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Methodology Applied to the Diagnosis  
and Monitoring of Dikes and Dams  

Yannick *Fargier1,2, Cyrille Fauchard3, Patrice Mériaux4, Paul Royet4,  
Sergio Palma-Lopes2, Daniel François1, Philippe Côte2 and Fréderic Bretar3 

1. Introduction 

The recent and dramatic floods of the last years in Europe (Windstorm Xynthia, February 

2010) and United-States (Hurricane Katrina, August 2005) showed the vulnerability of flood 

defence systems. The first key point for avoiding these dramatic damages and the high cost 

of a failure and its consequences lies in the conception and construction of the dams and 

dikes, taking into account the past flooding events. A well-designed dike with the correct 

height avoids failure and overtopping.  

In this chapter, a dike is defined as a flood defence system, in dry condition (no contact with 

water). The term “levee” is often used, specially in the USA. 

Many factors introduce weaknesses in the dike. Most of them are old structures. For instance, 

some of the French Loire River dikes were built several centuries ago. They may have been 

rebuilt, modified, heightened several times, with some materials that do not necessarily match 

the original conception of the structure. In other aspects, trees, roots, burrows or nests could 

modify the structure of the dike and reduce the mechanical properties.  

Particular geological formation and their evolution could also threaten the dike. This is the 

case in the city of Orléans, France, where levees have collapsed in karstic areas. In urban 

context, the dikes present many other singularities, such as networks, canalisations, human 

constructions like houses and walls. Due to all these factors, dikes have to be considered as 

heterogeneous structures. Considering the social impact of a possible breach, the stretch of 

hundreds of kilometres and the heterogeneity of the materials, rapid, cost-effective and 

reliable techniques for surveying the dike must be carried out.  

This chapter presents the general approach for assessing earth embankments. The first part 

briefly presents a synthesis of the French approach related to dike diagnosis. The second 

part shows the recent improvements in this geophysical area given by current applied 

researches and international experiments. The third part is dedicated to the airborne LiDAR 

(Light Detection and Ranging) technology, which provides extremely accurate topographic 
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data at a high efficient rate. The last part is a presentation of a current research work where 

the Electrical Resistivity Tomography (ERT) method is implemented and tested on an 

experimental test dam as well as real ones in order to monitor the effect of internal erosion 

within the structure.  

2. General methodology for dike diagnosis 

The management of a dike involves many stakeholders and consists in surveying, 

maintaining and making a diagnosis (Mériaux & Royet, 2001). The diagnosis should identify 

the weaknesses of the structure (zoning) and provide the degree of safety. Thus, a general 

methodology (Fig. 1) has been proposed by (Fauchard & Mériaux, 2007). It concerns the 

levees running alongside French rivers (Loire, Cher, Isère, Aggly), where the dikes are not in 

a permanent hydraulic heading. The diagnosis is performed in dry condition. The 

methodology is based on several tests carried out in the framework of the French National 

Project “CriTerre” and the ERINOH (Internal Erosion in Hydraulic Earthworks) project. 

This methodology can be applied to dams, with slight differences during in-situ inspections.  

This diagnosis begins with preliminary studies, before performing geophysical surveys. It 

goes on with geotechnical testing, before concluding on the safety level of the dike. 

2.1 Preliminary study 

The preliminary study consists in gathering as much information as possible concerning the 

dike, the near environment and its history (Lino et al., 2000).  

a. The historical research (Fig. 2) can establish the locations of old repaired breaches, 
material distribution and the way the dike was built. The study of historical archives 
gives clues wherefrom the materials were extracted so as to build and repair the dike. 

b. The geological study (map and in-situ observations) of the near area gives information 
about materials potentially used for building the dike and on the underlying substratum.  

c. The topography of the dike contains valuable information. From the longitudinal 
profile of the crest, we can assess the risk of overtopping during a flood by comparing it 
with the highest past flood. A map of the transverse profile is also required for stability 
studies and risks of piping, as well as for an accurate location of any structure (walls, 
crest water gates, crossing networks…) that can modify the interaction between water 
and dike in case of flood. Finally, the topography is useful for dike management and 
maintenance. It provides 3D coordinates for visual inspection, geophysical and 
geotechnical studies. The topographic map has usually a scale of 1:500 to 1:1000. 
Longitudinal profiles are performed on the crest every 20 to 25 m and transverse 
profiles are realized every 50 to 200 m, depending on the context. This is a critical 
point in the dike study, and it could be time and cost consuming for dike of long 
extent. In that case, LiDAR systems are an interesting alternative surveying technique 
and provide accurate 3D points along the dike with a high point density (see section 
4). 

d. The visual inspection is performed after the historical research and the topographic work. 
This phase confirms, completes or invalidates any information previously collected. At 
least three inspectors are required: one on the crest, and two at the toes dike in the 
riverside and landside. Any anomaly should be reported on the topographic map.  
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Method Result 

Penetrometric tests Dynamic resistance / depth 

Loggings of Boreholes permeability Permeability /depth 

Mechanical shovel Local visual control 

Destructive drillings Material distribution / depth 

Core drillings Material distribution / depth and 
samples for laboratory tests 

4 – Topography  
5 – Visual inspection 
6 – Hydrology and hydraulics 

III – Geotechnical studies 

II – Geophysical studies 

I – Preliminary studies  

1 - Efficient survey: first zoning
 
Method: Slingram, AEM or RMT 
Result : First dike zoning 

2 – Efficient and local survey : local 
zoning 
 
Method : Electrical Resistivity 
Tomography  
Result: local zoning/material 

distribution 

IV – Diagnosis, stability studies, improvement of dike model 

General methodology for dike study with geophysical and geotechnical methods  

And/Or 

3 – Other methods, other targets
 

Method Result 

Seismic reflexion Mechanical impedances 

Multy-Channel Analysis of Surface 
Waves 

Contact dike body/substratum 

Seismic refraction Contact dike body/substratum 

Ground Penetrating Radar Networks, layers 

 

1 – Historical research  
2 – Geological study  
3 - Morphodynamic analysis 
of the watercourse 

 
 

Fig. 1. General methodology proposed in 2007 by the French National Project CriTerre 

(source Fauchard & Mériaux, 2007) 
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e. The morphodynamic study consists in understanding the sedimentology, the hydrology 
and the morphometric characteristics of the waterway. It takes into account the temporal 
evolution of the watercourse channel. For instance, a sandy islet in the bed river modifies 
the water current: new parts of the dike could be threatened in case of flooding.  

 

Fig. 2. Example of historical data of the dikes of the Authion river (France, Loire)  
(Dion, 1961) 

2.2 Geophysical studies 

2.2.1 Introduction 

The geophysical exploration consists in mapping the dike body (nature and distribution of 

the material– the dike substratum is considered as a part of the dike body). Both the 

geometry (stretch and height) of the dike and the materials influence the choice of the 

methodology as well as the interpretation of the measurements.  

Considering a typical study where the dike is a long structure of several kilometres, a 

classical approach (Fig. 3) starts with carrying out a rapid and cost-effective survey. It 

provides information on the homogeneity of the entire dike body. Then, heterogeneous 

areas that may weaken the dike body during a flood event are located. 

Depending on the geophysical method, a physical parameter is measured according to 

different profile paths: along the crest (longitudinal profile), across the dike (transverse 

profile), at the toes of the dike (longitudinal profiles at the river side and the land side). The 

results of a geophysical survey must be correlated with the previous studies. This first 

survey helps to focus on interesting areas, which can be measured with appropriate 

geophysical or/and geotechnical methods. This global methodology is presented in Fig. 1. 

Generally stakeholders are in charge of managing permanent critical structures like dams, 

multifunctional dikes in urban area or dikes in heading conditions. In this case, and 

regarding the potential damages that a breach could generate, the choice of a more efficient, 

but more time and cost consuming method may be considered. Indeed, the slightest breach 

during a flood event, either in urban or rural areas, leads to dramatic damages. It induces 

costs generally higher than the diagnosis does. As a result, some stakeholders prefer a 

detailed zoning whatever the stretch length of the dike (Fig. 3). 
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Longitudinal  a) First zoning : localization of anomalies 
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b) Second zoning: local mapping of dike 
body 
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Colour scale of  the 
measured physical 
parameter 

First approach 

Local zoning: direct mapping of the whole dike body 
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Rapid 
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But 
Higher risks 
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z
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(Oz)

Profiles Measurements results 

 

 

Fig. 3. Two approaches for geophysical survey on dikes 
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2.2.2 First zoning with geophysical methods 

As discussed earlier, depending on the dike characteristics two different approaches are 
currently carried out. The choice is more dependent on the available time and allocated 
means than on the dike length.  

The first approach (Fig. 3 top) consists in measuring a physical parameter related to the type 
of material of the dike body. The apparent resistivity (or its inverse, the conductivity) is a 
common physical parameter measured for this purpose. The resistivity describes how 
materials resist to (or conduct) electricity. It strongly depends on the nature of the studied 
material, its water and clay contents. Other parameters like tortuosity or water salinity of 
soils are also of importance. The resistivity values of encountered materials in dikes spread 

in a large scale: few .m (ohm meter) in clays, from few .m to few hundreds .m for silty 

soils and from few hundreds .m to several thousands .m in sand, gravels and limestone. 
Fig. 4 shows the range of resistivity values of the main materials encountered in applied 
geophysics.  

 

Fig. 4. Resistivity (and its inverse, conductivity) of the main earth materials (Palacky, 1991) 
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A rapid and cost effective technique is the electromagnetic method of Slingram (Mc Neill, 
1980). It works in low frequency domain and measures the apparent conductivity of the dike 
body. The depth of penetration of such a method can reach 50 m, but common devices are 
designed to reach a classical depth of 10 m (mean height of dikes). A car can track the device 
if the dike crest has a pavement structure. The measurements are represented as a curve 
showing the variations of the conductivity (or resistivity) with regard to the distance. A 
significant variation compared to an average value is interpreted as a potential variation of 
dike body properties: it defines the area for a more detailed survey. 

Nevertheless, these methods are highly sensitive to metallic environment, and their 
applications are still difficult in urban areas. 

Airborne Electromagnetic Method (AEM) belongs to the Slingram family methods: the 
survey is performed from an airborne platform. It has been widely used for the levee in the 
region of New Orleans (Dunbar, 2003). Other high output methods were also carried out in 
the French context of the Loire Rivers. The Radio MagnetoTelluric method, identical to the 
Very Low Frequency in resistivity mode, but uses higher frequencies, has been designed for 
first zoning with good performances in the re-localization of repaired breaches. Today, this 
method has been discarded by most geophysicists mainly because its technical aspect is 
getting older, and because of the poor quality of incoming waves. 

Another popular technique is the Spectral Analysis of Surface Waves (SASW) initially 

developed for marine seismic exploration (Gimble sensors). It is implemented for 

studying the contact surface between the dike body and its substratum. It evaluates the 

shear modulus. This method was described and implemented on the Loire levees (Samyn 

et al., 2009) for the detection of sinkhole in karstic substratum in the region of Orléans, 

France. 

Ground Penetrating Radar is sometimes used on particular studies – on paved dikes for 

instance, or on very resistive dike bodies. This electromagnetic method is based on the 

radiation of electromagnetic waves in time domain and the reception of waves reflecting on 

dielectric contrasts encountered in the soil. Most of dike bodies absorb this kind of waves, 

and the provided information is often useless for a diagnosis. 

2.2.3 Local zoning with geophysical methods 

The local zoning consists in carrying out directly a more precise geophysical method. It is 

for instance an internal map (or tomography) of the dike body and of the top of its 

substratum. The best-suited method for this approach is the Electrical Resistivity 

Tomography (ERT). This approach takes more time and is more expensive than the others. 

However, it provides more accurate data entailing a better detection of potentially weak 

areas and therefore a better understanding of the structure stability.  

In case of heading conditions (for dams or earthen embankments), the ERT can be applied 
for mapping internal structure and can be implemented for a time lapse monitoring. But 
here, the most important is to detect seepages and/or leakages, through or under the dike 
body. For that purpose the self potential is more appropriate. It can be implemented 
directly on the top of the structure, or could be carried out on river, along the dike. This 
method also leads to the estimation of the seepage flow through the structure (Bolève et al., 
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2007). In that case, ERT provides additional measurements for processing the data. Some 
temperature probes could also be buried in the dike and the temperature variation could be 
correlated to the presence of water in the dike body (Radzicki & Bonelli, 2010). 

2.3 Geotechnical testing  

Geotechnical testing are generally carried out after the first investigations (prior knowledge 
of historical building and materials, localisation of heterogeneous areas). The final 
interpretation of geophysical measurements is only relevant when coupled with 
geotechnical testing. People interpreting the measurements have to decide to extrapolate - or 
not – the local tests to the rest of the dike.  

Geotechnical testing locally provide physical parameters of the dike body that are required 

for a good diagnosis. A detailed methodology is given in (Lino et al., 2000)  

Penetrometric tests are generally the first geotechnical method used to provide information 
about the soil density (derived from the measured dynamic resistance (in MPa) with regard 
to depth) and the layer thickness in the dike body. It consists in hammering a conical tip in 
soil with some characteristics depending on the penetrometric device. The depth of 
penetration can easily reach 10 m.  

Permeability testing (e.g. the Lefranc test) consists in drilling a borehole, injecting and 
pumping water in an open-ended cavity, called a lantern, at the bottom of the borehole. It 
measures the variations of hydraulic head and its flow rate and gives the permeability 
around the lantern. Some devices evaluate both the soil density and the permeability.  

Shear tests with phicometer provide the shear strength and the friction angle of soil. It 

consists in a probe – metal expansion shells - fitted with horizontal annular teeth inserted 

into the borehole. The shells move only laterally so that the teeth dig the soil. The method 

needs a good drilling quality with no lining – not the case in highly heterogeneous soils – 

and is not suited for soft soils.  

A local investigation can be carried out with a mechanical shovel, digging a pit in the dike 

body or at its toe. It provides the distribution of materials. 

Mechanical drilling basically provides the advance speed in borehole, and the location of 
interface layers. In case of destructive drilling, materials are breaking up and transported to 
the surface (cuttings) using a circulating fluid or an helicoidal cutting tool (auger). If 
percussion or rotopercussion conducts drilling (for cohesive and rocky soils), the analysis of 
cuttings can be difficult, but more information is provided by registered parameters like 
advance speed, tool pressure, circulation fluid pressure... The auger is applied mostly for 
loose and poorly cohesive soils and allows to take some material samples for lab-test 
analysis (water content, Atterberg limit, …). In case of core drilling - non-destructive testing 
– soil samples are extracted directly from borehole without modifying physical properties of 
soils. Then the samples can be packed and sent for lab testing. Core drilling is local, more 
expensive and more time consuming than destructive drilling, but provides very useful 
information for assessing dike properties.  

All these methods require a free access to vehicle in the measuring location (crest and/or toe 

of the dike). 
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3. The airborne LiDAR as an efficient tool for topographical survey and 
detection of surface anomalies on dikes 

3.1 Backgound on LiDAR systems 

Airborne laser scanning (also called ALS) or LiDAR (Light Detection And Ranging) is an 

active remote sensing technique that provides georeferenced distance measurements 

between an airborne platform and the surface. It measures the time-of flight of a short laser 

pulse once reflected on the Earth surface. Strips of several kilometres, with a high 

overlapping ratio, provide the surveyed topography. The attitude of the airborne platform is 

acquired by both a GPS and an inertial measurement system. Distance measurements are 

then transformed into georeferenced 3D points. A detailed description of the processing 

chain can be found in (Mallet & Bretar, 2008) and (Shan & Toth, 2009).  

The height accuracy (resp. horizontal accuracy), at the top end process, is less than 0.05 m 

(resp. about 0.40 m ) or less depending on the flying conditions as well as on the surveyed 

topography. 

Moreover, such active systems, called multiple echo LiDAR, allow detecting several return 
signals for a single laser shot. It is particularly relevant in case of vegetation areas since a 
single LiDAR pulse allows acquiring not only the canopy, but also points inside the 
vegetation layer and on the ground underneath. 

In recent years this technique has been applied over natural landscapes to extract terrain 
elevation (Kraus & Pfeifer, 1998; Bretar & Chehata, 2010) or to classify land cover 
(Antonarakis et al., 2008; Yoon et al., 2008, Bretar et al, 2009). 

In the particular case of dike monitoring, we need a high flexibility in the flight planning in 
terms of altitude (100-300 m) and heading, and also a high accuracy because dikes are civil 
engineering structures with a relative low height (less than 7 m) and with a lot of small 
surface singularities. As a result, it is advised to use a corridor mapping system like FLI-
MAP (Fast Laser Imaging and Mapping Airborne Platform) developed by Fugro-Geoid 
(Gomes Pereira & Wicherson, 1999). 

Embedded in an helicopter, FLI-MAP can provide†, over a 105 m wide corridor at a fly 
height of 150 m, a point density of 80 pts/m2, with an absolute height accuracy (Z) of  
0.03 m. The Pulse Frequency Rate (PRF) of the latest version can reach 250 kHz with a field 
of view of 60 ° in the cross track direction. The survey is done following three scan plans in 
the flight direction (vertical for 50% of the points, front 7 ° and rear 7 ° for 2 x 25%), which 
reduce the effects of shadows. 

The trajectory of the helicopter is recorded by two dual frequency GPS and an inertial 

measurement unit. A digital camera in nadiral position, synchronised with the LiDAR 

system, records the surveyed landscape and is used both to build a mosaic of georeferenced 

images and to colorize in real time the 3D point cloud so that a user should have a better 

understanding of the scene (Fig. 5). The system also includes two frontal and oblique 

cameras (photo and video). These data are particularly popular for dike managers who use 

                                                 
† Example based on a recent application of the FLI-MAP technique on the Loire levees near Orléans, in 
the context of the FloodProBE European research project. 
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the images for later processing and for marketing/communication actions towards the 

public or financial sponsors.  

3.2 Surveying a dike with LiDAR data 

A LiDAR system is able to acquire data on a dike structure of up to 80 km per day, which 
makes the use of this technique valuable in case of emergency situations (after a major flood, 
for example). Provided that it exceeds a length of up to 60 - 80 km (corresponding to a day 
of helicopter), the costs are competitive with regard to conventional field topographic 
techniques (in the order 2000 euros / km) and provide additional valuable products like 
precious information on dike slopes and crest or their near environment (river banks, etc.). 
The high-resolution digital images allow to measure with accuracy visible objects. Figure 6 
shows the identification of a pump line through the base of a dike. 

 

Fig. 5. Colored 3D point cloud over a dike (source FloodProBE - FUGRO) 

Moreover, in case of vegetation, LiDAR data makes possible to study invisible structures 
from images. Fig. 7 illustrates the way the erosion of riverbanks under vegetation can be 
quantitatively analysed with laser profiles. 

The field visit (Fig. 8) confirmed this erosion process. The possibility of studying the 
vegetation is also of high importance: the development of woody vegetation near or onto the 
dike is a major risk factor (Mériaux et al., 2006). 

Surface singularities are often signs of disorder or suspected disorder in the dike itself: for 
example a subsidence or a sinkhole on a ridge may result from internal erosion or karst 
collapse. Such singularities, once pre-identified on the images are, of course, to be confirmed 
by field visits, but the contribution of high resolution LiDAR data is to improve the 
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completeness of these visual clues (Clement & Mériaux, 2007). Geophysical survey or 
geotechnical testing will then characterize possible extension of surface singularities in the 
dike body or in the foundation. 

 

Fig. 6. 0.02 m resolution digital image acquired during the LiDAR survey. It shows a pump 
line through the base of a dike (source Cemagref -FUGRO) 

 

Fig. 7. Laser profile of a bank under the vegetation (source Cemagref-FUGRO) 

Finally, high resolution topographic data contribute to build specific geomechanical model 
of the dike that, after incorporating data provided by geophysical and geotechnical surveys, 
are integrated in the calculations of the structure stability. The quality of the geomechanical 
model also depends on the accurate location of in situ geophysical and geotechnical surveys 
so that one should interpret the results with relevance. In this regard, a decimeter resolution 
DTM acquired with a LiDAR system or derived topographic plans at 1: 100 is of high 
interest for people in charge of operating field measurements.  
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Fig. 8. Bank erosion. The red arrow represents the 3.5 m elevation gap seen on Fig. 7  
(source Cemagref) 

4. Investigation and monitoring of dikes and dams with Electrical Resistivity 
Tomography 

4.1 Quest for complementarity 

Internal erosion processes and overtopping phenomenon represent more than 90% of dike 

failure (Foster et al., 2000; Fell & Fry, 2007). This section focuses on internal erosion 

processes which are more complex, and above all, should be detected by geophysical 

methods before the rupture of the earthwork.  

Among them, the DC-Electrical Resistivity Tomography (ERT) is of particular interest 

(Johansson, 1997) for dike monitoring in heading condition. This technique is considered 

highly sensitive to the induced physical phenomenon such as changes in clay or water 

content, temperature and porosity. Fig. 9 presents the main interactions regarding the effects 

of internal erosion on electrical resistivity. 

The main purpose of ERT campaigns is an insight of the subsurface via 1D, 2D, or 3D 
representations of the spatial and/or temporal variations of the electrical resistivity. One of 
the advantages of the method is its double resolution capacity: 

 Low resolution imaging for high outputs with fast zoning techniques, 

 High resolution imaging for selected short stretch 

This double resolution capacity can be exploited in two ways: 

 Instant survey for imaging the apparent resistivity distribution of the observed 
medium, 

 Temporal monitoring to follow the evolution of the electrical resistivity of the 
earthwork. 

For cost effectiveness purposes, in the case of dike survey, ERT is usually applied in a 

“classical” way (2D): a set of equidistant electrodes is aligned along the longitudinal direction 

www.intechopen.com



 
Methodology Applied to the Diagnosis and Monitoring of Dikes and Dams 

 

275 

on the dike crest, slope, or toe. Whereas the geo-electrical behaviour of dikes evolves in 3D, 

recorded and processed data are based on a two dimensional measurements and 

interpretation - 2D inversion software like Res2dinv® (Loke & Barker, 1996).  

 

Fig. 9. Major influences of internal erosion processes on selected parameters  
(Johansson, 1997). 

The principle of an inversion process is to find a model that best explains measurements 

obtained on the field plus other constraints. Consequently, in the case of a 2D inversion 

realized on a 3D medium the 2D inversion process inevitably leads to 3D artefacts. They are 

mainly due to the topographic effects, the siltation of the reservoir, the water reservoir 

effect, and the clay core effect. 

However, external information collected from preliminary studies Fig. 1 can help to reduce 

these effects as presented in Table 1. Indeed, the location or depth of the anomaly can be 

given by a visual inspection or a morphodynamic study of the river to focus ERT 

acquisitions. The knowledge of the geomaterial of the dike and/or the foundation can be 

supply by a geological study to constrain the inversion. Then, the depth of the foundation or 

the thickness of a repaired breach can be available after historical investigations and can also 

constrain the inversion. Finally, the topography of the dike can be available (e.g. from 

LiDAR data or in situ measurements).  

Here, we aim to illustrate pitfalls and misinterpretations of 2D-ERT inversion, before 
presenting methodological improvements without acquiring full 3D data.  
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Explicit constrain on the 

model 
Explicit constrain 

during the inversion 

Topography geometry - 

Geological study substratum depth material variation 

Hydrogeological study water table depth roughness 

visual inspection focused measurement - 

Historical research internal composition smoothness 

Table 1. External information gathered form preliminary studies. 

4.2 Background on inversion artefacts 

In case of ill-posed problem, the inversion process can become unstable and generate 
artefacts. Moreover, it is well known that the potential of inversion methods depends on the 
amount of information contained in the data (Tarantola, 1982). Therefore, the concepts of 
model resolution matrix or Region Of Investigation (Oldenburg & Li, 1999; Marescot et al., 
2006) were introduced to assess the robustness of geophysical imaging methods. Neglecting 
3D effects decreases the model resolution matrix or values of the region of investigation. 
This matrix represents a direct link between measurements and robustness of the result. 
Thus, this information can be used to enhance the method by: 

 Allowing image appraisal (Stummer et al., 2004; Oldenburg & Li, 1999) by 
compensating the loss of spatial resolution and the topographic effects. This technique 
allows a quality control of the image and a better interpretation of the result; 

 Creating optimized sequences of measurements to increase the quality of the 
information contained in the data (Tsourlos et al., 1999; Stummer et al., 2004; Sjödahl et 
al., 2006; Hennig et al., 2005); 

 Finding an optimized design of electrode location to focus the survey and increase the 
reliability of the inversion result (Fargier et al., 2010). 

4.3 Normalisation technique 

The normalisation technique makes use of the original definition of apparent resistivity 
(Kunetz, 1966; Marescot et al., 2006). It indicates that the topography effects can be normalized 
and partly accounted during the inversion. This first technique is based on the definition of a 
general geometrical factor which is a generalisation of the conventional geometrical factor. 
This method requires an approximate knowledge of the topography (digital terrain model) as 
well as the resistivity of the media. As a result, this normalisation partly decreases 3D effects. 
However, in theory, the diffusion of an electrical field is a highly non-linear problem and the 
normalisation technique cannot completely take into account this non-linearity. This limitation 
can cause the formation of artefacts and can lead to misinterpretation. 

4.4 2D
+
 inversion strategy 

Contrary to relevant works of Fox et al. (1980), Tong & Yang (1990) showed that previous 

normalisation techniques cannot completely take into account all non-linear effects. They 

showed also that the best way to remove non linear effects is to integrate explicitly the 

topography in the model. This principle is not only dedicated to the topography but can be 

extended to all finite media inside the observed domain. 
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Therefore, it is necessary to develop inversion methods capable of taking this non-linearity 
into account. To limit the financial cost of the acquisition and the computational cost of 
inversion, new inversion codes specifically dedicated to the dike and dam context have been 
developed (Fargier et al., 2011). The code InGEOTH-2D+ proposes a 2D inversion that 
integrates part of the full 3D geo-electrical behaviour of a dam (topography and water 
reservoir are included). The purpose of this code  is twofold. The first purpose is to provide 
new discretization capabilities to better state the problem. The second purpose is to allow 
the inclusion of any explicit prior information that the geophysicist provides. 

4.5 Results 

To test the relevance of the presented techniques a measurement campaign has been carried 
out at the crest of a dam. An historical research, a topographic survey, a geological study, 
and a visual inspection were realized before the geo-electrical survey.  

A dense Wenner-Schlumberger protocol was used because of its spatial resolution and 
robustness. Fig. 10 a) shows one electrical resistivity section obtained after inversion of the 
raw data without any external information. Fig. 10 b) represents the same section after 
normalization of the water reservoir effect and the topography. Fig. 10 c) shows the final 
result of the inversion obtained with InGEOHT - 2D+. Fig. 10 d) illustrates the inverse model 
used for the inversion shown in Fig 10 c). For all three results, and after four iterations, the 
convergence data criterion is less than 1%.  

 

Fig. 10. Results of the the inversion process obtained a) without any correction procedure 
(Res2dinv®), b) with normalization of water reservoir effect and topography effect 
(Res2dinv®), c) with the InGEOHT - 2D+ inversion code. d) presents a view of the 
measurement campaign and The 2D+ inversion model used to inverse the result. 

A first interpretation of the inverted section in Fig. 10 a) indicates that the medium is quite 

regular in the longitudinal direction and composed by two layers. The upper layer whose 

wall varies between 9 m and 12 m has a resistivity oscillating between 500 .m and 2500 

.m. The resistivity of the lower layer decreases to 40 .m. In Fig. 10 b) the electrical 

resistivity of the water reservoir was integrated in the inversion process (81 .m). The effect 
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of the normalization indicates that the influence of the lower layer decreases. This result 

suggests that the lower layer is in fact an artefact due to the presence of the water reservoir. 

Figure 10.c), after applying InGEOHT - 2D+, shows that the effects of the water reservoir has 
been entirely removed (the lower conductive layer disappeared). The resistivity section is 
smoother than the two previous calculations except for three resistive anomalies between 
9m and 12m depth. In conclusion, we think that this last result provide a better insight of the 
true behaviour of the dike and the detection of some suspicious zones will be further 
investigated by high resolution geophysical and geotechnical methods to validate this result. 

5. Conclusion 

In many countries, the regulation of hydraulic structures has recently been enhanced and is 
declined in classes depending on the issues in case of breakage. It stresses the need to know 
the level of safety of the structures, through in-depth diagnosis and analysis of risks, and to 
strengthen the surveillance. In France, these regulations now apply to 700 large dams, tens 
of thousands of small dams, and about 10 000 km of linear dikes. 

We have presented in this chapter on going improvements in the global methodology of 
dike diagnosis in Europe. The stakeholders involved in the management of dikes must 
continue to integrate these improvements in their practices so that an efficient diagnosis 
should be drawn over time for a sustainable maintenance of the earthworks and dams.  

Nowadays, the ERT method becomes the reference one for dike and dam geophysical 
investigations. Coupled with accurate 3D topographic data acquired with a LiDAR system, 
the 3D effects should be better integrated when interpreting the data. Those improvements 
will be all the more interesting for stakeholders (e.g. multi temporal analysis of long stretch 
dikes) as repetitive survey will be performed. 

Phenomena like leakage or seepage are still difficult to detect and future research works on 
streaming potential (Bolève et al., 2007) and optic fibres (Khan et al., 2010) methods should 
supplement the available tools of stakeholders.  
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