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1. Introduction 

Neuromedin B (NMB) (Minamino et al., 1983), a ten residue (GNLWATGHFM-NH2, Figure 
1) neuropeptide, belongs to the ranatensin subfamily of bombesin-like peptides (Erspamer, 
1980) which exhibits a wide range of biological responses in the central nervous system and 
gastrointestinal tract including thermoregulation (Marki et al., 1981), stimulation of the 
secretion of gastrointestinal hormones (Ghatei et al., 1982), regulation of smooth muscle 
contraction (Erspamer, 1988), the ability to function as a growth factor in small cell lung 
cancer cells and murine 3T3 cells (Corps et al., 1985; Cuttitta et al., 1985; Moody et al., 1985). 
Its mechanism of action involves the initial binding to the three cell surface receptors (Ohki-
Hamazaki, 2000) with different pharmacological profile: the neuromedin B receptor (NMB-R 
or bb1) (Wada et al., 1991), the gastrin-releasing peptide receptor (GRP-R, or bb2) (Corjay et 
al., 1991), and bombesin receptor subtype 3 (BRS-3, or bb3) (Gorbulev et al., 1992). NMB 
binds to NMB-R with highest affinity, GRP-R with lower affinity and BRS-3 with lowest 
affinity (Mantey et al., 1997).  

 
Fig. 1. Extended structure of Neuromedin B showing different residues 

A number of spectroscopic studies of NMB including nuclear magnetic resonance (NMR) 
(Lee & Kim, 1999), Infrared (IR) (Erneand & schwyzer, 1987), Circular Dichroism (CD) and 
Fluorescence spectroscopy (Polverini et al., 1998) are widely reported in the literature. A 
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recent study of the structure activity relationship (SAR) of bombesin (Glp-Gln-Arg-Leu-Gly-
Asn-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) using alanine scan to determine the 
contribution of specific residues to a protein's function by mutating the residues to alanine 
(Horwell et al., 1996), suggested that Trp4, His8 and Leu12 residues corresponding to Trp4, 
His8 and Phe9 respectively in NMB, are important for the binding to the NMB receptors 
(Sainz et al., 1998). It is reported that (Erneand & schwyzer, 1987) in the phospholipids 
bilayer NMB adopts ┙-helical conformation in the C-terminal region. Recent studies have 
demonstrated that small peptides are able to exist in a dynamic equilibrium between folded 
and unfolded structures, depending on the solvent polarity and their interaction with the 
membrane phase (Erne et al., 1985). In aqueous solutions small peptides are known to adopt 
many conformations since the hydrogen bond formation between the polar backbone 
carbonyl and the amide groups and water solvent effectively competes with an 
intramolecular hydrogen-bond formation (Erne et al., 1985; Kaiser & Kezdy, 1987; Zhong & 
Jr. Johnson, 1992). Based on CD, fluorescence and molecular dynamics (MD) studies 
(Polverini et al., 1998), it has been observed that NMB adopts an -helical structure in an 
apolar environment. However, in aqueous solution NMB adopts unordered and very 
flexible structures. In vacuum 50% of the structures of NMB are helix-like, with a right-
handed chirality beginning from the tryptophan residue through to the C terminus and was 
found to be independent of the initial conformation. Moreover, two-dimensional (2D) NMR 
studies of NMB suggest that the peptide adopts a relaxed helical conformation from Trp4 to 
Met10 in a 50% aqueous trifluoroethanol (TFE) solution, and in 150 mM sodium dodecyl 
sulfate (SDS) micelles. Several reports also suggested that there might be a conformational 
change to a -turn type structure upon binding to the receptor (Coy et al., 1988; Rivier & 
Brown, 1978). Despite being remarkably vital, spectroscopic methods alone cannot provide 
all the structural details necessary to fully understand the conformational profile of the 
peptides in solution due to the flexibility of these molecules. Therefore, despite having a 
great biological and pathological significance, the unique native conformation of NMB has 
not yet been clearly elucidated on the basis of available spectroscopic results. 

Computational studies on the other hand, can provide detailed complementary information 
about the intrinsic conformational features of the peptide. The methodologies available 
nowadays to investigate the propensities of a peptide to adopt different conformations are 
solid enough to provide a reasonable picture of the conformational features of a peptide and 
the way the solvent affects them. Recently, Generalized Born surface area implicit solvent 
models (Calimet et al., 2001; Dominy & Brooks, 1999) have been used in bimolecular 
simulations. This methodology has become popular, especially in molecular dynamics 
applications due to its relative simplicity and computational efficiency, compared to the 
more standard numerical solution of the Poisson–Boltzmann (PB) equation. The recent 
modifications to the standard GB implementations extend its applicability to the entire 
range from low- to high dielectric environments and thus play an imperative role to 
reproduce the environment induced by different explicit solvents (Feig & Brooks, 2004; 
Sigalov et al., 2005). 

The present work involves the employment of different computational procedures to 
explore the configurational space of NMB and to provide an adequate atomic description of 
the peptide, compatible with the aggregated information provided by different 
experimental techniques. Specifically, the configurational space of NMB peptide has been 
explored using standard molecular dynamics (MD), multi-canonical replica exchange 
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molecular dynamics (REMD) and simulated annealing (SA) sampling techniques using the 
Langevin thermostat. The Onufriev, Bashford, and Case (OBC) implicit water model 
(Onufriev et al., 2004) has been employed for the current investigations as this solvent 
model in combination with AMBERff96 is reported to generate a better extent of the helices 
and ┚-sheet conformations in peptides (Terada & Shimizu, 2008). 

2. Computational methods 

2.1 Replica Exchange Molecular Dynamics (REMD) 

The leap module of AMBER 9 (Case et al., 2006) was used to generate the extended 
conformation of NMB with its N-terminal protonated and C-terminal amidated. The 
extended structure of NMB was energetically minimized untill a convergence criterion of 
0.005 kcal mol-1 Å-1 was achieved. REMD was subsequently performed on the minimized 
structure using the Generalized Born implicit solvent model (solvent dielectric constant 78.5, 
surface tension 0.005 cal/mol-1Å2) was used to model the effects of solvation (Sitkoff et al., 
Tsui & Case, 2001). The internal dielectric constant around the peptide was set to 1. The 
SHAKE algorithm with a relative geometric tolerance of 10-5 was used to constrain all bond 
lengths to their equilibrium distances. Prior to the REMD simulations, standard MD 
simulations were performed for 5 ns at different temperatures ranging from 200 to 900 K, 
with a temperature difference of 100 K. In the present study, twelve replicas were used and 
the temperature of each replica was set to: 277, 300, 326, 354, 385, 419, 457, 498, 544, 595, 651, 
and 713 K, with a time step of 0.2 fs. The temperature during the MD simulations was 
regulated by the Langevin thermostat (Wu & Brooks, 2003; Andersen, 1980). Each replica 
was simulated simultaneously and independently at different replica temperatures. The 
replica exchange was performed every 2 ps for 50,000 steps during the REMD simulations. 

2.2 Molecular Dynamics (MD)  

MD trajectory was undertaken using the Generalized Born (GB) approximation at 300 K 
employing the Langevin coupling algorithm. Internal dielectric constant around the peptide 
was set to 1, while the external dielectric constant of 78.5 corresponding to water was 
employed. In order to mimic the physiological conditions a 0.2 M salt concentration was 
used. SHAKE was used on all bonds involving hydrogen atoms with a time-step of 2 fs.  

2.3 Simulated Annealing (SA) 

The extended conformation of NMB peptide was energy minimized using the steepest descent 
method followed by a conjugate gradient method until a convergence of less than 0.001 kcal 
mol-1 Å-1 between successive steps was achieved using the SANDER module of AMBER 9 
(Case et al., 2006). The SA calculation was performed under implicit solvent conditions using 
the GB-OBC continuum solvent model (Onufriev et al., 2004). For this purpose, all electrostatic 
calculations throughout this study were done with the relative permittivity of 80. The 
minimized starting structure was heated up to 900 K at a rate of 100 K ps-1. This means that the 
structure was first heated to 200 K, allowed to equilibrate and then reheated to 300 K, and this 
heating process was repeated until a temperature of 900 K was reached. The high temperature 
was used to provide the molecules with sufficient kinetic energy to enable them to cross 
energy barriers between different conformations, as quickly as possible. At this point the 
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structure was slowly cooled from 900 K down to 200 K at a rate of 50 K ps-1. In this technique 
the system was cooled down at regular time intervals, by decreasing the simulation 
temperature from 900 K to 200 K in intervals of 50 K. As the temperature approaches 200 K the 
molecule is trapped in the nearest local minimum conformation. At the end of the annealing 
cycle, the geometry of the structure was minimized at 200 K, in order to remove the internal 
strain of the molecule. Information regarding the coordinates and minimized energy data at 
200 K is saved separately on a data file, which completes a single cycle of simulated annealing. 
Subsequently the optimized structure was used as the starting conformation for the next cycle 
of SA. The 8000 cycles of iterative simulated annealing resulted in a library of 8000 structures 
accumulated (with each cycle corresponding to a single structure), and ranked according to 
their energy values. The primary objective of a conformational analysis is in the identification 
of low energy structures, which forms an important part of understanding the relationship 
between the structure and the biological activity of a molecule. The biological activity of a drug 
molecule depends on a single unique conformation hidden amongst all the low energy 
conformations (Ghose et al., 1989). The search for this so-called bioactive conformation for sets 
of compounds is one of the major tasks in medicinal chemistry. Only the bioactive 
conformation can bind to the specific macromolecular environment at the active site of the 
receptor protein (Jörgensen, 1991). An understanding of the manipulation of the 
conformational structures of peptides using highly restricted segments ultimately leads to the 
design of bioactive peptides to fit the three dimensional receptor site requirements. In the 
identification of low energy structures, the SA strategy employed is widely used in the 
characterization of low energy conformations (Ghose et al., 1989), and the following protocols 
were used. Firstly, the structures were rank-ordered by energy every 100 cycles and checked 
for uniqueness. The efficiency of this process was monitored according to the equation 1: 

 
( )100

( )
(100)

N
N

N




  (1) 

The efficiency parameter,  , was computed every 100 cycles of SA, which is defined as the 
number of unique conformations, , found after N cycles of SA,  (N), divided by N, and 
adjusted by a coefficient so that the efficiency parameter is unity after the first 100 cycles 
performed, which completes the criterion of the iterative process (Corcho, 1999). The 
procedure was terminated in all cases when the calculated efficiency of the process,was at 
least 10% below the starting value. The evolution of this parameter was monitored along the 
conformational profile, for the peptide. 

3. Results and discussion 

The sampling efficiency of MD and REMD trajectories was monitored by establishing different 
conformational patterns attained by NMB during the progress of the simulations. For this 
purpose, the CLASICO program (Corcho, 2004) was used to compute the pattern profile for 
every snapshot of MD and REMD trajectories, and is depicted in Figure 2a and Figure 2b, 
respectively. Accordingly, 105 439 (52.7%) patterns (Figure 2a) were obtained for 200 000 
snapshots of MD whereas 68 753 (68.7%) patterns (Figure 2b) were identified for 100 000 
snapshots of REMD trajectory. These plots provide a broad estimation of the performance of 
the different protocols in sampling new patterns. A closer inspection of Figure 2a reveals the 
appearance of new patterns in a uniform fashion for initial 10 ns trajectory probably due to 
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folding of the peptide. A sharp increase in patterns number was observed for the next 10 ns 
followed by a slow but regular increase of patterns throughout the trajectory. However, the 
peptide conformations seem to get trapped (dark areas) in regions of the conformational space 
at certain intervals clearly suggesting its restrictive nature to explore new patterns. In the case 
of REMD (Figure 2b), conformations with new patterns were sampled from the start of the 
simulation and progresses in a uniform fashion during the expansion of the trajectory. 
Moreover, the presence of less darker regions in the plot (Figure 2b) reveals that new patterns 
are explored with less restriction, clearly suggesting the better sampling performance of 
REMD over MD. Moreover, convergence seems to be attained in case of REMD after 100 ns as 
the appearance of new patterns was almost negligible at the end of trajectory.  

 

(a) 

 

(b) 

Fig. 2. Evaluation of new patterns for the NMB in (a) MD and (b) REMD trajectories. 

Secondary structure analysis was performed for every snapshot of MD and REMD 
calculations using the CLASICO program (Corcho, 2004) employing a three-residue 
window. Figures 3a-3b represents the statistics of the conformational motifs for each residue 
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of the NMB peptide in MD and REMD trajectories, respectively. Figure 3a shows the 
classification of secondary structures obtained in MD trajectory where the peptide exhibits 
predominantly -turns (~25%) between residues 3 to 9 residues with a stronger propensity 
between residues 5 and 6. Additionally, an -helical region (4-5%) flanked by residues 3 to 6 
was also observed in some of the sampled structures (Figure 3a) with the complete absence 
of 310-helical conformations.  

  
(a) 

 
(b) 

Fig. 3. Motif abundance for NMB in (a) MD and (b) REMD trajectories. Conformational 
motifs are labeled: H (-helix), PI (-helix), PP2 (polyproline II), Ext (extended), S (-strand).  
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To some extent -strands (2-3%) in a region between residues 2 to 6 were also found in some 
of the conformations. The REMD protocol (Figure 3b) on other hand, was more efficient at 
inducing ┚-turns (~33%) in the sampled conformations flanked by residues 2 to 9 with a 
strong propensity between residues 5 and 6. The second major conformational motif 
attained by sampled structures in the REMD trajectory was -helical region (8-10%) flanked 
by residues 3 to 9 with a good propensity between residues 3 to 6 whereas a very low 
propensity between residues 7 to 9. All -helical conformations were observed to be right-
handed, and to a minor extent conformations exhibiting 310-helical region between residues 
4 to 6 were also obtained (Figure 3b). Structures with -strands between residues 2 to 6 were 
also observed in REMD calculations. 

The �-turn motifs attained by residues of the NMB peptide were further classified into 
different types using two-residue window of the CLASICO program (Corcho, 2004), and are 
depicted in the Figures 4a-4b. The motifs obtained in MD trajectory (Figure 4a), shows the 
predominance of �-turn type I between residues 4 and 9 with a high propensity of type II 
between residues 6 and 7. To some extent �-turn type III was also observed between 
residues 3 to 9, with a high propensity between residues 5 and 6 and a low propensity 
between residues 3 to 4 and 7 to 9. In addition, ┚-turn type ii (mirror conformation of ┚-turn 
type II) was also observed between residues 5 to 8 (Figure 4a). On the other hand, 
conformations obtained from the REMD trajectory attain preferably �-turn type I between 
residues 3 to 9 with a strong propensity between residues 3 to 6 (Figure 4b). Structures 
displaying �-turn type III flanked by residues 3 to 9, with a strong propensity between 
residues 5 and 6 were also sampled in REMD trajectory. It should be noted that the 
CLASICO program does not include the first and last residues of the peptide in the 
secondary structure calculations which accounts for the absence of any of secondary 
structural features in Figures 3-4.    

Since, the computational analysis described above provides an estimation of the average 
structure of NMB, it was considered worthwhile to compare the results of the different 
protocols with the reported NMR experiments reported in literature (Lee & Kim, 1999). The 
average distances corresponding to NMR NOE’s were computed independently using the 
Clasterit algorithm of the CLASICO program (Corcho, 2004). Distances are reported as the 
average of the distance computed for each snapshot with a tolerance factor of ±1.96 standard 
deviations, covering a 95% of the variance assuming that they exhibit a normal distribution. 
In case of long distances (LD), the NOEs considered in the present study include: i) C�-N 
(bN2) between residues 2-4(m), 4-6 (w), 5-7(w) and 6-8 (w); ii) C-N (aN3) between residues 
4-7(m), 5-8(w), 6-9(m), and 7-10(m); iii) C- N (aN2) between residues 1-3(w), 2-4(m), 4-6(m), 
5-7(w), 6-8(m), 7-9(w), 8-10(w), and 9-N(w) [14]. In case of short distances (SD), the NOEs 
include: i) C-N (aN1) between residues 1-2(s), 2-3(s) and 7-8(s); ii) N-N (NN1) between 
residues 2-3(w), 3-4(s), 6-7(s), 7-8(s), 8-9(s), 9-10(s), 10-N(w). In both cases, m, w and s stand 
for medium, weak and strong NOEs respectively. 

The overlaps between distances obtained from NMR experiments and those computed from 
the present studies are depicted in Figures 5a-d. These overlapping results compare both long 
distances (i to i+2 and i to i+ 3 type interactions) and short distances (i to i+1 type interactions) 
between the atoms. Specifically, Figure 5a reveals that only 12 long distances (LD) in the case 
of MD are in agreement with the corresponding NMR distances, and clearly suggests the 
absence of NMR structure in this simulation. Since, only LD accounts for the secondary 
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structures, a good agreement of short distances (SD) in case of MD (Figure 5c) does not make 
any contribution in the helicity. On the other hand, all computed LD (Figure 5b) and SD 
(Figure 5d) from REMD calculations corresponds to the NMR distances, clearly revealing the 
presence of the NMR structure. However, elongation of the computed distances (Figures 5b 
and 5d) clearly reveals the rapid exchange between NMR and unordered structures in this 
segment of trajectory. Overall these results reveal that peptide is in a rapid equilibrium 
between ordered and unordered conformations and suggests low conformational energy 
barrier between them accounting for the higher flexibility of NMB. Moreover, REMD method 
is more efficient to induce helicity and ┚-turns in the peptide and was also successful in 
sampling the NMR structures which were completely absent in the MD trajectory.  

 
(a) 

 
(b) 

Fig. 4. Type of -turns attained by NMB peptide in (a) MD and (b) REMD trajectories. 
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(a) 
 

(b) 

(c) 
 

(d) 

Fig. 5. Comparison of NMR derived long distances (LD) obtained from Lee & Kim, 1999 
shown in orange and the computed average distances in a interval containing 95% of the 
structures for (a) MD and (b) REMD trajectories. Similar comparison of short distances (SD) 
for (c) MD and (d) REMD trajectories. 

The conformational searches for NMB presented in this study were performed with the 
simulated annealing (SA) protocol in an iterative fashion, as a sampling technique. The 
sampling procedure was stopped after 8000 cycles of an iterative SA process for which the 
sampling efficiency  (see Eqn. 1) was found to be less than 10% of the starting value. The 
evolution of this parameter was computed using Eqn. 1 and monitored along the 
conformational profile, as shown in Figure 6. 

The shape of the above figure suggests that the search procedure employed was acceptable 
both in quality and computer time. Low levels of performance were reached in finding new 
low energy conformations ( = 0.1) which is the expected result for most peptide analogues 

www.intechopen.com



 
Molecular Dynamics – Studies of Synthetic and Biological Macromolecules 

 

144 

(Filizola et al., 1998). After completion of 8000 cycles of SA, the resulting 8000 structures were 
stored in a library. The criterion described in the Methods Section 2.3 was used to compute the 
total number of unique conformations for the NMB peptide. Of the total 5521 unique 
conformations, only 205 low energy structures (<5 kcal mol-1) were observed (Table 1). 

 
Fig. 6. Normalised efficiency values for the NMB peptide search. 

 

NMB sequence 
Total number of unique 

conformations 

Number of classes 
obtained from cluster 

analysis 

Number of unique 
conformations within 5 

kcal mol-1 
H-GNLWATGHFM-NH2 5521 10 205 

Table 1. Summary of conformational analysis obtained from SA 

To describe the preferred conformational domains exhibited by the peptide, the low energy 
structures were clustered into groups according to the values of the root mean square 
deviation (RMSD) of the distances between the backbone atoms of every structure.  

Furthermore the RMSD’s for the unique conformations were calculated using the Kleiweg 
clustering method (Kleiweg et al., 2004) to perform the hierarchical cluster analysis. The 
clustering can be visually represented by constructing a dendrogram, which indicates the 
relationship between the items in the data set (i.e. RMSD) and is graphically represented in 
Figure 7. The dendrogram enables us to identify how many clusters there are at any stage 
and what the corresponding members of the clusters are. It is a useful tool to show the 
underlying structure of the data and for suggesting the appropriate number of clusters to 
choose. A line drawn horizontally across the dendrogram enables one to read off how many 
clusters there are at any particular distance measured, as shown in Figure 7. 

Since the objective of cluster analysis is to determine the representative structures of the 
conformational space explored, a carefully selected cut-off value is important as this method 
will avoid choosing subclusters. Accordingly the RMSD value of 0.8 Å was chosen as a cut-
off value. Since another goal of this work was to get a better understanding of the structural 
motifs of the NMB peptide, further conformational analysis for this peptide was carried out 
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on the low energy structures. The 205 unique conformations were thereby classified into ten 
clusters (D1 to D10), summarized in Table 2. For each of the ten different classes of clusters, 
a representative of the cluster was chosen on the basis of having the lowest relative energy 
(designated by Er min, Table 2).  

 
Fig. 7. Dendrogram showing different clusters for NMB classified according to their RMSD 
(shown along y-axis) using the Kleiweg clustering method. 

 

Cluster name 
percentage of 

structures in the 
cluster 

Structure representative 
of the cluster Er min /Kcal mol-1 

D1 0.5 39 4.2 

D2 10.2 142 3.9 

D3 3.4 140 2.8 

D4 41.6 108 4.7 

D5 0.5 201 3.8 

D6 21.9 87 1.5 

D7 6.3 110 2.9 

D8 9.2 116 1.9 

D9 3.9 193 4.0 

D10 2.4 123 4.4 

Table 2. Cluster analysis for H-GNLWATGHFM-NH2. 

The five most abundant clusters represented by D2, D4, D6, D7 and D8 in Table 2 
corresponds to 10.2%, 41.6%, 21.9%, 6.3% and 9.2% of the total number of structures 
respectively, clearly suggesting that the bulk of the structures are restricted to small number 
of clusters. Inspection of Table 2 reveals that 89% of the structures are represented by the 
most abundant clusters.  
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            (a)                (b) 

 
           (c)             (d) 

 
(e) 

Fig. 8. Conformational motif abundance attained by NMB peptides in (a) cluster D2 (b) 
cluster D4 (c) cluster D6 (d) cluster D7 and (e) cluster D8. Conformational motifs are labeled: 
H (-helix), 310 (310-helix) and Ext (extended). 
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All the structures in each of the five most abundant clusters were analyzed to determine the 
conformational motifs attained by the NMB peptide, using CLASTERIT algorithm of the 
CLASICO program (Corcho, 2004).  

The statistics of all the motifs found in clusters D2, D4, D6, D7 and D8 are depicted in 
Figures 8a–8e respectively. A closer inspection of Figure 8a reveals that most of the 
structures in cluster D2 (Table 2) predominantly exhibit an -helical region between 
residues 3 to 6, while most of the residues (2-4, 8-9, Figure 8a) prefer to stay in the extended 
form. The structures of the most populated cluster D4, on other hand, were observed 
displaying a -turn type II between residues 6 and 7 while the rest showed only an extended 
region (Figure 8b). The conformations of the second most abundant cluster D6 (Figure 8c) 
displayed predominantly an -helical region between residues 3 to 6 with a stronger 
propensity between residues 4-5. To some extent the -turn type III (310-helical) and type I 
between residues 3-6 were also observed in some of the structures. However residue 7 did 
not show any secondary structural feature as most of the structures in clusters D7 were 
extended, while some displaying -helical region between residues 4-6 and -turns of type 
II and type I between residues 6-7 and 5-6 respectively, were also part of the cluster (Figure 
8d). Almost 60 % of the structures in cluster D5 did not display any ordered conformation 
except a -turn type III (310- helical) between residues 4 and 5 (Figure 8e). 

4. Conclusion 

The present results suggest that the peptide adopts different folded and unfolded 
conformations regardless of the protocols used. REMD under GB conditions sample  
the new patterns in a uniform fashion and appears to have easily reached the convergence 
(Figure 6.3b), whereas conformations within the MD simulation seems to get trapped  
in certain regions of the conformational space making it less efficient. Moreover, the 
results obtained from REMD and MD computational protocols were compared with  
the available NMR results of NMB in literature. The comparison indicates that REMD 
shows good agreement with the reported NMR results. MD results, on the other hand,  
do not correspond with the reported NMR NOEs, clearly indicating the absence of NMR 
derived structures in this simulation. Moreover, the results obtained from SA is also in 
agreement with the corresponding REMD results clearly suggesting the probable 
existence of both turns and helicity in the NMB peptide, and thus may be responsible  
for binding of NMB at its receptor site. Hence, the present work provides comprehensive 
information about the conformational preferences of NMB explored using three different 
techniques which could be helpful to better understand its native conformation for future 
investigations. 
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