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1. Introduction 

Time series regression models are especially suitable in epidemiology for evaluating short-

term effects of time-varying exposures. Typically, a single population is assessed with 

reference to its change over the time in the rate of any health outcome and the 

corresponding changes in the exposure factors during the same period. In time series 

regression dependent and independent variables are measured over time, and the purpose 

is to model the existing relationship between these variables through regression methods. 

Various applications of these models have been reported in literature exploring relationship 

between mortality and air pollution (Katsouyanni et al. 2009; Wong et al. 2010; Balakrishnan 

et al. 2011); hospital admissions and air pollution (Peng et al. 2008; Zanobetti et Schwartz 

2009; Lall et al. 2011); pollution plumes and breast cancer (Vieira et a. 2005); diet and cancer 

(Harnack et al. 1997); and mortality and drinking water (Braga et al. 2001). Different time 

series methods have been used in these studies, i.e. the linear models (Hatzakis et al. 1986) 

the log-linear models (Mackenbach et al. 1992), the Poisson regression models (Schwartz et 

al. 2004), and Generalized Additive Models (Dominici 2002; Wood, 2006). The Generalized 

Additive Models represent a method of fitting a smooth relationship between two or more 

variables and are useful for complex correlations, that not easily fitted by standard linear or 

non-linear models.  

The present chapter reviews The Genralized Additive Model (GAM), a class of statistical 
models which have commonly been used in time series regression, specially allowing for 
serial correlations, which make them potentially useful for environmental epidemiology. 

2. Generalized additive models 

The classic multiple linear regression model has the form: 

 Y X     (1) 

where Y is the response variable, X is the matrix (n×p) of the independent p variables 

1 , , pX X ,   is the vector of the parameters and ε is the vector of errors normally 
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distributed with average 0 and variance 2 . Consequently, the variable Y is also Normal 

distribution with  E Y X    and the covariance matrix 2I  (I is the identity matrix). 

The linear models are central in applied statistics, mainly because of their simple structure 

and their interpretative ease. However, they present certain limits and are inadequate when 

the assumption of normality of the response variable is no longer justified. The linear model 

is extended to the Generalized Linear Model (GLM) to include a large class of the response 

variable distribution which belongs to the exponential family of distribution. The 

distribution Y is related to the linear combination of the covariables, X  , via the link 

function g(.), such as     g g E Y   . 

To introduce more flexibility in the dependence structure between the response variables 

and covariables, the Generalized Additive Models (GAM), an extension of the GLM, replace 

the linear dependence functions by more flexible non-linear functions (Hastie and 

Tibshirani, 1990). The dependences are generally presented by non-parametric smoothing 

functions. The statistical inference consists on the estimation of the non-linear functions 

  , 1, ,jf X j p  , for each explicative variable jX . This allows the identification of the 

specific form of the effect of each explicative variable on the dependant variable Y.  

In practice, the objective is to model the dependence between the response variable, Y, and 
the explicative variables 1 , , pX X , for three main reasons: the description, the inference 
and the prediction. The goal is to find an explicit form of the effect  jf X  of each variable 

jX  on the variability of Y. The Generalized Additive Model (GAM) can be summarized by 
the flowing three components:  

1. The random component: Y that follows a distribution of the exponential family and the 

mean and the variance are, respectively,  E Y   and   2var Y  . 
2. The systematic component: the explicative variables 1 , , pX X  that compose the 

regressor, defined by  

  
1

p

j
j

f X 


   (2) 

3. The link function g(.) is such that     g g E Y   , which implies that 

   1E Y g   . 

The exponential family of distributions contains the Normal, Binominal, Gamma, Poisson, 
Geometric, Negative Binominal, and Exponential.  

The non-linear functions  .f  are usually represented by non-parametric dependence 

functions based on smoothing. The smoothing consists on creating a polynomial function 

that summarizes the data’s tendencies. Some types of smoothing designed to express non-

linear relations between the Y variable and the covariates Xj, j = 1… p, of the GAM models 

are the following: smoothing by scatter plot, parametric regression, mobile average, kernel 

smoothing and spline smoothing. A spline is a combination of polynomial functions. The 

knots are the points that mark the transition between the pieces of the polynomials (Eilers 

and Marx, 1996). The constraints allowing the joining of the polynomial pieces are defined 

by the number of continuous derivatives from the polynomial to the knots. The most 
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popular choice of the spline function is the natural cubic spline. It is a polynomial of the 3rd 

degree whose second derivative is zero at the limits. It offers less flexibility at the limits but 

this constitutes an advantage since the fit given by the regression spline presents a large 

variance around the limits (Hastie and Tibshirani, 1990). A smoothing B-spline basis is 

independent of the response variable Y and depends only on the following information: (i) 

the extent of the explicative variable; (ii) the number and position of the knots, and (iii) the 

degree of the B-spline. The properties of the B-splines are: 

- It is formed of q + 1 polynomial pieces, each of q degree;  
- The polynomial pieces are joined at q knots;  
- The derivatives of order one to q at the joining points of the polynomial pieces are 

continuous;  
- The B-spline function is positive on the q + 2 nodes extent and neutral elsewhere;  
- It straddles 2q surrounding polynomial pieces (except at the edges);  
- For all x, the q + 1 B-spline function are non-null.  

One of the main advantages of the generalized additive model (GAM) is that it offers a great 

flexibility in order to represent the relations between the dependant variable and the 
explicative variables. Berger et al. (2004) present advantages related to the GAM to describe 
the relation between the use of the fluoroquinolone antibiotic and the resistance of the 

Staphylococcus aureus bacteria collected on the adult patients hospitalized for at least 48 
hours. The dependant variable Y(t) of the model was the monthly number of cases in which 
the bacteria collected from the infected patient resisted to the fluoroquinolone and the 
explicative variables (Xm(t), m=1…p) were the monthly indicators of the antibiotics doses 

daily administered. The variable Y(t) follows the Poisson distribution P(┣), where the 
parameter ┣ corresponds to the average number of the cases per month and is function of 
the covariates. The link function is the logarithmic function and the regressor has the form 

1

( ) ( ( ))
p

m m
m

t a f X t


    in which  .mf  is a spline function. The results have shown the 

existence of a significant relation between the use of fluoroquinolone and the resistance of 

the bacteria.  

The GAM models are used in the prognostic analyses of diseases. For example, Gehrmann et 
al. (2003) explored multiple sclerosis disease in order to identify the variables that have 
significant effects on the supported progression of the disease, to determine the intensity 
and the form of these effects and to estimate the survival curves. The use of Generalized 
Additive Models helped identify that among the available explicative variables; only the 
level of initial severity and the number of relapses during the twelve months preceding the 
study had significant effects on the hazard rate. The hazard rate h(t) means the probability 
of death after the time t, given that the patient has survived up to the time t.  

In a study on the failure rate h(t) of patients with breast cancer (Hastie et al., 1992), the GAM 
model has been considered to identify among the prognostic factors those which presented 
significant non-linear relations with h(t). These prognostic factors are: the presence or absence 

of necrosis of the tumor, the size of the tumor, the number of samples examined, the patient’s 
age, the body mass index and the number of days between the surgical intervention and the 
beginning of the study. Among these variables, the non-significant relation has been identified 
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with the age and the body mass index. The authors stated that the non-linear modeling had 
the advantage, firstly, of preventing against the false definition of the model which would lead 
to incorrect conclusions with regards to the effectiveness of a treatment, and also of provide 

information on the relation between the prognostic factors and the risk of disease which the 
standard (linear regression, normal distribution) models do not provide. 

The GAM models are also employed in the analyses on the impact of climate and 

environmental variables on the public’s health. In Quebec, a study of the impact of climate 

variables on mortality was conducted by Doyon et al. (2006). The number of daily deaths 

was modeled by the Poisson regression with a linking logarithmic function and the 

explicative climate variables selected were the humidity, the heat threshold and the 

functions of the average daily temperatures. A similar project carried out on European cities 

characterized by diverse climatic conditions arrived at the same conclusion of the existence 

of a significant relation between mortality and the temperature in several cities in Europe 

(Michelozzi P et al. 2007). The number of deaths and the number of hospital admissions 

were classified by age groups (15-64 years, 65-74 years, 75 and above years) and by cause (all 

causes – except death due to external causes –, cardiovascular diseases, cerebrovascular 

diseases, respiratory diseases, influenza). Considered climate variables are: temperature, 

dew point, wind speed, wind direction, pressure, total coverage of clouds, solar radiation, 

precipitations, and visibility. The variables of pollution were SO2, TSP (black smoke), PM10, 

NO2, and CO. The analysis was done separately for the warm season (April-September) and 

the cold season (October-March). This provides flexibility for the analysis, allowing the use 

of different model structures for each season (Terzi and Cengiz, 2009). Recently, Bayentin et 

al. (2010) used the GAM model to study the association between climate variables and 

circulatory diseases. The short term effect of climate conditions on the incidence of ischemic 

heart disease (IHD) over the 1989-2006 period was examined for Quebec’s 18 health regions, 

with control for seasonality and socio-demographic conditions. 

3. Parameter estimation 

3.1 Local scoring procedure algorithm 

The algorithm (presented in Appendix C.1) is summarized as an iterative and weighted 

process which allows the adjustment of a function fj, j = 1… p, while keeping the other p-1 

dimensions in their actual state. GAM models, in which the iterative algorithm is 

incorporated in S-Plus, became a popular analytical tool in epidemiology, especially in 

studies on the effects of environmental variables on public health (Dominici et al,. 2002). 

However, estimation by this algorithm presents problems of convergence and validity when 

the weighting matrix W (Appendix C.1) is not diagonal and if the independence hypothesis 

is not respected. Even if augmenting the number of iterations improves the estimations, the 

typical estimation errors remain difficult to evaluate and the model’s effective dimension is 

statistically demanding (Wood, 2006). Many authors have suggested more direct approaches 

to remedy these problems.  

3.2 Simultaneous estimation 

The most effective way to estimate parameters is the use of a parametric GLM model with a 

limited number of regression splines or smoothing splines. This reduces the parameter 
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estimation problem in both cases to that of a GLM model with all its advantages related to 

the linear dependence functions. Despite the simplicity of the penalized GLM model, in the 

case of smoothing splines (Hastie and Tibshirani, 1990), the problem of the large system of 

equations remains. In the case of regression splines, each spline function is the function of 

the sum of the basis B-spline functions. This situation features the ease of B-spline 

construction, but the problem of the optimum choice in the position and number of B-spline 

nodes arises (Hastie and Tibshirani, 1990). Eilers and Marx (1996) have shown that this 

problem could be avoided by combining the B-splines to a differential penalty. In fact, the 

penalty is applied directly to the parameters in order to control the roughness of the spline 

functions. Criterion can be employed for the number of knots and the value of the penalty 

parameter.  

When the P-spline are considered, the GAM has the form 
1

( ) ( ) ( )
p

j j
j

g E Y f X 


   with 

( )j j j jf X B A  and a response variable distribution belongs to the exponential family. In this 

section, Bj, j = 1… p is the B-spline matrix (with nj knots) of N × nj dimension, jA  is the nj-

vector of the basic B-spline function coefficients and then represents the part of the the 

variability of Y explained by jX . The model can be rewritten as follows:  

    E Y g B A    (3) 

where 1 21 pB B B B     and  1, , , pA A A  . We are left with a GLM model and the 

estimation of the parameters   by maximization of the penalized log-likelihood is done by 

the penalized GLM Fisher scoring, below, until the desired convergence criterion is 
obtained.  

 
1

1
ˆ ˆ ˆ ˆ( )t t t tA B W B P B W z

     (4) 

where  

2ˆ[ ( )]ˆ
( )
i

i

h
W diag

Var Y

    
  

, ˆ
iz

ˆ( )
ˆ

ˆ( )
i i

i
i

y

h







 


 and P = blockdiag(0,1P1,…pPp). 

P is the component which summarizes the penalty on the B-spline coefficients of the p 

covariates and h is the opposite of the linking function g.  

The approach assumes that the effect functions jf  of a covariate jX  can be approximated 

by a polynomial spline written in terms of a linear combination of B-spline basis functions. 

The crucial problem with such regression splines is the choice of the number and the 

position of the knots. A small number of knots may lead to a function space which is not 

flexible enough to capture the variability of the data. A large number of knots may lead to a 

serious overfiting. Similarly, the position of the knots may potentially have a strong 

influence on the estimation. A remedy can be based on a roughness penalty approach as 

proposed by Eilers and Marx (1996). 
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Smoothing parameters are used to balance the goodness-of-fit and smoothness. A 

performance measure is used to find the optimum values of the penalties. The number and 

location of knots are no longer crucial as long as the minimum number of knots is reached. 

In practice, this approach poses problems to get a solution when the number of the model’s 

smoothing functions is high (Lang and Brezger, 2004). The P-spline approach is easy to 

conceive and has the advantage of the explicit formula of the estimation matrix and 

standard errors estimations (Marx and Eilers, 1998). However, the simplicity if reduced if 

the knots are at unequal distances (Wood, 2006). Thus, despite the advantages of the P-

spline approach in the GAM models, the problems of the estimation of the parameters with 

the penalized GLM Fisher scoring algorithm, remains important (Zhao et al., 2006, Wood, 2006, 

Binder and Tutz, 2006).  

3.3 Bayesian method 

The Bayesian approach is essentially based on the concept that the parameters to be 

estimated are not constants but are considered as random variables. Bayesian statistical 

inference is based on the posterior distributions of the parameters, which combine the prior 

information and observed one from the sample. In the case of the GAM models, we wish to 

estimate the parameter   and the functions 1 , , pf f . One of the advantages of the 

Bayesian approach compared to the penalized GLM Fisher scoring algorithm is the fact that 

the uncertainty related to the variance of the components is taken into account trough the 

posterior distribution of the parameters (Fahrmeir and Lang, 2001, Zhao et al., 2006). In 

practice, the analytical form of the posteriori distribution is rarely available and then it s 

difficult to extract their characteristic for risk assessment purposes. The Markov chain 

Monte Carlo procedure (MCMC), allows to obtain all these characteristics by simulating 

samples from the posterior distribution and thus to deduce parameter estimators, the 

quantiles and associated risk as well as estimator uncertainty. More details on the MCMC 

approach and their convergence diagnostics are studied in El Adlouni et al. (2006). 

In the case of the P-spline functions, the parameters a of the GAM model, in equation (2), are 

a random variables. The penalties based on the finite differences of the B-spine coefficients 

are replaced by their stochastic equivalent which correspond to a random walks of order 

one or two, defined by  

 , 1j j ja a u    , or , 1 , 22j j j ja a a u        (5) 

with ju   2(0, )jN   and the initial values aj1, aj2 are constants. The level of smoothing is thus 

controlled by the variance parameter τ2, which must also be estimated. Lang and Brezger 

(2004) suggest a prior distribution of the parameters aj of the form: 

 2
j ja    ( )/22

1 1
exp

2( ) j
j j jrk K

j

a K a


  
 

 (6) 

where K is the penalty and depends on the smoothing function fj and on the nature of the 

Xj variable. The prior distribution of the parameter τ2 is an Inverse Gamma distribution 
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IG(cj, dj), where cj, dj are the hyper-parameters and are usually given by prior knowledge 

on the variables. It is however necessary to perform a sensitivity analysis on the prior 

choice.  

The posteriori distribution of the model has the following form:  

2 2
1 1( , , ,..., , )p pp a a y     

2 2
1 1( , , , ,..., , )p pL y a a    

 
12

( )/2 2 22
1 1

1 1
exp ( ) exp

2( )

j

j

p p
a j

j j j jrk K
j jj jj

b
a K a 

 
 

 

   
     
   
   

   (7) 

All the inference is based on the posterior distribution. The MCMC algorithm can be 

performed to estimate the empirical posterior distribution and the predictive distribution of 

the quantile to deduce the risk values. 

The assumptions of the Bayesian estimation model are completed by the following 

conditional independence assumptions:  

a. For all explicative variables and fj parameters, the observations Yi are conditionally 

independent.  

b. The prior distributions of the parameters are conditionally independent.  

c. The priori distribution of the fixed effects and variances 2
j , j = 1, …, p are mutually 

independent.  

4. Performance measure 

In order to select the smoothing penalty and the number of knots that leads to the most 

adequate fit some performance measures are used. The most used performance measures 

are the Akaïke information criterion (AIC) and the generalized cross-validation (GCV). 

They are based on the deviance statistic (or the statistical likelihood ratio) that, for a 

counting GAM model (the case of the Poisson distribution), is obtained by the following 

formula: 

 
1

ˆ ˆ ˆ( ; ) 2 [ ln( / ) ( )]
n

i i i i i
i

D y y y y  


    (8) 

The Akaïke information criterion developed by Akaike (1973) measures the quality of the 

model fit to observed data series. It is the function of the deviance function D(y; μ) and is 

obtained by the following formula: 

 
1

ˆ[ ( ; ) ( ) ]AIC D y tr R
n

    (9) 

where tr(R) the sum of the diagonal elements of the matrix R of the weighted additive-fit 

operator of the last iterations in the estimation process, and  the scale parameter.  
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The generalized cross-validation for the smoothing penalty is obtained by the following 

formula: 

 

2

1

ˆ ( )1
( )

1 ( ) /

n
i i

i

y f x
GCV

n tr S n







    
  

  (10) 

Where S is the smoother. For the GCV of the model, the corresponding criterion is based on : 

 
1 ˆ( ; )

[1 ( ) / ]
n

D y
GCV

tr R n





 (11) 

R is the weighted additive-fit operator of the last iteration in the estimation of the model. 

5. Confounding variables, concurvity, and interaction 

5.1 Confounding variables 

Confounding is potentially present in all observational studies. A confounding factor in the 

field of environmental health refers to a situation in which an association between an 

exposure (i.e. air pollution) and a health outcome (i.e. morbidity or mortality) is distorted 

because it is mixed with the effect of a third variable – the confounding variable (i.e. 

humidity). The confounding variable is related to both the exposure and the outcome. The 

distortion introduced by a confounder can lead to an overestimation (positive confounding, 

affecting the outcomes in the same direction as the exposure under study) or 

underestimation (negative confounding, affecting the outcomes in the opposite direction of 

the exposure under study) of the association between exposure and outcome. Confounding 

variables can be controlled for by using of one or more of a variety of techniques that 

eliminate the differential influence of the confounder. For example, if one group is mostly 

females and the other group is mostly males, then the gender may have a differentially 

effect on the outcome. As a result, we will not know whether the outcome is due to the 

treatment or due to the effect of gender. If the comparison groups are the same on all 

extraneous variables at the start of the experiment, then differential influence is unlikely to 

occur. The control techniques are essentially attempts to make the groups similar or 

equivalent. Confounding variables are to be differentiated from intermediating or latent 

variables that are part of the causal pathway between the exposure and the outcome (Budtz-

Jorgensen et al., 2007). 

Peng et al. (2006) identified two types of confounding variables: those that are measured 

and are already included in the model, and those that are not. They propose as an 

adjustment to this problem the inclusion of a non-linear function of actual and future data in 

the model. In the study of the relation between air pollution and mortality, the non-

measured confounders are the factors that influence the mortality in the same way as the air 

pollution variables (Peng et al., 2006). These factors produce seasonal effects and long-term 

tendencies on the mortality which deforms the relation between the mortality and the air 

pollution (i.e. Influenza epidemics and pulmonary infections). In these situations, the 

inclusion of the variable “time” helps to reduce the bias caused by these factors.  
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Other processes for managing the confounding effects are the methods of sampling: 

specification and matching. Specification is the scheme that specifies the value of the 

potential confounding and excludes other values (i.e. non smokers only in the study). This 

method of sampling allows focusing solely on the subjects of the study in question but does 

not enable the generalization of results. The matching consists on grouping the subjects with 

similar values of the confounding variable. It has the advantage of eliminating the 

influences of the confounding with important effects and of improving the precision 

(strength) by balancing the number of cases and controlling each layer.  

5.2 Concurvity 

The non-linear dependence that remains between the covariates is referred to as the 

concurvity in the GAM models by analogy to the co-linearity in GLM models. Researchers 

(Ramsay et al., 2003) insist that a certain degree of concurvity exists in every epidemiological 

time series, especially when the time is included in the model as a confounding variable. 

The main problem caused by concurvity in a GAM model is the presence of a bias in the 

model, more specifically the overestimation of the parameters and the underestimation of 

the standard errors. The use of asymptotically unbiased estimator of standard errors 

introduced by Hastie and Tibshirani (1990) and demonstrated by Dominici et al. (2003) does 

not solve the bias problem. The consequence of this is the inflation of type I errors in the 

signification tests, resulting in the conclusion of the presence of significant effect (Ramsay et 

al., 2003).  

Several approaches have been proposed to control the problem of concurvity in time series. 

One method of estimation of the variation, based on the bootstrap parametric, has also 

produced biased results based on simulations by Ramsay et al. (2003). These recommend 

instead the use of parametric models such as the GLM model with natural splines (Dominici 

et al., 2002). He (2004) suggests the use of a non parametric model GAM to explore data in a 

primary level of analysis and when the appropriate variables are retained, to pursue the 

analysis with a parametric model GLM with natural splines, all while keeping the same 

degree of smoothing. 

Figueras et al. (2005) developed the conditional bootstrap method in order to control the 

effect of the concurvity. In this type of bootstrap, B bootstrap replicates are generated. In 

each of these, the values of the independent variables are the same as those of the 

observed data, with only the values of the response variable being varied from replicate to 

replicate. The value assumed by the outcome in each observation is conditional (hence the 

technique’s name) upon the values of the set of independent variables in said observation. 

The conditional Bootstrap approach has been tested on simulated data and leads to good 

results. 

5.3 Interactions in the GAM model 

The interaction within a statistical model denotes the effect of two or more variables, which 

is not simply additive. In other words, the effect is due to the combination of two or more 

variables in the model. A consequence of the interaction between two variables is that the 
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effect of a variable depends on the value observed for the other one. A form of interaction 

often found in bibliography is the modification of the effect. The modification of the effect 

happens when the statistical measure of the association between the explicative variable X1 

and the response variable Y depends on the level of another variable X2, known as the effect 

modifier. The extent of the relationship depending on the value of the effect modifier 

contributes to the improvement of the model fit. In the field of environmental health, this 

allows us to identify the most vulnerable groups to a particular condition (Wood, 2006; 

Bates and Maechler, 2009). 

6. Conclusion 

Environmental health research is becoming a cornerstone for supporting evidence-based 

(informed) decision making in healthcare services and management. Providing evidence 

through robust and relevant epidemiologic studies in environmental health research may be 

improved through an adequate utilization of statistics methods. In this chapter, we 

reviewed the Generalized Additive Models and the most used estimating methods and 

presented their advantages and limits. Knowing this, researchers should take into account 

these aspects when it is time to define exposures and outcomes, to map spatial variations, to 

design epidemiologic studies’ conceptual frameworks and to select suitable estimating 

models. These critical aspects are of central importance for developing clinical and public 

health decision making to reduce the burden of environment impacts on individual and 

population health. Moreover, using accurate and relevant methods, i.e. GAM, in 

environmental epidemiology studies is a cornerstone for developing effective actions that 

may help save cost and improve decision making performance. 

Improvements will be seen also in clinical practices through a better understanding and the 

integration in medical decisional algorithms of the effects of long term exposition to specific 

environmental factors. These effects are translated into risks of occurrence and prognosis of 

sensitive diseases (i.e. breast cancer, lung cancers). Spreading GAM method utilization in 

environmental epidemiology through a clinical perspective is highly recommended to 

develop effective decisional tools that may greatly improve personalized medicine. 

Moreover, GAM method may help to better manage follow-up of patients exposed to long 

term medications and reduce side-effects and complications. This review highlights the 

utility of Generalized Additive Model (GAM) for risk assessment (such as breast cancer) 

related to environmental factors and explored the use of the GAM for risk assessment in the 

presence of multiple non-linear effects. The selection and the estimation of the parameters 

and non-linear functions (B-Splines and P-splines) are essential for an adequate estimate of 

the risk. Next research should explore how GAM models may help the development of 

relevant risk assessment tools that may be integrated in personalized medical decision 

making algorithms. The GAM will allow the integration of environmental factors and others 

health determinants in clinical algorithms that may help improve the personalization of 

healthcare delivery. These algorithms will be implemented in public health programs (i.e. 

personalization of breast cancer screening based on women individual risk) and clinical 

algorithms (i.e. for patients with a diagnosis of breast cancer the personalization of follow-

up will be based on the surveillance of relevant factors such as the biomarkers, the clinical 

signs and the exposition to environmental factors). 
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This chapter presented the potential of the Generalized Additive Model (GAM) for 

environmental studies. Generalized additive models (GAMs) are a generalization of 

generalized linear models (GLMs) and constitute a powerful technique to capture nonlinear 

relationships between explanatory variables and a response variable. Selection of the best 

parameter estimation methods, control for confounding variables and concurvity aims to 

reduce bias and improve the use of the GAM model. Moreover, when using the GAM model 

in environmental health, and for an adequate interpretation of the outputs, socio-economic 

and demographic parameters should be considered. 
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