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Legume Crops, Importance and Use of Bacterial 
Inoculation to Increase Production 
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1Molecular Microbiology, Biological Sciences Institute Clemente Estable 
2Biochemistry and Molecular Biology, Faculty of Science, Montevideo,  

Uruguay 

1. Introduction  

Legumes are flowering plants that produce seedpods. They have colonized several 
ecosystems (from rain forests and arctic/alpine regions to deserts; Schrire et al., 2005), and 
have been found in most of the archaeological record of plants. Early in 37 B.C. Varro said 
“Legumes should be planted in light soils, not so much for their own crop as for the good 
they do to subsequent crops” (Graham & Vance, 2003), recognizing the importance of 
multiple cropping and intercropping production.  

Leguminosae or Fabaceae is the third most populous family of flowering plants (behind 
Asteraceae and Orchidaceae) with 670 to 750 genera and 18,000 to 19,000 species. Legumes 
include important grain, pasture and agro-forestry species. They are harvested as crops for 
human and animal consumption as well as used as pulp for paper production, fuel-woods, 
timber, oil production, sources of chemicals and medicines, and are also cultivated as 
ornamental, used as living fences and firebreaks among others (Lewis et al., 2005). 

The legumes provide many benefits to the soil so they are usually utilized as cover crop, 
intercropped with cereals and other staple foods. They do produce substantial amounts of 
organic nitrogen (see below, Improving legume yield by inoculation with rhizobia), increase 
soil organic matter, improve soil porosity and structure, recycle nutrients, decrease soil pH, 
reduce soil compaction, diversify microorganisms and mitigate disease problems (U.S 
Department of Agriculture [USDA], 1998). In rotation with cereals, legumes provide a 
source of slow-release nitrogen that contributes to sustainable cropping systems. The 
improvement in the production of these crops will therefore contribute substantially to 
better human nutrition and soil health (Popelka et al., 2004). 

Based on total harvested area and production, cereals are the most important crops, and 
they are followed by legumes (Fig.1). Close up to 180 million Ha (12-15% of the Earth’s 
arable surface) are worldwide used to produce grain and forage legumes. These numbers 
point the central importance of world legumes production. In addition, the promise of low-
cost production of legume biomass, mainly soybean, for bioenergy purpose focus attention 
of investors in the improvement of legume production, and deserves an entirely section for 
discussion.  

                                                 
* M. Morel and V. Braña contributed equally to this chapter 
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Fig. 1. Net worldwide harvested area for several crops, in the year 2009. Data obtained from 
Food and Agriculture Organization  database [FAO] 
(http://faostat.fao.org/site/567/default.aspx#ancor) and Graham & Vance (2003). 

1.1 Forage and grain legumes 

Forage legumes play an important role in dairy and meat production being sources of protein, 
fibre and energy. They are usually richer in protein, calcium, and phosphorus than other non-
legume forages, such as grass. They include alfalfa (Medicago sativa), clover (Trifolium spp.), 
birdsfoot trefoil (Lotus corniculatus) and vetch (Vicia spp.) among others. Alfalfa is one of the 
most important forage crops. In 2006, the worldwide production was around 436 million 
tons. U.S. is the largest alfalfa producer, with 15 million Ha planted in 2010. Canada, Argentina 
(primarily grazed), Southern Europe, Australia, South Africa, and the Middle East have also 
considerable production (FAO, 2011).  

Grain legumes also called pulses, which according to FAO are crops harvested exclusively 
for the dry seeds, play an important role in the nutrition of many people due to their high 
protein content in seeds. They represent a major source of protein in many developing 
countries, especially among the poorest population, and are rich in essential amino acids 
such as lysine, supplementing thus the nutritional value of cereal and tuber diets (Graham & 
Vance, 2003). The world pulse production has almost increased by half during the period of 
1980 – 2004, overtaking the 60 million tons in 2005 (FAO, 2005). According to FAO Statistical 
Yearbook 2010, in the year 2008, Canada, China and United States were the main exporters 
of pulses (28%, 12% and 11% of total exports, respectively). Interestingly, India, the world's 
12th largest economy and the third largest in Asia behind Japan and China, is the main 
importer, responsible of 21% of global trade in of pulses (2.5-3.5 million tons). India 
produces (15-18 million tons; the world's largest producer), imports and consumes (18.5-20.5 
million tons) a wide range of pulses. Thus, considering pulse relevance in the world´s 
largest economies such as U.S., China and India, incomes and a raising world population, it 
is obvious the interest of farmers and investors for improving pulse production. 

www.intechopen.com



 
Legume Crops, Importance and Use of Bacterial Inoculation to Increase Production 

 

219 

1.2 Soybean – The new legume-star 

The soybean (U.S.) (Glycine max), also called soya bean (U.K.), is an annual summer legume 
native of South-eastern Asia, which is used as human food (Liu, 1999) and livestock feed as 
well as for several industrial purposes (Ali, 2010). According to the newest available 
information, this legume is one of the main crops cultivated for oil extraction (35.9 million 
tons oil and 57% global oilseed production), preceded only by the oil of palm (FAO, 2011). 
Interestingly, over half of the world´s 2007 soybean crop (58.6%) was genetically modified 
(GM), achieving 77% in the year 2009. These GM-soybeans possess a gene that confers 
herbicide resistance. The nations that produce almost exclusively GM-soybean are U.S. 
(85%) and Argentina (98%), tending to 100%. The global production and utilization of 
soybean have increased by ten during the last century (Qiu & Chang, 2010). In 2009, world´s 
soybean cultivated area and production were 99.5 million Ha and 223.2 million tons (FAO, 
2011), respectively. U.S. is the world´s leader soybean producer and exporter, responsible of 
41% global production, followed by Brazil (26%), Argentina (14%), China (7%) and India 
(4%) (FAO, 2011).  

In U.S. the soybean farm gate value raised more than double, ranging from 12.6 billion USD 
(in 2001) to 29.6 billion USD (in 2009). The price of soybean has increased more than 80% 
because of soybean-oil’s use in soy-biodiesel and as feed for fish farming. Biodiesel is in 
demand and soybean represents about 25% total worldwide global biodiesel raw material 
(Pahl, 2008). The net energy balance when the soybean-oil is used for fuel has improved 
since soybean is a legume, it fixes nitrogen and does not require nitrogen fertilizer (see 
below) (Kinney & Clemente, 2010).  

2. Improving legume yield by inoculation with rhizobia 

Leguminous plants are relevant economic and cultural important crops because their 
exceptional diversity, manifested in variety of vegetable forms that adapted to a wide range 
of ecological conditions, the high protein content of some grains, their use as pastures, 
increased world production and commodities. In this scenario, many farm investors, 
industries and researchers have focussed attention in the development of biological and eco-
friendly technologies for legume growth improvement and establishment. The ability of 
many legumes to form associations with bacteria that fix atmospheric nitrogen (the 
symbiotic association that improve growth) is thus a big matter of ecological and economic 
interest (Zahran, 2009).   

2.1 Biological vs chemical nitrogen fertilization 

Microorganisms are essential to the Earth’s nitrogen cycle and to the Biological Nitrogen 

Fixation (BNF) process in leguminous plants, playing a very important role in terms of plant 

production in agriculture. Nitrogen fixing microorganisms could be used in live 

formulations (biofertilizer) that when applied to seed, root or soil colonize the rhizosphere, 

or the interior of the plant, and promote growth by increasing the nitrogen supply to the 

host plant and building up soil health. The evaluation, in terms of economic and ecological 

costs, between chemical- and biological-nitrogen fertilizers support that BNF represents an 

economic, sustainable and environmentally friendly resource to guarantee the nitrogen 

requirement of an agro-ecosystem. 

www.intechopen.com



 
Crop Plant 

 

220 

Chemical-fertilizer demand has historically been influenced by changing and often 
interrelated factors such as increasing populations and economic growth, agricultural 
production, prices, and government policies. In 2007, the production of chemical nitrogen 
fertilizers was 130 million tons which is likely to increase further in the coming years (FAO, 
2011). Their production requires a great consumption of fossil fuels (1-2 % global fossil fuel) 
and is subjected of constant variations in prices (Vieira et al., 2010). Although their direct 
contribution to energy consumption seems minimal, it is unnecessary and unsustainable. On 
average, U.S. farmers apply 30-40 % more chemical nitrogen than is needed for optimal crop 
yield, thus wasting most of the applied chemical nitrogen. Given the rising cost of chemical 
nitrogen fertilizers, nitrogen fixation cover crops offer significant economic benefits. In 2006, 
the price of nitrogen fertilizers in U.S. raised to 521 USD per ton (Huang, 2007), estimating 
an over cost of 7 to 10 billion USD annually compared with FBN. For instance, the modest 
use of alfalfa in rotation with corn by U.S. farmers saved 200 to 300 million USD (Graham & 
Vance, 2003).  

In addition to the inconvenience of increasing prices, chemical nitrogen fertilization is 
associated with environmental problems because watershed contamination by nitrogen 
leaching, volatilization and denitrification. These problems could be avoided offering to 
farmers low-cost biofertilizer technologies. These are ecologically sound and their 
application could help to minimize the global warming as well as to reduce the fertilizer 
input in farming practices (Herridge et al., 2008a). 

2.2 The biological nitrogen fixation (BNF) 

BNF benefits not only the legumes themselves but also any intercropped or succeeding crop, 
reducing or removing the need for nitrogen fertilization. In soils with low mineral nitrogen 
content, nitrogen fixing microorganisms provide ammonium into the legume biomass, 
allowing faster growing than their plant competitors. In contrast, if nitrogen is abundant, 
nitrogen fixing microorganisms tend to be competitively excluded by non-fixing species 
because the nitrogen fixation process is bio-energetically costly (Houlton et al., 2008). It 
means that there is a range of physiological and ecological situations that tend to constrain 
BNF in legume systems, mainly by the nitrogen demand of the plant and by the C:N 
stoichiometry of the ecosystem. In fact, the hypothesis of a feedback control between legume 
demand and BNF in a particular ecosystem has been now supported by evidence from both 
experimental and theoretical models (Soussana & Tallec, 2010).  

There is the potential to increase BNF by the use of well adapted and efficient nitrogen 
fixing microorganisms and/or genetic modified plant species to ensure legume crop at high 
levels of productivity. Farmers are familiar with the application of commercially available 
microorganisms (inoculants) that have been especially selected for their ability to effectively 
nodulate plants and to fix nitrogen from the atmosphere. These kind of microbial inoculants, 
also known as soil inoculants, are agricultural amendments that use microorganisms known 
as rhizobia to promote legume growth. These bacteria form symbiotic relationships with the 
target leguminous plant, and both parts benefit. The legume supplies energy and 
photosynthates to rhizobia, and rhizobia provide the legume with nitrogen, mainly in the 
form of ammonium (Howard & Rees, 1996). The symbiosis is initiated through the legume 
root infection by the rhizobia and formation of root nodules where BNF occurs through the 
action of a bacterial enzyme, called “Nitrogenase” (Masson-Boivin et al., 2009). 
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2.3 Rhizobia: The master microbe  

The current taxonomy of rhizobia consists of several genera in the subclass Alpha- and Beta- 
Proteobacteria. Rhizobium, Mesorhizobium, Ensifer (formerly Sinorhizobium), Azorhizobium, 
Methylobacterium, Bradyrhizobium, Phyllobacterium, Devosia and Ochrobactrum are genera that 
belong to rhizobial Alpha-Proteobacteria. In rhizobial Beta-Proteobacteria the following 
genera have been described: Burkholderia, Herbaspirillum and Cupriavidus (NZ Rhizobia, 
2011). It is important to clarify that this classification is based on taxonomically important 
strains that may not necessarily be important reference strains for legume growth 
improvement. Rhizobial strains commonly used in inoculants have good field performance 
and stability of symbiotic properties in culture, but are not necessarily well documented or 
used in taxonomy or molecular biology studies (Lindström et al., 2010). The legume-
rhizobia association is specific (each rhizobial strain establishes a symbiosis with only a 
limited set of host plants and vice versa). Thus, there is a restricted number of inoculants that 
fit with a leguminous plant, and farmers must know which inoculant must be applied 
according plants and characteristics of soil (Mabrouk & Belhadj, 2010). In other words “Be sure 
to buy the right inoculant for the legume the farmer intends to plant”. Such information must 
be given by the manufacturer and should be clearly specified in the label. Plants mutually 
compatible with the same species of rhizobia were listed in earlier years in so-called "cross-
inoculation groups" (Table 1).  This concept was used in rhizobial taxonomy, but is it 
unreliable as taxonomic marker because of aberrant cross-infection among plant groups. 

 

Rhizobia  Legume Cross-inoculation group

Ensifer meliloti 
Alfalfa Group: alfalfa (Medicago sativa),  
sweet clover (Melilotus spp.) (yellow and white), 
fenugreek (Trigonella spp.) 

Rhizobium leguminosarum bv trifolii 
Clover Group (Clover I, II, III and IV): clovers 
(Trifolium spp.) 

Bradyrhizobium japonicum Soybean Group: soybean (Glycine max) 

Bradyrhizobium spp. 

Cowpea Group: pigeon pea (Cajanus cajan); 
peanut (Arachis hypogaea); cowpea, mungbean, 
black gram, rice bean (Vigna spp.); lima bean 
(Phaseolus lunatus); Acacia mearnsii; A. mangium; 
Albizia spp.; Enterlobium spp., Desmodium spp., 
Stylosanthes spp., Kacang bogor (Voandzeia 
subterranea), Centrosema sp., winged bean 
(Psophocarpus tetragonolobus), hyacinth bean 
(Lablab purpureus), siratro (Macroptilium 
atropurpureum), guar bean (Cyamopsis 
tetragonoloba), calopo (Calopogonium mucunoides), 
puero (Pueraria phaseoloides) 

Rhizobium leguminosarum bv viciae 
Pea Group: peas (Pisum spp.), lentil (Lens culinaris), 
vetches (Vicia spp.), faba bean (Vicia faba) 

Rhizobium leguminosarum bv phaseoli 
Bean Group: beans (Phaseolus vulgaris), scarita 
runner bean (Phaseolus coccineus) 

Mesorhizobium loti 
Chickpea Group: chickpea (Cicer spp.), 
Birdsfoot trefoil (Lotus corniculatus L.) 

Rhizobium lupini Group Lupines

Rhizobium spp Crownvetch

Table 1. Cross-inoculation group and Rhizobium-legume association 
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The occurrence of a wide diversity of microorganisms in a particular soil increases the 
opportunity for a legume host to find compatible rhizobia. The principle of specific legume-
rhizobia association is commonly used for the isolation of well adapted and efficient 
rhizobial strains (Castro-Sowinski et al., 2002; Florentino et al., 2010). Usually trap-plants are 
used to catch the rhizobial strain with highest performance and the strain is used for the 
design of new inoculants. Details about inoculation technology for legumes can be read in 
Herridge (2008b). 

2.4 Formulation and low-cost are crucial aspect of producing inoculants  

Formulation is the industrial “art” of converting a promising laboratory-proven 
microorganism into a commercial field product. But, the development of successful 
inoculants involves more than the selection of the most efficient rhizobial strain, it involves 
the choice of a carrier (powder, granule, and liquid), packaging and marketing, avoiding of 
microbial contaminations. Inoculant preparations for agricultural use constitute a stressful 
environment because bacterial cells may have to be stored for long periods, and should 
survive desiccation and transportation conditions. Some aspects related to inoculant 
preparation, production and application are described by Hungria et al. (2005).   

The formulation should maintain or enhance activity in field. In order to survive in nutrient-
poor ecosystems, bacteria use different strategies, among them, the use of 
polyhydroxyalkanoates (PHA) as intracellular carbon storage compounds. Cells with higher 
PHA content can survive longer than those with lower amounts, and PHA degraded 
elements can be used rapidly for numerous metabolic needs. Accumulation of PHA can 
provide the cell with the ability to endure a variety of harmful physical and chemical 
stresses (Castro-Sowinski et al., 2010; Kadouri et al., 2005).  

A good formulation contains microorganisms (active ingredient) in an active metabolic 

state, immersed in a suitable carrier together with additives that are responsible for the 

microbial cells stabilization and protection during storage and transportation. Most of the 

research done in the improvement of inoculant quality is based on improving carrier 

properties, by adding elements that can prolong survival, such as nutrients, or other 

synthetic products (López et al., 1998). Most commercial inoculants are in powder (finely 

ground peat mixed with the nitrogen-fixing bacteria), ready for mixing with the seed. 

Granular formulations are designed to be placed in the seed rut at planting. Liquid 

inoculants and other non-peat-based inoculants are also being used. Liquid inoculants 

simplify the production of the inoculant and the application to seeds or field. However, 

bacterial survival in the inoculant and on inoculated seeds is not as good as when using peat 

as a carrier, because bacteria lack carrier protection (Tittabutr et al., 2007). Peat provides 

bacterial protection and prevents drying and death, compared to the inoculants that do not 

contain peat. However, alternative substrates to peat can be used as carriers: compost cork, 

perlite, volcanic pumice, alginate beads and coal, among many others, also gave good 

results in terms of supporting bacterial growth and long survival, as well survival on seeds 

(Albareda et al., 2008; Ben Rebah et al., 2007). 

Another important consideration in formulation is the cost-effectiveness that must be low 
enough to allow sufficient incoming compared to chemical fertilization. In U.S. and Canada, 
a seed inoculant is sell for 5.00 and 2.50 USD per Ha, respectively, while granular inoculants 
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range from 15.00 to 18.00 (US) per Ha (Xavier et al., 2004).  But, inoculants need only a 
modest increase in yield to offset the cost. A good inoculant will usually provide at least a 
70- to 140-Kg per Ha return on yield.  

2.5 The input of BNF in legume yield 

The annual input of fixed nitrogen was calculated to be 2.95 Mton for the pulses and 18.5 Mton 
for the oilseed legumes, being the soybean the dominant crop legume (50% global crop legume 
area and 68% global production). In addition to the annual legume nitrogen fixation inputs of 
12-15 Mton (pasture and fodder legumes), there is an input by nitrogen fixation in rice (5 
Mton), sugar cane (0.5 Mton), non-legume crop lands (<4 Mton) and extensive savannas (<14 
Mton). Thus, the total overall estimated in agricultural systems is of 50–70 Mton biologically 
fixed nitrogen (Herridge et al., 2008a). These numbers show that the process of BNF is an 
economically attractive and eco-friendly alternative to reduce the external nitrogen (chemical 
fertilizers) input, which improves the quality and quantity of crop resources. 

A successful BNF is capable of improving agricultural productivity while minimizing soil loss 

and ameliorating adverse edaphic conditions. Conditions such as drought, salinity, 

unfavorable soil pH, nutrient deficiency, mineral toxicity, high temperature, insufficient or 

excessive soil moisture, inadequate photosynthesis, and plant diseases conspire against a 

successful symbiotic process. Many inoculant manufactures worldwide have developed 

formulations with high symbiotic efficiency under stress conditions. However, the actual view 

of plant growth promoting preparations focuses their investigations in the design and 

development of new-formulations supplemented with plant and/or microbe exudates. These 

exudates contain molecules involved in the microbe-plant interaction: flavonoids, sugars, 

acids, amino acids, amines and other low molecular weight compounds that promote plant 

growth (Skorupska et al., 2010; Garg & Geetanjali, 2009). Macchiavelli & Brelles-Mariño (2004) 

showed increased plant nodulation treating Medicago truncatula roots and seeds with Nod 

Factors prior to inoculation. Lipo-chito-oligosaccharides (LCOs), or Nod Factors (NFs), are bio-

signals produced by the rhizobia which act as bacteria-to-plant communication molecule that 

mediates recognition and nodule organogenesis (Masson-Boivin et al., 2009). The inclusion of 

NFs in formulations might have technological applications since presoaking seeds with 

submicromolar concentrations of this oligo-saccharide before sowing leaded to increased 

nodulation under field conditions. In fact, a soybean inoculant based on NFs technology was 

introduced on the market many years ago (Zhang & Smith, 2002). Currently, many companies 

like Rizobacter (www.rizobacter.com.ar) and Nitragin (www.nitragin.com.ar) are marketing 

formulations with bio-signals that improve the symbiotic relationship, activate mechanisms to 

resist abiotic stress conditions, and induce defensive response.  

3. The use of microbial consortium in legume agronomic production   

The new fashion in agriculture is the use of microbial consortiums of plant-growth promoting 
bacteria (PGPB, which includes rhizobia). PGPB are exogenous bacteria introduced into 
agricultural ecosystems that act positively upon plant development (Castro-Sowinski et al., 
2007). It is possible to increase agricultural productivity and, eliminate or decrease the use of 
chemical fertilizers and pesticides (Adesemoye et al., 2009a; Vessey, 2003) even in marginal 
soils (Gamalero et al., 2009) when the formulation contains different PGPB.  
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3.1 Getting more from legumes  

Current studies indicate that we are still detecting new bacteria and fungi with diverse 
growth-promoting characteristics, and that the combination of different PGPB into a single-
formulation increases plant yield, compared with single-inoculation. On the other hand, 
efforts have been done manipulating PGPB to produce master inoculants by the 
introduction of foreign DNA that provides new abilities (GMM, Genetic Modified 
Microorganisms). Globally, it was expected a big explosion in this area of research, the use 
of recombinant DNA-technological tools for the production of inoculants (Barea et al., 2005; 
Valdenegro et al., 2001). However, the use of GMM is in discussion and needs clear 
regulatory policies, controls and suitable legislation (Fedoroff et al., 2010). 

Some cooperative microbial activities can be exploited for developing new sustainable, 

environmentally-friendly, agro-technological practices (Barea et al., 2005). In this regard, the 

plant co-inoculation with rhizobia and other PGPB received considerable attention for legume 

growth promotion (Cassán et al., 2009; Bai et al., 2002a; 2002b; Zhang et al., 1996). Results from 

many studies concerning the effect of co-inoculation on legume growth are summarized in 

Table 2. Several genera of bacteria have been identified as “helpers” of the rhizobia-legume 

symbiotic process (Beattie, 2006). Examples are bacteria of the genus Azospirillum (Cassán et al., 

2009; Itzigsohn et al., 1993), Azotobacter (Qureshi et al., 2009; Yasari et al., 2008), Bacillus (Bullied 

et al., 2002), Pseudomonas (Barea et al., 2005; Fox et al., 2011), Serratia (Bai et al., 2002b; Lucas-

Garcia et al., 2004a;  Zhang et al., 1996), Thiobacillus (Anandham et al., 2007), and Delftia (Morel 

et al., 2011), among many other. The stimulation of the legume–rhizobia symbiosis by non-

rhizobial-PGPB implicates different processes such as production of phytohormones (usually 

indole-acetic acid; IAA) that stimulates root growth; qualitative change of flavonoids pattern 

secreted for the plant; solubilization of non-available nutrients (mainly re-fixation of 

exogenously applied phosphorus), among others (Medeot et al., 2010). In this section, we 

summarize the knowledge about bacteria that promote the symbiotic relationship between 

legumes and rhizobia (from now, the symbiotic enhancer), and the mechanisms involved in this 

phenomenon. The effect of other microorganisms, such as micorrhizal fungi is not discussed. 

Probably the most studied bacterial consortium is the rhizobia-azospirilla one. Azospirilla 

species are being used as seed inoculants under field conditions for more than a decade 

(Dobbelaere et al., 2001; Puente et al., 2009). The positive effect of Azospirillum in the 

nodulation and nitrogen fixation by rhizobia on several forage legumes was early reported 

(Yahalom et al., 1987). Since then, many works have been done and mostly are summarized 

in Bashan et al. (2004). It proven that the combined inoculation with rhizobia and azospirilla 

increases the shoot length and weight, root hairs number, root diameter, the main- and total-

root nodule number and the percentage of infected root hairs, thus resulting in increased 

legume yields (Cassán et al., 2009). Worldwide, salinity is one of the most important abiotic 

stresses that limit crop growth and productivity. It was shown that the rhizobia-azospirilla 

co-inoculation significantly reduces the negative effects of abiotic stresses (such as caused by 

irrigation with saline water) on root development and nodulation (Dardanelli et al., 2008).   

Under stress conditions, such as drought, salinity, S-deficient or heavy metal (HM)-
contaminated soils, several associations between plants and beneficial bacteria showed a 
defensive response and an increased yield (Anandham et al., 2007; Dary et al., 2010; Fuentes-
Ramírez & Caballero-Mellado, 2005; Han & Lee, 2005). However, the physiological mechanism 
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involved in stress mitigation is still unknown (Figueiredo et al., 2008; Furina & Bonartseva, 
2007).  

3.2 Enhancing the legume – Rhizobia symbiosis by co-inoculation: Modes of action 

Many evidences have been accumulated showing that co-inoculation with beneficial 
microorganisms, having different mechanisms of plant-growth promotion, have additive or 
synergistic effect on plant growth and crop yield (Table 2). Diverse mechanisms are implicates 
in the co-inoculation benefits and some of them have been discussed in Barea at al. (2005).  

 

Legume Bacterial system

Increase (%) 
compared to 

single 
rhizobial 

inoculation 

Experiments 
done in 

Proposed 
mechanism of 

action 
Reference 

S
o

y
b

ea
n

 (
G

ly
ci

n
e 

m
ax

) 

B. japonicum - 
Serratia spp. 

50 in NN; 30 in 
SDW;  32 in 

RDW 
Greenhouse 

Production of 
LCO- analogue

Bai et al., 
2002a 

Bai et al., 
2002b 

40 in NN 
under sub-

optimal 
temperature 

Laboratory Unknown 
Zhang et al., 

1996 

B. japonicum - 
B. cereus 

10 in SDW Field Unknown 
Bullied et al., 

2002 
B. japonicum  -

S. proteamaculans 
/B. subtilis

12 in SDW; 10 
in P-uptake 

Greenhouse 
(saline stress)

Limited Na-
uptake 

Han & Lee, 
2005 

B. japonicum - 
A. brasilense 

47 in NN Laboratory 
Production of 
IAA, GA3 and 

Zeatin 

Cassán et al., 
2009 

B. japonicum - 
A. brasilense 

16-40 in RDW; 
200-700 in 
total RL 

Laboratory Unknown 
Molla et al., 

2001a 

30 in NN Greenhouse 
Production of 

plant hormones
Molla et al., 

2001b 

E. fredii - 
Chryseobacterium 

balustinum 

56 and 44 in 
SDW; 100 and 
200 in RDW; 

155 and 286 in 
NN under 

non-saline and 
saline 

conditions 
respectively 

Laboratory  
(saline stress)

Unknown 
Estevez et al., 

2009 

B. japonicum - 
P. putida 

40 in SDW; 80 
in NN; 45 in 

RDW 
Laboratory 

P-solubilization 
and production 
of siderophores

Rosas et al., 
2006 
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Legume Bacterial system

Increase (%) 
compared to 

single 
rhizobial 

inoculation 

Experiments 
done in 

Proposed 
mechanism of 

action 
Reference 

C
o

m
m

o
n

 b
ea

n
 (

P
ha

se
ol

u
s 

vu
lg

ar
is

) 

R. tropici/etli - 

A. brasilense 

18-35 and 20-

70 in RDW; 29 

and 28 in 

SDW under 

non saline 

and saline 

conditions, 

respectively

Hydroponic 

(saline stress)

Production of 

flavonoid-like 

compounds 

Dardanelli et 

al., 2008 

R. etli - 

C. balustinum 

35 in SDW; 35 

in NN under 

non-saline 

conditions; 

and 39 in 

SDW; 63 in 

RDW under 

saline 

conditions 

Laboratory 

(saline stress)
Unknown 

Estevez et al., 

2009 

R. tropici - 

Paenibacillus 

polymyxa 

50 in NN; 40 in 

N uptake in 

non-drought 

stress 

Greenhouse 

(drought 

stress) 

Unknown 
Figuereido et 

al., 2008 

Rhizobium spp. -

A. brasilense /B. 

subtilis/P. putida

30 in NN; 20 in 

SDW; 30-45 in 

RDW 

Greenhouse 

(two levels of 

P-fertilization)

IAA production 

or 1-

aminocycloprop

ane-1-

carboxylate 

(ACC) 

deaminase 

activity 

Remans et al., 

2007 

Rhizobium spp. -

A. brasilense 

70 in NN Hydroponic IAA production
Remans et al., 

2008a 

30 total yield Field IAA production
Remans et al., 

2008b 

Rhizobium spp. -

P. fluorescens /A.

lipoferum 

25 in NN; 13 in 

SDW; 74 in 

seed yield 

Field 

P-solubilization; 

auxin and 

siderophores 

production 

Yadegari et al., 

2010 
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Legume Bacterial system

Increase (%) 
compared to 

single 
rhizobial 

inoculation 

Experiments 
done in 

Proposed 
mechanism of 

action 
Reference 

C
h

ic
k

p
ea

 (
C

ic
er

 a
ri

et
in

u
m

) 

Rhizobium spp - 
Pseudomonas/ 
Bacillus spp. 

20 in SDW; 30-
120 in RDW 

Greenhouse 
Production of 
flavonoid-like 

Parmar & 
Dadarwal, 

1999 

Mesorhizobium 
sp. Cicer - 

Pseudomonas spp.

70 in NN; 30 in 
SDW, 30 in N-

uptake
Laboratory Unknown 

Goel et al., 
2002 

1,2-1,86 in NN; 
1,3-2,11 NFW; 
1-2,93 in PDW

Laboratory IAA production
Malik & 

Sindhu., 2011 

Rhizobium - 
B. subtilis/ 
megaterium 

18 in SDW; 16-
30 in RDW; 14 

in total 
biomass yield 

in field

Laboratory 
and Field 

N-fixation by B. 
subtilis or/and 

P-solubilization 
by B. megaterium

Elkoca et al., 
2008 

M. ciceri - 
Azotobacter 
chroococcum 

15 in NN; 25 in 
P-soil 

availability

Field (two 
levels of N-
fertilization)

Unknown 
Qureshi et al., 

2009 

M. ciceri -
Pseudomonas sp/ 

Bacillus sp. 

20 in PDW; 30 
in NN; 100 in 

P-uptake
Field 

P-solubilization 
by PGPB 

Wani et al., 
2007 

P
ea

n
u

t 
(A

ra
ch

is
 

hy
po

ga
ea

) 

Thiobacillus sp. -
Rhizobium sp. 

50 in PDW; 80 
in NN 

Greenhouse 
(S-deficiency) 

and Field 
S-oxidation 

Anandham et 
al., 2007 

C
lo

v
er

 (
T

ri
fo

li
u

m
 

re
pe

n
s)

 

R. leguminosarum 
bv.trifolii - 

P. fluorescens 

20 in SDW; 100 
in NN 

Laboratory 
Production of B-
group vitamins

Marek-
Kozaczuk & 
Skorupska, 

2001 
R. leguminosarum 

bv. trifolii - 
Delftia sp. 

50 in SDW and 
80 in nodulation 

rate
Laboratory IAA production

Morel et al., 
2011 

A
lt

ra
m

u
z 

(L
u

pi
n

u
s 

lu
te

u
s)

 

Bradyrhizobium 
sp. - 

Pseudomonas sp./ 
Ochrobactrum  

cytisi 

66 in SDW and 
20-40, 25, and 
30-50 decrease 
in Cd, Cu and 

Zn -
accumulation 

in roots, 
respectively

Field (Heavy 
metal 

contaminated 
soil) 

Phyto-
stabilization: 

Biosorption of 
heavy metals by 

bacterial 
biomass 

Dary et al., 
2010 

A
lf

al
fa

 
(M

ed
ic

ag
o 

sa
ti

va
) 

S. meliloti - 
Delftia sp. 

10 in SDW; 30 in 
nodulation rate

Laboratory IAA production
Morel et al., 

2011 
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Legume Bacterial system

Increase (%) 
compared to 

single 
rhizobial 

inoculation 

Experiments 
done in 

Proposed 
mechanism of 

action 
Reference 

G
al

eg
a 

(G
al

eg
a 

or
ie

n
ta

li
s)

 

R. galegae bv. 
orientalis - 

Pseudomonas spp.

70 in SDW; 60 
in RDW; 30 in 
NN; 44 in N-

uptake 

Greenhouse 

Production of 
IAA and/or 
cellulase by 
Pseudomonas 

spp. 

Egamberdieva 
et al., 2010 

V
et

ch
  

(V
ic

ia
 s

at
iv

a)
 

R. leguminosarum 
bv. viciae - 

A. brasilense 

30 in SDW Greenhouse 
IAA production  
and increased 

root secretion of 
flavonoids 

Star et al., 2011 
nod gene 

induction and 
decreased in 

indoles content

Hydroponic 

P
ea

 (
P

is
u

m
 s

at
iv

u
m

  
L

. 
cv

. C
ap

el
la

) 

R. leguminosarum 
bv viceae - 

P. fluorescens 

1,3 in Pea DW; 
0,5-0,69 in 

plants with 
disease 

Greenhouse 
(Fusarium 
oxysporum 

infected soils)

Antifungal 
activity by 

production of 
siderophores 

Kumar et al., 
2001 

R. 
leguminosarum-
B. thuringeinsis

84 times in 
NN; 15 in 

SDW; 15 in 
RDW 

Laboratory 
and 

greenhouse 
Unknown 

Mishra et al., 
2009 

L
en

ti
n

 
(L

en
s 

cu
li

n
ar

is
 

L
.)

 R. 
leguminosarum-
B. thuringeinsis

73 in NN; 5 in 
SDW; 10-30 in 

RDW 

Laboratory 
and 

greenhouse 
Unknown 

Mishra et al., 
2009 

P
ig

eo
n

 p
ea

  
(C

aj
an

u
s 

ca
ja

n
) Rhizobium sp.- 

Bacillus spp. 
50 in PFW; 300 

in NN 
Greenhouse 
(sterile soil) 

Cross-utilization 
of siderophores 

produced by 
Bacillus sp. and 

Rhizobium 

Rajendran et 
al., 2008 

Rhizobium sp. - 
P.putida/ 

P. fluorescens/ 
B. cereus 

73 in NN; 30 in 
grain yield 

Greenhouse Unknown 
Tilak et al., 

2006 

M
u

n
g

 b
ea

n
 

(V
ig

n
a 

ra
di

at
a 

L
.)

 B. japonicum - 
P. putida 

20 in total 
biomass; 48 in 

NN 
Greenhouse 

Reduced 
ethylene 

production 

Shaharoona et 
al., 2006 

Table 2. Ten years of studies on legume co-inoculation (2001-2011). Increase in legume 

symbiotic parameters and yield by co-inoculation compared to single-inoculation with 

rhizobia. Abbreviations are as follows: RDW: root dry weight; SDW: shoot dry weight; RL: 

root length; NN: nodule number; NFW: Nodule fresh weight; PDW: plant dry weight; PFW: 

plant fresh weight.  
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Probably, the most reported mechanism that explains the improved rhizobia-legume 
association by other PGPB is the production of plant-hormones (phytohormones), such as 
gibberellic acid (GA3) or auxin-type phytohormones (mainly indole-3-acetic acid; IAA; 
Beattie, 2006). That is the case for Pseudomonas (Egamberdieva et al. 2010; Malik & Sindhu, 
2011) and Azospirillum (Cassán et al., 2009; Dobbelaere et al., 2001; Okon, 1994; Perrig et al., 
2007). For information about IAA production and effects, we recommend Baca & Elmerich 
(2007) and Spaepen et al. (2007). However, the main mechanism involved in improved 
rhizobia-legume association is still under investigation (Dobbelaere & Okon, 2007). It might 
be possible that multiple mechanisms, rather than only one are acting. This is known as the 
“Additive Hypothesis” (Bashan et al., 2004; Bashan & de-Bashan, 2010).  

Many other signal molecules or analogues involved in plant-rhizobia communication, different 
than phytohormones but produced by the non-rhizobial co-inoculant strain, have been 
implicated in the rhizobia-plant association (Lucas-Garcia et al., 2004b; Mañero et al., 2003). 
Some direct evidence suggests that the presence of Pseudomonas spp. (Parmar & Dadarwal, 
1999) and Azospirillum spp. cells (Burdman et al., 1996; Dardanelli et al., 2008, Volpin et al., 1996) 
induce the synthesis of flavonoids by roots of chickpea, common bean and alfalfa, in experiment 
of co-inoculation with rhizobia. Interestingly, it is not strictly necessary the presence of the 
bacteria, the application of bacteria-free exudates of symbiotic enhancers to the root exert 
similar effect that during bacterial-co-inoculation (Molla et al., 2001b). For example, the 
application of NFs analogues produced by Serratia proteamaculans 1-102 promotes soybean-
bradyrhizobia nodulation and soybean growth (Bai et al., 2002b). The list of metabolites 
produced by symbiotic enhancers might become bigger: vitamins that may supplement the 
nutritional requirement of rhizobia (Marek-Kozaczuk & Skorupska, 2001); hydrolytic enzymes 
that assist during rhizobial penetration in the root hair, or attack phytopathogenic fungi 
(Egamberdieva et al., 2010; Sindhu & Dadarwal, 2001; Sindhu et al., 2002); or P-solubilizing 
acids that increase phosphorus availability (Elkoca et al., 2008).  However, in most cases the 
mechanism underlying the plant growth promotion by co-inoculation is unknown (Bullied et 
al., 2002; Goel et al., 2002; Lucas García et al., 2004a, 2004b; Vessey & Buss, 2002).  

3.3 Increasing crop yield by co-inoculation 

On average, an increase of 4-5% in crop yield has an important impact in agricultural 

production. The data obtained in different growth-systems (gnotobiotic laboratory 

conditions, hydroponics, greenhouse and field) shows that co-inoculation produces a major 

increase in legume yield compared with single inoculation (Table 2), overwhelming the 

agronomic expectations.  

Inoculation and co-inoculation experiments must be done in field to provide a realistic 
assessment of the performance of a living-formulation in practical farming conditions. Table 2 
shows examples of legume co-inoculation in field experiments. An increase of 74% in seed 
yield was detected when Phaseolus vulgaris was co-inoculated with P. fluorescens or A. brasilense 
compared with single-inoculation with Rhizobium spp. (Yadegari et al., 2010). As well, 14% 
total biomass chickpea yield was detected during co-inoculation with P-solubilizing Bacillus 
isolates compared with single-inoculation with Rhizobium sp (Elkoca et al., 2008). Vast areas of 
agricultural land are not appropriated for cropping because the soil has P-deficiency and the 
co-inoculation of legumes with rhizobia and P-solubilizing bacteria might supply nitrogen and 
phosphorus to these poor lands. The examples above provided show a huge increase in yield 
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during co-inoculation in field experiments, pointing the economically relevance of co-
inoculation practices in countries with high pulse crop production.  

 

Bacteria 
Target 
crop 

Formulation
Yield 

increase 
(%)a 

Reference 

Rhizobia - B. 
subtilis 

Soybean; 
peanuts; 

dry beans
Co-inoculantb 4-6 www.histicknt.com 

Rhizobia - A. 
brasilense 

Soybean; 
peanut; 

pea; vetch
Co-inoculant 8-30 www.intxmicrobials.com 

Rhizobia – A. 
brasilense - 
P. fluorescens 

soybean Co-inoculant 5-10 www.inoculantespalaversich.com 

Rhizobia – A. 
brasilense 

soybean Co-inoculant 10 www.nitrosoil.com.ar 

Rhizobia -  B. 
megaterium - 
Saccharomyces 
cerevisiae 

All 
legumesc

Co-inoculant Undeclared www.iabiotec.com 

B. megaterium All cropsd Inoculante 
10 www.rajshreesugars.com 

Undeclared www.manidharmabiotech.com 

P-solubilizing 
bacteria 
(genus 
undeclared) 

All crops Inoculant 10-15 www.gsfclimited.com 

Frateuria 
aurantia 

All crops Inoculant 10-20 www.manidharmabiotech.com 

P-solubilizing 
bacteria 
(genus 
undeclared) 

All crops Inoculant 20-30 www.varshabioscience.com 

Delftia 
acidovorans 

Canola 
(B.napus) 

Inoculant Undeclared
Banerjee & Yesmin, 2004 

www.brettyoung.ca 

a – compared to single inoculation 
b –the formulation contains both rhizobia and non-rhizobial PGPB in the same package  
c – recommended for all kind of legumes 
d – recommended for many crops, including legumes 
e – the formulation does not contain rhizobia, but it can be used with rhizobial-formulation  

Table 3. Some available commercial formulations (containing two PGPB) for legume crops. 
Note: mycorrhiza and bio-control bacteria are not included in this list. 
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Chickpea is the most largely produced pulse crop in India accounting for 40% of total pulse 

crops production, being the leading chickpea producing country in the world. India 

annually produces around 6 Million tons of chickpea and contributes of approximately 70% 

in the total world production. On the other hand, Brazil is the world leader in dry bean 

production (3.3 Million ton), followed by India (3.0 Millon ton) and China (1.9 Millon ton). 

All these countries belong to “the BRICs”. In economics, BRIC is a grouping acronym that 

refers to Brazil, Russia, India and China, which are considered to be at a similar stage of 

newly advanced economic development. The BRIC thesis, by Goldman Sachs, recognizes 

that Brazil, Russia, India and China have changed their political systems to embrace global 

capitalism, and predicts that China and India, respectively, will become the dominant global 

suppliers of manufactured goods and services, while Brazil and Russia will become 

similarly dominant as suppliers of raw materials. In this scenario, of countries with growing 

world economies and important production and consumption of pulses, the development of 

new formulations based in bacterial consortiums are being encouraged. However, a major 

constraint for exploiting living-formulation technologies has been that most farmers are not 

aware of the technology and its benefits. 

3.4 New formulations: The use of bacterial consortium 

Some bacterial symbiotic enhancers are promising microorganisms that would be used for 
the design of new formulations. These formulations could contain different bacteria in one 
pack, ready for direct placing in the seed at planting. However, some manufacturers also 
produce formulations that do contain non-rhizobial PGPB, but that can be mixed with 
rhizobial-formulation at the moment of planting. Information on both kinds of formulations 
is provided in Table 3.  

Despite the great progress and the increasing interest in mixed formulations for legumes 

inoculation, there are few commercial products with different bacteria. Most of these 

products are based on Bacillus spp. Azospirillum-based inoculants are also abundant in the 

market, but most of them are available for non-legumes crops (Figueiredo et al., 2010). Most 

commercially available biofertilizers are biopesticides and biofunguicides, but they are not 

described in this chapter. 

4. Concluding remarks 

The doubling time world's current growth is 54 years and we can expect the world's 

population to become 12 billion by 2054.  This demographic growth has to be 
accompanied by an increase in food production. Thus, the humanity has to face a new 

challenge, by doing a good use of soils (Fedoroff et al., 2010; Godfray et al., 2010) and 
developing new technologies (Pretty, 2008), mainly based in eco-friendly 

microorganisms that control pest and improve plant growth. In such scenario, the use of 
biofertilizers, rhizobia or consortium of plant-beneficial microbes (rhizobia and 

symbiotic enhancers) in formulations provides a potential solution. The data showed in 

this chapter support that the design of new formulations with cooperative microbes 
might contribute to the growth improvement of legumes.  The co-inoculation has a 

positive effect in growth stimulation of legume crops; however, we believe it is necessary 
to continue studying this subject.  
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