimicrobial prediction tools, as will be seen in the next section. 

3. Methods to predict antimicrobial activity 

The understanding of antimicrobial peptides’ behaviour led some groups to propose 

different approaches to predict antimicrobial activity, and this field saw much progress in 

last years. Several methods of antimicrobial activity prediction emerged from studies of 

rational design, mainly the physicochemical and de novo methods. The rules extracted from 

rational design methods can be extrapolated to other sequences with good reliability by 

computer-aided predictions. As a result, several tools have been developed, such as 

prediction tools from Collection of Antimicrobial Peptides (CAMP, Thomas et al., 2010) and 

AntiBP Server (Lata et al., 2010). Overall, there are two main strategies for predicting AMPs, 

the empirical methods and the supervised machine learning ones.  

3.1 Empirical methods of AMP prediction 

The empirical methods are qualitative, being based only on characters of AMPs without 

taking into account peptides without antimicrobial activity. In fact, these models are based 

on rules or patterns correlated to antimicrobial activity. However, the methods cannot be 

extrapolated to other classes of AMP, being restricted to the class that generated the model. 

Moreover, they have no standard accuracy measurement, since there is no larger set of non-

antimicrobial sequences to test them. In fact, there is no accuracy value, making it 

complicated to compare the methods, which are summarized in Table 1. 

The most simple prediction method is that employed by the Antimicrobial Peptides 

Database prediction tool (Wang & Wang, 2004). In this case no artificial intelligence was 

used. It is based only on logical questions about the sequence. It returns a positive 

prediction whenever a sequence is less than 50 amino acid residues in length, has 

hydrophobicity below 75% and a cationic net charge. Moreover, the prediction is also going 

to be positive if the sequences present an even number of cysteines. This method seems to be 

merely based on rules extracted from physicochemical studies. However, this method 

neglects some AMPs (e.g., anionic and hydrophilic antimicrobial peptides). 

Despite these clear limitations the APD prediction tool was used by Nagarajan et al. (2006) 
for validating their prediction method. This method was developed in order to mine protein 
data sets, being based on Fourier transformations and Euclidian distances. Comparisons 
were made with a power spectrum generated by the Fourier transformation of five indices. 
The indices were based on hydrophobicity, charge, polarity, cysteine content and amino 
acid distribution. For analysis, the method was applied to six antimicrobial peptides with 16 
amino acid residues. In all cases, the power spectrum shows a peak at period 5, and the 
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major contribution to power spectrum is given by hydrophobicity index. Those power 
spectra were used to generate a reference power spectrum used in further comparisons. A 
set of 10,000 random peptides with 16 amino acid residues were generated by PERL scripts. 
The power spectrum of each random sequence was obtained and compared to the reference 
through Euclidian distance. From 10,000 random sequences, only three hits were obtained. 
Two of three hits had positive charge and were predicted as AMPs by the APD prediction 
tool. However, the three hits showed at least 30% of identity to a known AMP. 

Similarly, Fernandes et al. (2009) developed a classification method based on fuzzy 
modelling, also focusing on data set mining. This approach is based on the linguistic model 
developed by Loose et al. (2006) and also on the peptide’s amphipathicity. It made each 
screening into a data set, searching for sequences with a defined pattern. The found 
sequences were then classified by fuzzy modelling. This consists of a surface plot generated 
by two membership functions: a triangular function relating the ratio of polar to charged 
residues and a Gaussian hydrophobicity membership. The best candidates fall into a region 
between 2:1 and 1:1 polar to charged residues and the regions of moderated hydrophobicity 
in Gaussian membership, identifying the amphipathic sequences. Assuming hydrophobicity 
to be low or the ratio to be lower than 1, the sequence is a weak AMP; if hydrophobicity is 
medium and the ratio is adequate the peptide is a specific AMP; and if hydrophobicity or 
the ratio is high, the peptide is non-specific. The system was tested in NCBI’s non-
redundant protein data set (NR) and the seed sequence was Cn-AMP1 (Mandal et al., 2009). 
Through this, three sequences were obtained from a total of 7,153,872 sequences in NR. 

Another method that involves patterns is the multidimensional signatures developed by 
Yount & Yeaman (2004). This method is based on recognition of sequence patterns and 
motifs in three dimensional structures to correlate them to antimicrobial activity. It was 
successfully applied to cysteine-stabilized peptides. In this work, a Ǆ-core motif was 
recognized by the patterns “X[1,3]GXCX[3,9]C”, “CX[3,9]CXGX[1,3]” and 
“CX[3,9]GXCX[1,3]”, where X corresponds to any natural amino acid and the numbers 
between brackets represent sequence variations (i.e., X[3,9] represents an extension of three 
to nine residues, being composed of any natural amino acid residue). Based on a data set of 
500 antimicrobial peptides with length of up to 75 amino acids residues and cysteine 
content, prototypic sequences were chosen as representative of their classes. The conserved 
motif GXC was identified by visual inspection of multiple alignments. However, in some 
sequences this motif was inverted, so the three patterns of Ǆ-core motif were proposed. 
Structurally the three patterns are absolutely conserved, corresponding to an antiparallel ǃ-
sheet composed of two strands. In order to validate the model, two peptides without 
previously reported antimicrobial activity were selected, the sweet-tasting protein brazzein 
and the toxin charybdotoxin, both containing the Ǆ-core motif in their 3D structures. These 
two peptides exerted direct antimicrobial activity against bacteria and fungi. The method 
was also validated by identification of Ǆ-core sequence into well-known antimicrobial 
peptides without known 3D structure. The Ǆ-core motif was identified in tachyplesins before 
its structure became available. Its three-dimensional structure really exhibits the motif of 
two antiparallel ǃ-strands. 

Jenssen et al. (2007) also developed and tested their model in vitro. They constructed a 
mathematical model for prediction based on the statistical methods, principal component 
analysis (PCA) and partial least squares (PLS). This model was filled up with three major 
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classes of descriptors, (i) amino acid (charge, hydrophobicity and size); (ii) a series of contact 
energy for each pair of amino acids and (iii) 78 biophysical inductive and conventional 
quantitative QSAR descriptors. These data were extracted from a single-substitution Bac2a-
library containing 228 peptides. This model was capable of predicting 84% of tested 
peptides. 

 

Method How is the evaluation done? References 

APD Prediction Tool Well-known AMP properties Wang & Wang, 2004 
Fourier Transformation Physicochemical properties Nagarajan et al., 2006 

Fuzzy Modelling 
Sequence motifs and 

physicochemical properties 
Fernandes et al., 2009 

PCA/PLS 
Amino acid descriptors, pairs of 

amino acid descriptors and QSAR 
descriptors 

Jenssen et al., 2007 

Multidimensional 
Signatures 

Sequence and structure motifs Yount & Yeaman, 2004 

Table 1. Empirical antimicrobial prediction methods. 

In fact, the last two methods are the most important among the methods discussed so far, 

mainly due to the in vitro validation of predictions. Without this kind of validation, these 

methods become only good hypotheses, without contributing much knowledge. However, 

they can achieve a more accurate prediction when they are more restricted to some class of 

AMP, without a generalization model. 

3.2 Supervised machine learning methods of AMP prediction 

Supervised machine learning methods for predicting antimicrobial activities have a well-

established validation procedure, allowing these methods to be compared. The reliability of 

these methods is evaluated by several parameters, the main three being calculated as 

follows: 

  (2) 

 

   (3) 

 

   (4) 

TP corresponds to the number of true positives; FN, the false negatives; TN, the true 

negative; and FP, the false positives. However, the evaluation of precision on positive 

predictions can be done by calculating the positive predictive value (PPV), given by the 

following equation: 
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   (5) 

Here, comparisons among the methods are going to be made based on PPV and accuracy 
values (Table 2), since for discovering novel AMPs it is more important that the probability 
of a positive prediction be true. Overall, these methods require two data sets, the training set 
and the blind set. The training set is composed of two subsets, the positive data set (the 
AMPs) and the negative data set (the non-AMPs). Through these sets the algorithm is 
trained and then, tested against the blind set. From the results against the blind set, the true 
positives, negative and false positives and negatives are estimated and then the parameters 
(e.g., accuracy) are calculated. 

There are two major challenges in the usage of supervised machine learning to predict 
antimicrobial activity: the AMPs’ size variation, and the absence of a dataset for non-
antimicrobial peptides (Lata et al., 2007). There are at least two choices of positive set, APD 
(Wang & Wang, 2004) and CAMP (Thomas et al., 2010). Nevertheless, there are no non-
antimicrobial data bases to use as a negative set. Another difficulty is the variation in size of 
AMPs, since the machine learning techniques need fixed length input vectors. Several 
strategies have been developed in order to overcome these problems. 

Lata et al. (2007) developed the first supervised machine learning methods for prediction of 

antimicrobial activity. In this pioneer work, three algorithms were tested: SVM, ANN and 

quantitative matrices (QM). The positive data set was composed of 436 AMPs from APD and 

the negative set was composed of an equal number of non-secretory proteins randomly 

selected from SwissProt. Initially, an SVM model using amino acid composition of whole 

sequence was built with 20 inputs, one for each amino acid. This model achieves the highest 

accuracy of all generated models in 5-fold cross validation (89.04%). However, the authors 

proposed that is impossible to utilize this approach to search for AMPs in genomes or proteins 

due to the enormous size variation. Thus, it was decided that a fixed length would be used, 

using binary patterns, where each amino acid is represented by one binary pattern. SVM 

models with the 5, 10, 15 or 20 first N-terminal residues were constructed. The best accuracy 

observed in 5-fold cross validation was in SVM model with 15 residues (87.85%). Therefore, 

another two approaches using SVM were developed, the C-terminal approach (with 15 C-

terminal residues) and the N+C-terminal approach (with 30 residues, 15 from N-terminal and 

15 from C-terminal). The C-terminal approach achieves an accuracy of 85.16 %, while the N+C-

terminal one achieves 92.11% in 5-fold cross validation. The three approaches were applied to 

QM and ANN. In both cases, the N+C-Terminal approach achieved the best accuracies in 5-

fold cross validation, 90.37% and 88.17%, respectively. In a blind data set composed of 24 

mature sequences extracted from SwissProt, the N+C-terminal approach had the higher 

performance in all algorithms, achieving a PPV of 91.66% for all algorithms. 

In 2010, this system was improved, but only the SVM was used (Lata et al., 2010). In this new 
version, the positive data set was composed of 999 AMPs and the negative data set was 
constructed with an equal number of non-secretory proteins extracted from SwissProt. The 
blind set was composed of 466 AMPs from SwissProt, none of which were present in the 
positive set. The N+C-terminal approach continued to show higher accuracy (91.64%). Despite 
the drop in precision (92.11 to 91.64%), the improved version was more reliable because the 
number of sequences used in training and testing were higher than the previous version. 
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Thomas et al. (2009) used two other methods in addition to SVM. Random forest (RF) and 

discriminant analysis (DA) were implemented. RF showed the finest accuracy (93.2%), 

followed by SVM (91.5%) and DA (87.5%). The positive data set was composed of 2578 

AMPs and 4011 sequences derived from SwissProt or randomly generated sequences. 70% 

of each set was used for training the machines and the other 30% composed the blind set. 

The algorithms were trained with 275 features, including composition, physicochemical 

properties and structural characteristics of each amino acid. In contrast to that of Lata et al. 

2007 and 2010, the method developed by Thomas et al. (2009) was able to predict 

antimicrobial activity for sequences with variable size. 

 

Method 
Positive 

Set 
Negative Set Accuracy (%) 

PPV 
(%) 

References 

SVM APD SwissProt 92.11 92.11 Lata et al., 2007 
QM APD SwissProt 90.37 90.65 Lata et al., 2007 

ANN APD SwissProt 88.17 88.17 Lata et al., 2007 
SVM APD SwissProt 91.64 90.43 Lata et al., 2010 

RF CAMP 
SwissProt and 

Random 
Sequences 

93.20 95.13 Thomas et al., 2010 

SVM CAMP 
SwissProt and 

Random 
Sequences 

91.50 93.42 Thomas et al., 2010 

DA CAMP 
SwissProt and 

Random 
Sequences 

87.50 87.45 Thomas et al., 2010 

SVM APD 
Random 

Transmembrane 
Sequences 

83.02 96.54 Porto et al., 2010 

ANN CAMP SwissProt 89.20 88.60 Torrent et al., 2011 

ANN 
AMP 

Library 
Non-AMP 

Library 
86.50 92.94 Fjell et al., 2009 

Table 2. Supervised machine learning methods of antimicrobial prediction. 

Our group has developed an SVM model based on physicochemical properties for prediction 
of peptides with cysteine knot motifs (Porto et al., 2010). Despite the absence of direct 
correlation between antimicrobial activity and physicochemical properties, their use solved the 
problem of size variation. However, it generated another problem, which is that shuffled 
sequences have the same scalar properties, since they are simple averages and the order of 
residues does not imply average modifications. That problem is avoided by including the 
hydrophobic moment, since the modification of sequence clearly modifies the hydrophobic 
moment. For the second challenge, a set of predicted transmembrane proteins was used as the 
set of non-antimicrobial peptides, since the transmembranes are non-secretory proteins. 
Through this approach, an overall accuracy of 83% was observed in a blind dataset. This 
model can be helpful to predict antimicrobial activity of a wide number of cysteine-stabilized 
peptides, such as conotoxins, proteinase inhibitors, metallothioneins, defensins and cyclotides. 
The only requirement is the presence of disulphide bonds in the peptide structure.  
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Also using physicochemical properties, Torrent et al. (2011) developed an ANN with eight 
properties: isoelectric point (pI), peptide length, -helix, ǃ-sheet and turn structure 
propensity, in vivo and in vitro aggregation propensity and hydrophobicity. The main data 
set was composed of 1157 AMPs from CAMP and 991 non-AMPs from SwissProt. The 
training set was composed of 1074 peptides, while the testing and validation sets contained 
537 peptides. The system achieved an accuracy of 90%. Indeed, the aggregation propensity 
was seen to be crucial for this method in much the same way as the hydrophobic moment in 
the method developed by Porto et al. (2010). The aggregation propensity changes if the 
sequence is shuffled, but the other six properties do not. When the aggregation parameter is 
removed, the system’s reliability decreases. 

The methods discussed so far show that AMP size variation problem is easy to solve, by 
using fixed sizes or physicochemical properties. Both strategies achieve similar accuracies. 
On the other hand, the non-AMP data set only seems to be easier to solve by using random 
proteins or proteins from SwissProt. However, comparing AMPs to randomly selected 
proteins from SwissProt is almost the same as comparing oranges to strawberries; it is 
relatively easy to distinguish each, generating high accuracies. Moreover, as shown in 
section 2, two peptides with high identities and subsequently similar properties can have 
different activities, as is the case of peptides derived from pardaxin (Thennarasu & Nagaraj, 
1996) and LL-37 (Sigurdardottir et al., 2006). 

Lately, a combined approach of QSAR and machine learning techniques has been developed 
(Fjell et al., 2009). Through 44 QSAR descriptors, an ANN was built based on 1433 random 
nine-mer peptides. The ANN was trained to predict sequence activity in relation to the control 
peptide Bac2A. For model evaluation, a library of nine-mer peptides composed of 
approximately 100,000 sequences was screened in silico. These sequences were divided into 
four classes: (I) most likely to be more active than the control; (II) likely to be more active than 
the control; (III) likely to be less active than the control; and (IV) most likely to be less active 
than the control. The topmost 50 positions of each class were synthesized and tested. For class 
I, an accuracy of 94% was observed, although the overall accuracy was around 85%. 

The methods discussed here show that the great difficulties in antimicrobial activity prediction 
are the absence of a non-antimicrobial database and the enormous variation in sequence size. 
The greatest challenge for prediction methods is perhaps the heterogeneity of AMPs, which 
are part of a group with different sequences, structures and mechanisms of action. 

4. Conclusions and prospects 

In the future, novel treatments against resistant bacteria should be developed, including 

strategies that use unnatural AMPs as their basis. The development of unnatural AMPs can 

be carried out by various methods, including those discussed here. This kind of study brings 

new knowledge and also generates novel AMPs, in turn boosting the development of 

prediction methods that can help evaluate rational designed AMPs. A more accurate 

prediction model may be developed when the patterns of the linguistic model can be used 

to train machine learning techniques. In addition, a more efficient approach to pattern 

recognition is needed, since a single sequence is insufficient for patterns identification. In 

this view TEIRESIAS could be used once two or more sequences were need by this approach. 

This methodology will be helpful not only for novel AMPs development, but also for other 
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protein chemistry fields. The development of this new methodology is a real challenge and 

could reduce current limitations, leading us to develop novel and more potent antimicrobial 

peptide agents.  
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