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1. Introduction 

ADP-ribosyl cyclases (ADPR-cyclases)/CD38 have emerged as effecter molecules for 
generating novel Ca2+ signaling messengers, cyclic ADP-ribose (cADPR) and nicotinic acid 
adenine dinucleotide phosphate (NAADP) (1, 2) (see Figure 1). Mounting evidence has 
indicated that G protein-coupled receptors, including the angiotensin II (Ang II) receptor, 
mediate activation of ADPR-cyclase to generate Ca2+ signaling messengers (3-5). We have 
studied Ang II receptor-mediated activation of ADPR-cyclase, resulting in Ca2+ dysfunction  

 

Fig. 1. CD38/ADPR-cyclase-catalyzed reactions for the production of two Ca2+ mobilizing 
second messengers, NAADP and cADPR.  
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which plays an important role in the pathogenesis of renal failure using an in vitro and an in 
vivo model (4, 6). In this review article, I would like to give an overview on the current 
worldwide status of diabetic nephropathy (DN) as a leading cause of end-stage renal disease 
(ESDR), the causative role of renin-angiotensin-aldosterone system (RAAS) for DN, the role of 
ADPR-cyclase in pathogenesis of DN and a potential therapeutic tool for DN by the intervention 
of Ang II receptor-mediated Ca2+ signaling with a kidney-specific ADPR-cyclase inhibitor. 

2. Diabetic nephropathy and the renin-angiotensin-aldosterone system 

Chronic kidney disease (CKD) is a major worldwide public-health problem affecting about 
10% of the population (7). CKD has an increased annual incidence rate of about 5–8% (8). A 
leading cause of CKD is diabetic nephropathy (DN) throughout much of the world. This 
disease is characterized by the thickening of the glomerular basement membrane and 
mesangial matrix expansion (9). The early stage of DN is associated with glomerular 
hyperfiltration and glomerular hypertrophy, but not the collapse of the glomerular 
capillaries. DN results from an interaction between metabolic and hemodynamic factors. 
Glucose-dependent pathways are activated within the diabetic kidney, such as increasing 
oxidative stress, polyol formation, and advanced glycation end product accumulation (10).  

In addition to elevated blood glucose, hypertension and inappropriate activation of the 
RAAS have been identified as contributing to the development and progression of diabetic 
renal disease (11). Clinical studies have demonstrated an important role for blood glucose 
control in reducing the development and progression of DN (12, 13) and they also have 
shown the importance of blood pressure reduction (14, 15) and the blockade of the RAAS 
(16–18) in slowing the progression of renal dysfunction in diabetes.  

The pharmacological inhibition of the RAAS with angiotensin converting enzyme inhibitors 
(ACEIs) or angiotensin II receptor antagonists (ARBs) are the first-line treatments for CKD 
patients. Despite several advantages of these agents, a number of side-effects do occur (19-
21). Moreover, the incidence of end-stage renal disease as a result of diabetes continues to 
rise in the world. 

RAAS is a major regulatory system of cardiovascular and renal function. The final step of the 
RAAS cascade is the activation of Ang II receptors by Ang II. In the kidney, Ang II plays 
critical roles in the regulation of the glomerular filtration rate (GFR) and renal blood flow, and 
salt water retention (22-24). Effects of Ang II are mediated by at least two structurally and 
pharmacologically distinct Ang II type 1 and 2 receptors (AT1R and AT2R, respectively) (23, 
24). The physiological and pathophysiological effects of Ang II are mainly exerted by AT1R 
activation (24-26) via complex interacting signaling pathways involving the primary 
stimulation of phospholipase C (PLC) and Ca2+ mobilization and the secondary activation of 
protein tyrosine kinase (PTK), extracellular signal-regulated kinases-1 and -2, and 
phosphatidylinositol 3-kinase (PI3K)-dependent kinase Akt (23-26). We extended these 
signaling pathways mainly focusing on the molecular basis of Ca2+ signaling by ADPR-cyclase 
activation in Ang II signaling in murine mesangial cells (MMCs) and other cells (see below).  

3. ADP-ribosyl cyclase (ADPR-cyclase)/CD38 

CD38, a type II transmembrane glycoprotein, represents a mammalian ADPR-cyclase and is 
involved in T cell activation (27) and oxytocin secretion, which is closely associated with 
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social behavior (28). CD38 acts mainly as an NAD glycohydrolase therewith regulating 
intracellular NAD levels (29, 30). CD38 was initially identified as a cell surface marker on 
thymocytes and T lymphocytes, showing discrete expression during lymphocyte 
differentiation (31). Further studies revealed that CD38 expression is ubiquitous in the 
immune system as well as in various organs, including prostate epithelial cells, pancreatic islet 
cells, and brain cells (32-35). From a study on new intracellular messengers in the sea mollusk 
Aplysia, a surprising finding of the striking similarity between human CD38 and the ADPR-
cyclase enzyme purified from Aplysia was made (36). ADPR-cyclase generates two important 
Ca2+-mobilizing second messengers, cADPR and NAADP, from NAD+ and NADP+, 
respectively (37-39). The second messenger, cADPR, increases intracellular Ca2+ concentration 
([Ca2+]i) through the release of Ca2+ from intracellular endoplasmic reticulum (ER) stores via 
ryanodine receptors and/or Ca2+ influx through plasma membrane Ca2+ channels (5, 39,40, 41). 
The other second messenger, NAADP, increases intracellular Ca2+ concentration ([Ca2+]i) 
through the release of Ca2+ from a discrete intracellular store, called acidic organelles, via Two-
pore channels (TPCs) (42). Production of NAADP by ADPR-cyclases including CD38 is 
stimulated by various G protein-coupled receptors (GPCRs), including, AT1R (43, 44). 

Mounting evidence has indicated that ADPR-cyclase(s) other than CD38 may exist in the 
kidney, brain, and the heart (40, 45), including various cells (30, 45-47). The first clues to the 
existence of novel ADPR-cyclase(s) emerged from experiments of the comparison of tissue 
cADPR levels in CD38 wild type and knockout mice (40). Levels of cADPR in spleen, bone 
marrow and lungs of CD38 knockout mice were significantly decreased, compared to those 
of CD38 wild type mice, whereas levels of cADPR in brain, heart and kidneys of CD38 
knockout mice were comparable to those of CD38 wild type mice (40). These results suggest 
that ADPR-cyclase(s) other than CD38 may exist in the kidney, brain, and the heart. We 
recently demonstrated that Ang II-stimulated Ca2+ signals were not significantly different 
between CD38 wild type and CD38 knockout cardiomyocytes (48). However a cADPR 
antagonistic analog, 8-bromo-cADPR (8-Br-cADPR) completely inhibited the Ang II-induced 
sustained Ca2+ increase. These findings indicate that cADPR is generated by a novel 
unidentified ADPR-cyclase other than CD38. In addition, a bisphenyl compound 4,4’-
dihydroxyazobenzene (4-DAB) has been shown to inhibit kidney ADPR-cyclase, but not 
CD38, with a high potency (47). The kidney ADPR-cyclase inhibitor inhibits kidney ADPR-
cyclase activity with a 10,000-fold more potency than it does with heart ADPR-cyclase 
activity. However, an analog of 4-DAB, 2,2’-dihydroxyazobenzene (2-DAB), inhibits kidney 
and heart ADPR-cyclase activity with similar effects (see below). These results suggest that 
ADPR-cyclases in the kidney and the heart are different. Therefore, the signaling pathways 
of Ang II-induced ADPR-cyclase activation in rat cardiomyocytes (48) and mesangial cells 
(4) are different due to different ADPR-cyclases (see below). 

4. The role of ADPR-cyclase/CD38 in GPCR-mediated Ca
2+ 

signaling 

Evidence from our and other laboratories has indicated that various G protein-coupled 

receptors (GPCRs) mediate the activation of ADP-ribosyl cyclase (ADPR-cyclase) (3-6). 

ADPR-cyclase-involved GPCRs include the -adrenergic receptor, muscarinic receptor, 

interleukin 8 receptor (IL8R) and AT1R. The mechanism by which GPCR activates ADPR-

cyclase was discovered from the functional loop involving IL-8 and CD38 in lymphokine-

activated killer (LAK) cells (5). Stimulation of IL8R results in protein kinase G-dependent 

phosphorylation of nonmuscle myosin heavy chain IIA (MHCIIA) and the association of 
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phosphorylated MHCIIA with CD38 through Lck, which are essential for CD38 

internalization for cADPR formation (49). Ensuing cADPR-mediated Ca2+ release from ER 

stores induces NAADP production by Rap1 activation via cAMP/Epac/PKA, resulting in 

the release of Ca2+ from lysosome-related acidic organelles (44). Although the result of IL8-

mediated CD38 activation mechanism in LAK cells shows us one representative model, 

whether a similar mechanism by which other GPCRs use to activate ADPR-cyclase in other 

cells as that in IL8R-LAK cells remains to be clarified.  

Initially we assumed that ADPR-cyclase plays a role in Ang II receptor-mediated Ca2+ 

signaling in the kidney. Therefore, we chose mouse mesangial cells (MMCs) as a model 
system to study Ang II signaling because MMCs are believed to be the center for the 
pathogenesis of CKD (4). Treatment of MMCs with Ang II induced an increase in 
intracellular Ca2+ concentrations through a transient Ca2+ release via an inositol 1,4,5-
trisphosphate receptor (IP3R) and a sustained Ca2+ influx via L-type Ca2+ channels. The 
sustained Ca2+ signal, but not the transient Ca2+ signal, was blocked by 8-Br-cADPR, and an 
ADPR cyclase inhibitor, 4-DAB. In support of the results, 4-DAB inhibited Ang II-induced 
cADPR production. Application of pharmacological inhibitors revealed that the activation of 
ADPR-cyclase by Ang II involved AT1R, PI3K, PTK, and PLC-1 (Figure 2).  

 

Fig. 2. Schematic model of ADPR-cyclase activation in Ang II signaling pathway (adopted 
from [4]). Stimulation of AT1R by Ang II leads to sequential activation of PI3K, PTK, and 
PLC1, in turn causing a Ca2+ release by IP3R from ER, resulting in activation of ADPR-
cyclase. Activation of ADPR-cyclase induces Ca2+ influx via L-type calcium channels, Akt 
phosphorylation, NFAT nuclear translocation, cell proliferation, and protein synthesis. 4-
DAB abrogates the sustained Ca2+ signal, thereby blocking downstream events. 

Moreover, 4-DAB as well as 8-Br-cADPR abrogated Ang II-mediated Akt phosphorylation, 
nuclear translocation of nuclear factor of activated T cell (NFAT), and the uptake of 
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[3H]thymidine and [3H]leucine in MMCs. These results demonstrate that ADPR-cyclase in 
MMCs plays a pivotal role in Ang II signaling for cell proliferation and protein synthesis. 
The Ang II-induced ADPR-cyclase activation has also been observed in rat cardiomyocytes 
(48) and MMCs (4), and hepatic stellate cells (50), although the signaling pathways in those 
cells are different from each other (see below, Figure 3).    

 

Fig. 3. Variation on the theme of angiotensin II-induced Ca2+ signaling. AT1R, angiotensin II 
type 1 receptor; MMC, mouse mesangial cell; HSC, hepatic stellate cell. 

5. The discovery of a small-molecule inhibitor for kidney ADPR-cyclase and 
its application to diabetic nephropathy 

In order to get small-molecule inhibitors of kidney ADPR-cyclase, which make it possible to 
elucidate the involvement of ADPR-cyclase/cADPR in Ang II signaling in the kidney (4, 6), 
we screened a chemical library of approximately 10,000 compounds using a partially 
purified ADPR-cyclase from rat kidneys (47). This screen resulted in the selection of 4-DAB 
as a small molecule inhibitor (Figure 4). The compound was able to inhibit the generation of 
cGDPR and -ADPR from NGD+ and -NAD+, respectively, by the kidney ADPR-cyclase in 
a concentration-dependent manner. These data suggest that the compound may bind to the 
active site of the enzyme. Half maximal inhibition (IC50) of the enzyme activity was 
approximately 100 M. CD38 and ADPR-cyclases partially purified from rat brain, heart, 
and spleen tissues were insensitive to 4-DAB at 200 M. 

Although a number of GPCRs have been shown to utilize ADPR-cyclase in the regulation of 
[Ca2+]i, we chose the extracellular calcium ion ([Ca2+]o)-sensing receptor (CaSR) to test 4-DAB 
as a possible candidate inhibitor of ADPR-cyclase in MMCs. Stimulation of CaSR with [Ca2+]o 
resulted in a significant increase of [cADPR]i and a generation of long-lasting increase of 
[Ca2+]i, involving an initial peak rise followed by a sustained increase that was gradually 
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decreased. The sustained Ca2+ signal, but not the initial peak, was blocked by pre-treatment 
with 8-Br-cADPR. On the basis of these results that show the stimulation of CaSR activates 
ADPR-cyclase in MMC, we next evaluated 4-DAB as a possible candidate inhibitor of ADPR-
cyclase. This compound was able to inhibit [Ca2+]o-mediated later sustained elevation of 
[Ca2+]i but not the initial rise of [Ca2+]i in a dose-dependent manner. Further, [Ca2+]o -induced 
production of cADPR was also blocked by pre-treatment of 4-DAB in a concentration-
dependent manner. IC50 was approximately 2.5 nM. In addition, since it has been reported that 
CaSR-mediated Ca2+ signals is involved in MMC proliferation, we examined whether 4-DAB 
inhibits the [Ca2+]o-induced MMC proliferation and demonstrated that the [Ca2+]o-induced 
increment of proliferation was also inhibited by 4-DAB in a similar range of concentrations 
observed in the inhibition of the sustained Ca2+ signal.  

         

Fig. 4. Structure of 4,4‘-dihydroazobenzene (4-DAB), left, and 2,2‘-dihydroazobenzene  
(2-DAB), right. 

 

Fig. 5. Effect of 4,4‘-dihydroazobenzene (DHAB) on streptozotocin (STZ)-treated mice. 
(adopted from [6]). A: Plasma glucose level (PG), B: Ratio of kidney weight per body weight 
(KW/BW), C: Creatinine clearance (CCr) level, and D: Urinary albuminuria (UA) of 6 wk 
diabetic and control mice after DHAB treatment. Data are means ± SE. *P < 0.05 vs. control, 
#P < 0.05 vs. STZ group. 
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We utilized the specific inhibitor for kidney ADPR-cyclase to corroborate the evidence that 
there are ADPR-cyclases different from CD38. We utilized a human T cell-derived cell line, 
Jurkat T cell, which exclusively expresses CD38 that is regulated by CD3/TCR (51). 
Treatment of Jurkat T cells with OKT3, which is a ligand for CD3/TCR, showed a typical 
biphasic increase of [Ca2+]i, involving an initial peak rise followed by a sustained increase. 
Pre-treatment with 8-Br-cADPR inhibited only the sustained Ca2+ rise. In contrast, 4-DAB 

did not show any effects on OKT3-mediated Ca2+ rise even at 10 M. 

 

Fig. 6. Light microscopic appearance of glomeruli. (adopted from [6]). A: Representative 
photomicrographs of the kidney sections stained with periodic acid-Schiff (PAS). Scale bars; 
50 m. B: Quantification of glomerular size from A. Glomerular cross-sectional areas were 
determined by using a computer-assisted color image analyzer. MAG; mean area of 
glomeruli. C: Quantification of extracellular mesangial matrix expansion is expressed as 
PAS-positive mesangial material per total glomerular tuft cross-sectional area (mesangial 
area/total glomerular tuft area X 100). Values are means ± SE from 25 individual glomeruli 
in kidney sections from 6 mice in each group. *P < 0.05 vs. control; #P < 0.05 vs. STZ.  
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Based on our earlier observation that 4-DAB was a potent inhibitor of kidney ADPR-cyclase 
and could protect Ang II-mediated mesangial cell growth (4, 47), we further investigated the 
effects of 4-DAB on a mouse model of DN (6). Male mice were randomly assigned to normal 

control and diabetic groups of comparable age. The diabetic group received 45 g/kg of 4-
DAB for 6 wk via daily intraperitoneal injections. Alterations of mesangial cell proliferation 
and extracellular matrix (ECM) production are believed to play predominant roles in the 
pathogenesis of progressive glomerulosclerosis which leads to ESRD (52, 53). In the 

process of tissue development and wound healing, TGF-1 plays a crucial role in 

controlling ECM deposition and remodeling: TGF-1 stimulates the synthesis of major 
components of ECM proteins, such as collagen and fibronectin (54-56). In diabetic 

kidneys, the overexpression of TGF-1 is believed to be the major mediator responsible 
for early pathological changes of DN, including glomerular basement membrane 
thickening and mesangial matrix expansion (52, 55).  

4-DAB treatment significantly ameliorated albuminuria and downregulated the expression 

of fibrogenic factor TGF-1, subsequently reducing mesangial matrix protein production in 
diabetic mice kidney, without, however, changing serum glucose levels (Figures 5 and 6, 
Ref. 6). ADPR-cyclase was significantly activated, and cADPR levels were also increased 
in diabetic kidneys, which were prevented by 4-DAB treatment. On the other hand, 
plasma and kidney Ang II levels were elevated in both the diabetic and 4-DAB -treated 
diabetic mice group. This result suggests that 4-DAB affects only ADPR-cyclase 
activation, but not plasma and kidney Ang II levels in the diabetic experimental model. 
Furthermore, 4-DAB inhibited the phosphorylation of Akt and the NFAT3 nuclear 
translocation in the kidneys of the diabetic group. These findings indicate a crucial role of 
ADPR-cyclase signaling in the renal pathogenesis of diabetes and provide a therapeutic 
tool for the treatment of renal diseases. 

6. Perspectives 

A potent small-molecule inhibitor 4-DAB, that inhibits specifically the kidney ADPR-

cyclase, has been discovered. The discovery of the specific inhibitor for the enzyme enables 

us to provide further evidence that there are ADPR-cyclases different from CD38. Benefits of 

the kidney ADPR-cyclase specific inhibitor are several folds: the use of 4-DAB may facilitate 

in the understanding of kidney functions involving the regulation of Ca2+ homeostasis; the 

inhibitor may help to understand the pathogenesis of the kidney; this compound can be the 

basis for the development of tissue specific inhibitors of ADPR-cyclases; and finally, the 

compound may be applied for therapeutic purposes for the prevention and management of 

human CKD. Furthermore, a similar strategy can be applied for the development of tissue 

specific inhibitors of ADPR-cyclases with the intent to intervene in other diseases, such as 

hypertension. For instance, the identification of an inhibitor for ADPR-cyclase of arterial 

smooth muscle cells can be a potential anti-hypertensive drug. 
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