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1. Introduction 

Since all cells ultimately are derived from a single cell – the fertilized egg – a complete 

overview on the neuron development should peruse through initial steps of neural 

induction in the ectoderm of the blastula embryo, and the sequential activation of the 

neurogenic program in the neural tube through neurite outgrowth during final 

differentiation step. 

The concept of neural induction, i.e. the definition of the neural plate domain in the 

ectoderm, was first proposed by Spemman and Mangold after the classic experiment in 

which transplantation of the frog embryo’s dorsal blastopore lip induced a complete neural 

axis from the acceptor embryo’s ectoderm. Since then, much effort has been made aimed at 

identify the signals that confer the neural bias to the ectoderm. The resulting picture clearly 

indicates that neural induction is a multi-step process that requires the interplay of various 

pathways. The result of neural induction is the definition of a neural plate composed by 

proliferating neuroepithelial cells expressing pan-neural genes. 

However, acquisition of neural bias is not sufficient to propel the neuroepithelial cell 

towards terminal neural differentiation path. However, acquisition of neural bias is not 

sufficient to propel the neuroepithelial cell towards A terminal neural differentiation path. 

Cell fate plasticity remains high and demands continuous reinforcement to proceed towards 

a specific differentiation path. The transition from proliferating precursor cell to post-mitotic 

state is also a highly regulated step. Thus, proneural genes have an important role, 

regulating both cell cycle arrest and initiation of neural differentiation.  

In recent years, the potential and promise held by embryonic stem cells as a source for new 

cell-reposition therapies have attracted the attention of the scientific and lay community. 

Stem cells are, by definition, self-propagating cells that are extremely plastic and can 

potentially differentiate into multiple types of cells. However, the same plasticity that holds 

the promise of generation of multiple tissues from a single cell line is also the characteristic 
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that makes stem cell differentiation difficult to control. This has led to intense research 

aimed at understanding the process of cell differentiation. More often than not, stem cell 

biologists have approached differentiation from a developmental biology perspective. After 

all, the newly-fertilized egg is a single cell at its most undifferentiated and uncommitted 

state, and is exposed to all the signalling events necessary for generating all the 

differentiated tissues of a complete organism. 

In support of this, several of the embryonic proneural genes and signalling pathways are 

also present during induction of ES-cell neural differentiation. An example of a protein that 

is active both in normal development and ES-cell differentiation is Ndel1. Ndel1 is a 

microtubule associated neuronal protein, which has been shown to be essential for neuronal 

differentiation and cell migration during the central nervous system development. Albeit 

the abundant literature on its functional role, expression modulation and protein 

positioning during the neuronal differentiation process, marginal attention has been paid for 

its localization and function in early neuronal development step. More recently, we have 

also demonstrated that its enzymatic activity plays an essential role in neurite outgrowth in 

differentiating PC12 cells. The Ndel1 gene expression modulation during the neuronal 

differentiation has been intensively studied and its expression in pluripotent ES cells 

undergoing neuronal differentiation has also been explored. Taken together, all these data 

strongly suggests that Ndel1 is a relevant component in the embryogenesis of the nervous 

system and in the differentiation of cells to neuronal phenotype. 

2. Embryonic neural induction 

The neural lineage derives from the ectodermal germ layer, which in turn originates through 

gastrulation from the epiblast. The ectoderm also gives rise to the epidermal lineage, and one 

of the first events that define the neural lineage is the choice between these two cell fates: 

neural or epidermal. Both lineages must be delimited both molecularly and anatomically. The 

earliest time point when we can detect this segregation is at the pre-gastrula epiblast. The 

epiblast receives signals that will generate a neural bias. Thereafter, this bias is progressively 

stabilized during neural specification and finally, the neural region is patterned in the three 

axes. Thus, neural induction can be subdivided into the response of the epiblast to neuralizing 

signals by adopting a neural bias at its central region, and the progressive stabilization of this 

bias through additional signals. Much of what we have learned about these events was 

gathered from experiments in the chick and amphibian embryo. 

The precise stage at which the epiblast first demonstrates that it is competent to follow 

neural fate has been progressively pushed back as more molecular markers have become 

available. For instance, the early neural marker Sox3 and late marker Sox2 have been used as 

standard indicators of neural bias and specification (Fernandez-Garre et al., 2002; Rex et al., 

1997; Streit et al., 2000, 1997; Uchikawa, 2003; Wood & Episkopou, 1999). These two genes 

have slightly different temporal expression pattern with an overlap at the neural induction 

stage. Sox3 is detected throughout the epiblast before neural induction in pre-gastrula 

embryos and becomes restricted to the future neuroepithelium as development progresses. 

Sox2 is first detected around the time when neural induction is believed to occur and 

thereafter its expression is limited to the neuroepithelium (Muhr et al., 1999; Rex et al., 1997).  
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The induction of neural fate in the ectoderm for a long time was claimed to be the ‘default’ 
fate, where the absence of additional extracellular signals is sufficient to drive towards 
neural bias. This model was mainly sustained on data obtained from dissociated amphibian 
ectodermal cell cultures (Wilson & Hemmati-Brivanlou, 1995). The mainstay of this model 
was that activation of ectodermal BMP signalling pathway conferred an epidermal bias. 
Thus, neural bias could be promoted by the absence signalling; i.e. inhibition of BMP 
signalling either through the addition of extracellular BMP inhibitors (e.g. Chordin, Noggin) 
or decrease of extracellular BMP concentration through dilution (Wilson & Hemmati-
Brivanlou, 1995; reviewed in Almeida et al., 2010).  

Lately, the default model has been modified by experiments done in whole avian and 
amphibian embryos. The current model sustains that ectopic expression of Sox2 and Sox3 
and other neural bias markers is achieved when there is concomitant inhibition of BMP and 
stimulation of FGF signalling (Linker & Stern, 2004). In this revised model, FGF is an early 
neural inducer that acts by counteracting BMP signalling in the epiblast (Pera et al., 2003; 
Streit et al., 2000; Wilson et al., 2000, 2001). Thereafter, the presence of extracellular BMP 
inhibitors such as Chordin is required to maintain and stabilize the neuroepithelium’s 
neural bias during gastrulation (Streit et al., 1998). 

3. Cell cycle exit and neurogenic differentiation 

The vertebrate neuroepithelium starts with a relatively small number of proliferative 
progenitor cells. At early developmental stages, progenitor cells proliferate rapidly through 
symmetric division and give rise only to additional progenitor cells, thus increasing the 
population of progenitor cells. Vertebrate neurons are generated in the ventricular zone, an 
epithelial layer that delimits the ventricles. Proliferation at the ventricular zone occurs in an 
unsynchronized fashion and is characterized by the process known as the interkinetic 
nuclear migration (Hayes & Nowakowski, 2000). This movement spans the apical-basal cell 
axis and positions the nucleus at the basal side during the G1 and S phase of mitosis and at 
the apical side during G2 and M phases (reviewed in Latasa et al. 2009). Once a certain 
critical mass is attained, the neuroepithelium produces neurons through asymmetric 
neurogenic divisions. In this scenario, one daughter cell remains proliferative and maintains 
the neuroblast pool, while the other arrests from the cell cycle and proceeds towards 
neurogenic differentiation to populate the central nervous system. The difference in fate is 
given by unequal distribution of proteins amongst the daughter cells, which will direct 
towards self-renewal or differentiation. The mechanism that controls this asymmetric 
distribution is still being investigated. 

One of the hypotheses is that the choice between symmetric and asymmetric segregation 
depends on the position of the mitotic spindle. This proposal derives from results obtained 
in the ferret cortex. In this model system, asymmetrical cell division is determined by the 
position of the mitotic spindle relative to the apical surface of the neuroepithelium (Chenn & 
McConnell, 1995). When the cleavage plane is perpendicular, both daughter cells inherit 
equal portions of apical and basal membrane, thus generating proliferating progenitor cells 
symmetrically. Conversely, when the mitotic spindle is parallel, the unequal distribution of 
apical and basal membranes amongst the daughter cells leads to the birth of an apically-
located proliferating progenitor and a basally-located postmitotic progenitor (Chenn & 
McConnell, 1995). However, in other vertebrates, the role of mitotic spindle positioning in 
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determining the balance between asymmetric and symmetric division has been 
controversial (Konno et al., 2008; reviewed in Shioi et al., 2009; Zigman et al., 2005). The 
discrepancies observed in the various reports could be attributed to technical difficulties in 
imaging the apical domain of the pseudostratified neuroepithelial cells of the mammalian 
embryo. Irrespective of the role of mitotic spindle in the control of symmetric and 
asymmetric cell division, it is a consensus that the distinct cell fates arise from the 
asymmetric distribution of cellular components. As such, the PAR polarity proteins have 
been recently associated with unequal segregation of the progenitor cell components (Bultje 
et al., 2009; Ossipova et al., 2009; Tabler et al., 2010). 

Naturally, the question arises about the nature of the proteins that direct towards self-
renewal or differentiation of the neural progenitor cells. The cell-surface transmembrane 
Notch receptor has an evolutionary conserved role in determining cell-fate specification 
(reviewed in Pierfelice et al., 2011). Overwhelming evidence has indicated that Notch 
signalling is one of the main players in regulating the choice between proliferation and 
differentiation in the vertebrate nervous system. Activation of the Notch pathway is 
regulated by cell-cell signalling. In brief, Notch receptors are activated by Delta-like or 
Jagged proteins expressed on the membranes of neighbouring cells. Receptor activation 
results in the cleavage of the intracellular domain of Notch, its translocation to the nucleus 
and transcription of target genes. Of these, the Hes family of basic helix-loop-helix (bHLH) 
transcription factors has been consistently associated with the repression of proneural 
transcription factors expression, and consequently of neural differentiation. Thus, cells 
whose Notch pathway is triggered will remain in mitosis at the ventricular zone (Akai et al., 
2005; Hammerle & Tejedor, 2007; Kawaguchi et al., 2008; Latasa et al., 2009; Le Roux et al., 
2003). Conversely, inhibition of Notch signalling removes progenitor cells from mitosis 
(Hammerle & Tejedor, 2007). In other words, the Notch signalling pathway is intimately 
related to the binary cell fate choice between proliferation and differentiation. Although 
inhibition of Notch signalling is required for cell cycle arrest (Kawaguchi et al., 2008), it is 
insufficient to drive differentiation. Overexpression of the truncated form of the Delta ligand 
or of the Notch receptor induces cell cycle arrest, but does not increase the proportion of 
cells expressing differentiation markers (Akai et al., 2005; Hammerle & Tejedor, 2007). 

4. The neurogenic transcriptional cascade 

The transition from proliferative to postmitotic neuron is a highly-regulated multi-stepped 
process. Initiation of neurogenic differentiation requires expression of proneural bHLH 
transcription factors such as Neurogenin 1 and 2, which trigger a transcriptional cascade 
that culminates in the expression of terminal differentiation genes (Bertrand et al., 2002). 
Several of the vertebrate proneural genes were identified through homology with 
Drosophila achaete-scute (asc) and atonal (ato) family of genes. Overexpression of the 
orthologues of the asc (Xash1; Talikka et al., 2002) or ato (XNgnr1; Ma et al., 1996) induces 
ectopic neurogenesis and expression of downstream neurogenic bHLH transcription factors 
(Lin et al., 2004; Ma et al., 1996). 

However, instead of generating multiple neural lineages, the overexpression of a single 
vertebrate proneural gene affects only specific neural subsets. For instance, Mash1-/- mice 
display severe defects in neurogenesis in the ventral telencephalon and the olfactory sensory 
epithelium (Casarosa et al., 1999; Horton et al., 1999). Similarly, Neurogenin1 (Ngn1) or 
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Neurogenin2 (Ngn2) single-mutant mice lack cranial sensory ganglia while Ngn1/2 double 
mutants also lack components of the peripheral nervous system (Fode et al., 1998; Ma et al., 
1998, 1999). The complexity of the phenotypes generated confirm the diversity of existing 
genetic programs underlying the development of each neuronal subtype and implies that 
the importance of a single bHLH factor depends on the neural cell lineage (Powell & 
Jarman, 2008). This emphasizes the importance of using a wide array of marker genes to 
identify progression of neural differentiation, as a single proneural gene might not be 
involved in the differentiation of the neural lineage under investigation. Furthermore, it has 
important implications for experimental approaches that aim to direct the in vitro 
differentiation of stem cell lines. 

Vertebrate proneural genes are first expressed, while precursor cells are still at the 

ventricular zone. Indeed, several of the above-mentioned proneural genes expression is 

regulated by the Delta-Notch pathway (Kageyama et al., 2008; Ma et al., 1996). However, 

neural differentiation does not occur in the ventricular zone. Rather, postmitotic neural 

precursors undergo migration towards outer layers of the neural tube. Proneural bHLH 

proteins are also involved in this migratory behaviour. Overexpression of Neurogenin1, 

Neurogenin2, NeuroD and Mash1 increases progenitor cell migration in the mouse cortex 

and regulates the expression of the cytoskeleton-regulating GTPases RhoA (Ge et al., 2006). 

An anatomical consequence of this migratory behaviour coupled to differentiation is the 
organization of neural tube in distinct cell layers, compartmentalizing differentiation stages 
progressively in concentric layers, where internal layers harbour younger, more 
undifferentiated precursors and more external layers contain more mature neurons. This 
spatial organization facilitates the positioning of marker genes in the neurogenic programs 
hierarchy. For instance, Notch pathway receptor and ligand genes are expressed in the 
ventricular zone (Fig. 1; Le Roux et al., 2003; Myat et al., 1996) In contrast, consistent with  

 

Fig. 1. Progression of neural differentiation is associated with more external layers of the 
neural tube. A) In situ hybridization for markers for proliferation (Notch1), transition 
between proliferation and cell cycle arrest (Sox3 and Ngn2), postmitotic differentiation 
(NeuroM) and late differentiation (SCG10) in chick HH26 truncal neural tube. B) Diagram 
summarizing the anatomical changes in the different differentiation compartments. 
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their role in initiating differentiation, Sox3 and Neurogenin1 are expressed at the ventricular 
layer and slightly beyond the proliferative zone as well (Fig. 1; Bylund et al., 2003). 
Ath3/NeuroM is mainly expressed by post-mitotic neural precursors, and the expression 
domain borders the external perimeter of Neurogenin1 and Sox3 (Fig. 1; Roztocil et al., 
1997). This domain is also known as the intermediate layer and contains neural progenitors 
in the early stages of differentiation. Other markers for this stage include the RNA-binding 
protein Hu and the RNA splicing factor NeuN/Fox3 (Dent et al., 2010; Kim et al., 2009; 
Wakamatsu & Weston, 1997). Finally, the late differentiation marker SCG10 is expressed by 
cells at the outer border (mantle layer) of the neural tube (Fig. 1; Stein et al., 1988). 

SCG10 encodes a membrane-associated protein associated with the growth cones of 
developing neurons (Stein et al., 1988). Its presence in the developing neural tube correlates 
with the onset of late differentiation events such as neuritogenesis. An additional marker 
that is widely used to characterize post-mitotic differentiating neurons is beta III tubulin 
(recognized by the monoclonal antibody Tuj1; Lewis & Cowan, 1988; Lee et al., 1990; 
Menezes and Luskin, 1994).  

In the chick embryo truncal neural tube, beta III tubulin presence is particularly strong at the 

developing ventral root, corresponding to axons emitted by the motor neurons in the ventral 

lateral regions of the tube (Fig. 2). Thereafter, its presence becomes increasingly prevalent 

and can be detected in the outer mantle layer and in the developing dorsal root ganglions 

(Fig. 2). Beta III tubulin has been associated with the emergence of stable microtubule 

cytoskeletal scaffolds in axons and dendrite, suggesting that beta III tubulin is required for 

neurite maintenance (Ferreira and Caceres, 1992). Indeed, neurons with decreased levels of 

beta III tubulin have shorter neurites (Tucker et al., 2008). However, Tuj-1 immunoreactivity 

is not limited to neurons undergoing neuritogenesis.  Beta III tubulin is also present in cells 

that are migrating from the ventricular and subventricular zone (O´Rourke et al., 1997). 

 

Fig. 2. Evolution of beta III tubulin expression in the chick truncal neural tube. Beta III 
tubulin was detected by immunohistochemistry with the monoclonal antibody Tuj1. The 
above staining shows that beta III tubulin is first detected in the motorneurons neurites that 
comprise the ventral root (HH19) and in some outer peripheral neurites. Thereafter, 
expression progresses so as to expand towards inner layers as well. At HH25, a strong 
immunofluorescent signal can be seen at the ventral motorneuron domain, ventral root and 
dorsal root ganglion. At HH30, beta III tubulin is clearly present in the axons of the outer 
mantle layer and is only excluded from the innermost layer that borders the ventricular 
region. 
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Consistent with the importance of microtubule cytoskeleton in the latter stages of neural 
differentiation, several microtubule-associated proteins such as MAP2 and Tau are also up-
regulated. MAP2 and MAP1B double knockout mice have fiber tract malformations and 
retarded neuronal migration. Additionally, primary neuronal cultures derived from these 
mice display reduced neurite outgrowth (Teng et al., 2001).   

5. Stem cell neural differentiation recapitulates embryogenesis 

In vitro differentiation of embryonic stem cells into neural lineages aims to recapitulate the 
multistep process – from induction to terminal differentiation - of neural embryogenesis 
described above. Indeed as in embryonic epiblast induction, some cell lines, neural 
induction is more efficiently induced by the combination of fibroblast growth factor (FGF) 
signalling and bone morphogenetic protein (BMP) inhibition (LaVaute et al., 2009; Tropepe 
et al., 2001; Ying et al., 2003). In these reports, the endogenous production of BMP inhibitors 
was sufficient to avoid epidermal fate. However, conservation of embryogenic signalling is 
not a rule for all cell lines. Some iPSCs (induced Pluripotent Stem Cells) do not improve 
their neural differentiation rate with FGF signalling and/or BMP inhibition (Hu et al., 2010). 
Thus, the extent of recall of embryogenesis in these experimental paradigms is still an open 
question and begs for future analysis. 

There are multiple protocols for in vitro neural induction and the depth of analysis 
regarding similarity with embryogenesis varies. Some groups provide a detailed 
comparison with embryogenesis. For instance, Abranches and collaborators report 
expression of Sox genes during the early phases of induced differentiation, interkinetic 
nuclear migration and Notch-signalling and subsequent expression of the postmitotic neural 
(Hu) and glial markers (GFAP) (Abranches et al., 2009). However, most reports concentrate 
on the detection of late developmental neural markers such as MAP2, Tau, NeuN and beta 
III tubulin, which have been generally accepted in the community as indication for stem cell 
neuronal differentiation (Tropepe et al., 2001).  

For instance, Kerkis and collaborators detected the presence microtubule-associated proteins 
(MAPs), such as Lis1 and Ndel1, as neural markers at early stages of in vitro model for 
neuronal differentiation from pluripotent stem cells (Kerkis et al., 2011).  

6. Lis1 and Ndel1: Microtubule associated proteins involved in neural 
development 

The microtubule associated proteins (MAPs), Lis1 and Ndel1 are involved in neuronal 
differentiation and cell migration during the CNS development. 

Lis1, also known as platelet-activating factor acetylhydrolase (PAF-AH), regulates microtubule 
function and is essential for proper neuronal migration during cortical development (Arai, 
2002). Mutations in Lis1 gene have been associated with neuronal migration defects and 
abnormal layering of the cortex (Reiner et al., 1995; Saillour et al., 2009; Youn et al., 2009). For 
instance, haploinsufficiency of Lis1 alone causes congenital malformation of brain folds and 
grooves, i.e. lissencephaly. Lis 1 microdeletion is also part of the genetic causes of Miller-
Dieker syndrome (MDS; Miller, 1963; Dieker et al., 1969; Reiner et al., 1993). Besides 
lissencephaly, MDS patients also present hypoplasic corpus callosum. Together, these data 
underscore the importance of Lis1 in proper neuronal migration and axon formation. 
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In support of the importance of Lis1 in neural development, Lis1-binding protein Ndel1 
(Nuclear-distribution Element like-1) also plays a relevant role in the proper establishment of 
the nervous system. Lis1 and Ndel1 co-localize predominantly in the centrosome in early 
neuroblasts, and later, redistribute to axons during neuronal development (Shu et al., 2004; 
Guo et al., 2006; Bradshaw et al., 2008; Hayashi et al., 2010). The direct association of Lis1 with 
the Ndel1 fungal homologue was first shown in 2000 (Kitagawa et al., 2000), and soon after the 
interaction with the mammalian homologue was also demonstrated (Sweeney et al., 2001).  

Ndel1 is also known as endooligopeptidase A or EOPA and was first isolated due to its 
ability to inactivate bioactive peptides. Ndel1/EOPA, is a thiol-sensitive enzyme inactivates 
physiologically important peptides such as bradykinin and neurotensin, and also converts 
opioid oligopeptides into enkephalins (Camargo et al., 1973, 1983, 1987; Gomes et al., 1993; 
Hayashi et al., 2000, 2005). The contribution of bradykinin and neurotensin neuropeptides in 
neurite outgrowth was also previously described (Zhao et al., 2003; Tischler et al., 1991; 
Robson and Burgoyne, 1989; Tischler et al., 1984). 

In normal cortical development Ndel1 is involved in microtubule organization, nuclear 
translocation and neuronal positioning (Shu et al., 2004; Youn et al., 2009; Bradshaw et al., 2011). 
Knockdown or ablation of cortical Ndel1 function also results in impaired migration of 
neocortical projection neurons (Sasaki et al., 2005; Youn et al., 2009). Deletion of Ndel1 by RNAi 
leads to deficits in neuronal positioning and uncouples the centrosome from the nucleus, 
resulting in aberrant neuronal migration (Shu et al., 2004). Ndel1 homozygous knockout mice 
have similar deficits in neuronal positioning (Sasaki et al., 2005; Youn et al., 2009).  

7. Expression of Ndel1 in the developing CNS and ES cells 

Consistent with its importance in the development of the nervous system and its association 
with the microtubule cytoskeleton, Ndel1 domain of expression in the developing 
embryonic neural tube coincides with that of beta III tubulin in the outer mantle zone (Fig. 
3). As mentioned in previous sections, the expression of beta III tubulin in post-mitotic cells 
is associated with neurons that are migrating or emmiting neurites. Thus, the co-localization 
shown here suggests that Ndel1 is involved in these processes as well in the chick 
developing neural tube. 

 

 

Fig. 3. Ndel1 expression co-localizes with beta III tubulin in the mantle zone of the 
embryonic neural tube. Immunofluorescence of adjacent slices of HH 30 embryos truncal 
neural tube with monoclonal anti-Ndel1 and anti beta III tubulin (Tuj1) antibodies. The 
overlay at the rightmost figure is provided for comparative purposes only. 
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Likewise, the dynamics of Ndel1 localization in stem cells during neural differentiation 
suggests that it is recruited for neurite extension. In undifferentiated ES cells, both Lis1 and 
Ndel1 show a perinuclear co-localization (Hayashi et al., 2011). In contrast, after the onset of 
neuronal differentiation, Lis1 presents a cytoplasmic and Ndel1 a perinuclear localization.  
Following differentiation, both Lis1 and Ndel1 co-localize in the outgrowing neurites 
(Kerkis et al., 2011).  

The presence of Ndel1 persists in adult brains. Northern blot analysis confirmed its 
preferential expression in the rabbit and rodent CNS (Hayashi et al., 1996; 2000), although 
this could not be confirmed for humans (Guerreiro et al., 2005).  Later, the presence of Ndel1 
in the adult brain was confirmed by in situ hybridization studies, with higher expression in 
some regions, such as the hippocampus, cerebellum, and basal nucleus of Meynert (Hayashi 
et al., 2001). This study provided a basis for phenotypic identification of Ndel1-expressing 
neurons throughout the rat brain and showed a correlation between the distribution of 
Ndel1 neurons and systems responsible for motor, sensory, endocrine, and possibly for 
other functions.  Together, these expression patterns argue in favour of a role for Ndel1 in 
neurite growth and maintenance. 

8. In vitro assays for Ndel1 cellular function 

As mentioned previously, clinical correlation data suggested strongly that Lis1 and Ndel1 
are involved in neuronal migration during cortical layer formation. Lis1 and Ndel1 
participate in nuclear and centrosomal transport in migrating neurons (Shu et al., 2004; Tsai 
et al., 2005). Additionally, they influence centrosome positioning in migrating non-neuronal 
cells (Dujardin et al., 2003; Stehman et al., 2007; Shen et al., 2008). Moreover, dominant 
negative overexpression of either the enzymatic active form of Ndel1 or its orthologue 
mNudE disrupted CNS lamination in Xenopus laevis embryos (Hayashi et al., 2004; Feng et 
al., 2000). 

In an attempt to elucidate the exact role of Lis1 and Ndel1 in neuronal migration during 

cortical layer formation, we have used long-term adherent neurosphere cultures to mimic 

the development of cortical layers in vitro (Hayashi et al., 2011). In this experimental model, 

the neuropsheres grow for two weeks without splitting and the resulting aggregates present 

an inner core that would correspond to the inner cortical layer where migrating neurons 

originate from, and an outer layer that harbors neurons that finished their migration. In this 

experimental paradigm, a significant variation in spatial distribution of Lis1 and Ndel1 

proteins was observed (Kerkis et al., 2011). Lis1, but not Ndel1, was detected in the rosette 

cells localized at the inner part of the cellular aggregates. In contrast, co-localization of both 

Lis1 and Ndel1 was observed in the cells at the peripheral layer of the cellular aggregates 

(Kerkis et al., 2011). Although further analysis with other MAPs would provide a better 

picture of the role of Lis1 and Ndel1 in neuronal migration during establishment of cortical 

layers, these data nonetheless indicate that these two proteins play a differential role in the 

establishment and maintenance of neuronal layers. 

The role of Ndel1 in neurite outgrowth has been better characterized. Knockdown of Ndel1 
expression in rat pheochromocytoma PC12 cell line inhibits neurite outgrowth. This 
inhibition can be rescued by wild-type Ndel1 (Ndel1WT), but not by a mutant (Ndel1mut273), 
which does not have enzymatic activity (Hayashi et al., 2010). This result indicates that 
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Ndel1 enzymatic activity plays a crucial role in neurite outgrowth. In support to this, a 
significant increase of Ndel1 promoter activity during the period of maximal neurite 
outgrowth was observed (Hayashi et al., 2010).  

Clearly, the expression of Ndel1 shows strong correlation with the onset of various aspects 

of embryonic neural development and ES cells and PC12 cells neural differentiation. Thus, 

we directed our attention towards cis-regulatory elements that could regulate neuro-specific 

Ndel1 expression in a variety of experimental models. 

9. Control of Ndel1 expression  

The promoter of both rabbit and human Ndel1 gene was analyzed by the group in cultured 

cell lines. Interestingly, the Ndel1 promoter activity was shown to be very different in 

neuronal and non-neuronal cells, with a stronger activity in NH15 neuronal compared to C6 

glial cells for the rabbit full-length promoter, thus confirming the preferential neuronal 

expression of. However, such difference was not observed for the human full-length 

promoter under the same conditions (Guerreiro et al., 2005).  

We’ve isolated the rabbit promoter fragment -888/-744 as the region responsible for 

determining the neuronal-specific expression. This DNA segment contains potential binding 

motifs for the CP2 and SRY (sex-determining region Y) transcription factors.  SRY is the 

founding member of the Sox (Sry-related HMG box) gene family (Sekido, 2010).  Moreover, 

strong negative regulator elements were found within positions -755/-450 and -314/-245 in 

both human and rabbit promoters.  Of these, at least one common negative cis-regulating 

region seems to be acting in the control Ndel1 expression in both species (Guerreiro et al., 

2005).  During neural development, these elements may restrict Ndel1 promoter activity to a 

neuronal subtype or a specific period of differentiation.  

In the human Ndel1 promoter, the critical regulatory domain lies between -314/-245. Within 

this region we also found a single putative binding site for a member of the Sox 

transcription factor family. It is tempting to speculate on the identity of members of the Sox 

family, which now number more than 20, that regulate Ndel1 expression (Lefebvre et al., 

2007). There are certain members of the Sox family, which we could speculatively nominate 

as candidates to mediate the increased expression of Ndel1. For instance, accumulated 

evidence has shown that Sox 11 is relevant for neurite outgrowth.  As Neuro2a cells 

undergo retinoic acid-induced neuronal differentiation, Sox 11 levels increase significantly. 

Conversely, RNAi knockdown of Sox 11 inhibits axon outgrowth in Neuro2a cells, Dorsal 

Root Ganglion neurons and regeneration in nerve injury models (Jankowski et al., 2006; 

Jankowski et al., 2009).  

10. Conclusion 

Microtubule-associated proteins (MAPs) are essential for neuronal differentiation and cell 

migration during the central nervous system (CNS) development and also in the adult 

nervous system. In particular the distribution and role of lissencephaly (Lis1) and nuclear 

distribution element-like (Ndel1) allows the comparison between neural differentiation in 

stem cells and during embryo development. They are very powerful tools not only due to 

www.intechopen.com



 
Gene Expression in Embryonic Neural Development and Stem Cell Differentiation 

 

259 

their putative role as expression markers of the differentiation process, but also due to their 

confirmed role in the cell maturation and migration processes. Furthermore, the study of cis-

regulatory regions that confer neural-specificity to Ndel1 expression can increase our 

understanding of gene expression control during neural differentiation. 
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