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1. Introduction

Today, computer experiments play a very important role in science. In the past, physical
sciences were characterized by an interplay between experiment and theory. In theory, a
model of the system is constructed, usually in the form of a set of mathematical equations.
This model is then validated by its ability to describe the system behavior in a few selected
cases, simple enough to allow a solution to be computed from the equations. One might
wonder why one does not simply derive all physical behavior of matter from an as small as
possible set of fundamental equations, e.g. the Dirac equation of relativistic quantum theory.
However, the quest for the fundamental principles of physics is not yet finished; thus, the
appropriate starting point for such a strategy still remains unclear. But even if we knew
all fundamental laws of nature, there is another reason, why this strategy does not work
for ultimately predicting the behavior of matter on any length scale, and this reason is the
growing complexity of fundamental theories – which are based on the dynamics of particles
– when they are applied to systems of macroscopic (or even microscopic) dimensions. In
almost all cases, even for academic problems involving only a few particles1, a strict analytical
solution is not possible and solving the problem very often implies a considerable amount of
simplification. In contrast to this, in experiments, a system is subject to measurements, and
results are collected, very often in the form of large data sets of numbers from which one
strives to find mathematical equations describing the data by generalization, imagination and
by thorough investigation. Very rarely, normally based on symmetries which allow inherent
simplifications of the original problem, is an analytical solution at hand which describes
exactly the evidence of the experiment given by the obtained data sets. Unfortunately,
many academic and practical physical problems of interest do not fall under this category
of “simple” problems, e.g. disordered systems, where there is no symmetry which helps to
simplify the treatment.

The advent of modern computers which basically arose from the Manhattan project in the
United States in the 1950s added another element to (classical) experiment and theory, namely

1 In fact, already the three-body problem which involves three coupled ordinary differential equations is
not solvable analytically.
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the computer experiment. Some traditionalists working in theory, who have not followed
the modern developments of computer science and its applications in the realm of physics,
biology, chemistry and many more scientific fields, still repudiate the term “experiment” in
the context of computer simulations. However, this term is most certainly fully justified!

In a computer experiment, a model is still provided by theory, but the calculations are carried
out by the machine by following a series of instructions (the algorithm) usually coded in
some high-level language and translated (compiled) into assembler commands which provide
instructions how to manipulate the contents of processor registers. The results of computer
simulations are just numbers, data which have to be interpreted by humans, either in the
form of graphical output, as tables or as function plots. By using a machine to carry out
the calculations necessary for solving a model, more complexity can be introduced and more
realistic systems can be investigated.

Simulation is seen sometimes as theory, sometimes as experiment. On the one side, one
is still dealing with models, not with “real systems”2 On the other side, the procedure
of verifying a model by computer simulation resembles an experiment very closely: One
performs a run, then analyzes the results in pretty much the same way as an experimental
physicist does. Simulations can come very close to experimental conditions which allows
for interpreting and understanding the experiments at the microscopic level, but also for
studying regions of systems which are not accessible in “real” experiments3, too expensive to
perform, or too dangerous. In addition, computer simulations allow for performing thought
experiments, which are impossible to do in reality, but whose outcome greatly increases our
understanding of fundamental processes or phenomena. Imagination and creativity, just like
in mathematics4 , physics and other scientific areas, are very important qualities of a computer
simulator!

From a principal point of view, theory is traditionally based on the reductionist approach:
one deals with complexity by reducing a system to simpler subsystems, continuing until the
subsystems are simple enough to be represented with solvable models. From this perspective
one can regard simulation as a convenient tool to verify and test theories and the models
associated with them in situations which are too complex to be handled analytically5. Here,
one implies that the model represents the level of the theory where the interest is focused.

However, it is important to notice that simulation can play a more important role than
just being a tool to be used as an aid to reductionism because it can be considered as an
alternative to it. Simulation increases considerably the threshold of complexity which separates
solvable und unsolvable models. One can take advantage of this threshold shift and move up
several levels in our description of physical systems. Thanks to the presence of simulation,
we do not need to work with models as simple as those used in the past. This gives the
researcher an additional freedom for exploration. As an example, one could mention the
interatomic potentials which, in the past, were obtained by two-body potentials with simple

2 In this context one has to realize that often, in experiments, too, considerable simplifications of the
investigated “real system” are done, e.g. when preparing it in a particular state in terms of pressure,
temperature or other degrees of freedom.

3 For example, systems at a pressure comparable to that in the interior of the sun.
4 The famous David Hilbert once commented the question of what became of one of his students: “He

became a writer - he didn’t have enough imagination.”
5 For example, when computing the phase diagram of a substance modeled by a certain force law.

4 Molecular Dynamics – Studies of Synthetic and Biological Macromolecules
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analytical form, such as Morse or Lennard-Jones. Today, the most accurate potentials contain
many-body terms and are determined numerically by reproducing as closely as possible
the forces predicted by ab-initio methods. These new potentials could not exist without
simulation, so simulation is not only a connecting link between theory and experiment, but it
is also a powerful tool to make progress in new directions. Readers, interested in these more
“philosophical” aspects of computational science will be able to find appropriate discussions
in the first chapters of refs. (Haile, 1992; Steinhauser, 2008; 2012). In the following, we focus on
classical molecular dynamics (MD) simulations, i.e. a variant of MD which neglects any wave
character of discrete atomic particles, describing them as classical in the Newtonian sense and
not referring to any quantum mechanical considerations.

2. The objective of molecular dynamics simulations

Molecular dynamics computer experiments are done in an attempt of understanding the
properties of assemblies of molecules in terms of their structure and the microscopic
interactions between them. We provide a guess at the interactions between molecules, and
obtain exact predictions of bulk properties. The predictions are “exact” in the sense that they
can be made as accurate as we like, subject to the limitations imposed by our computer budget.
At the same time, the hidden dynamic details behind bulk measurements can be revealed. An
example is the link between the diffusion coefficient and the velocity autocorrelation function,
with the latter being very hard to measure experimentally, but the former being very easy to
measure. Ultimately one wants to make direct comparison with experimental measurements
made on specific materials, in which case a good model of molecular interactions is essential.
The aim of so-called ab-inito MD is to reduce the amount of guesswork and fitting in this
process to a minimum. On the other hand, sometimes one is merely interested in phenomena
of a rather generic nature, or one wants to discriminate between bad and good theories. In
this case it is not necessary to have a perfectly realistic molecular model, but one that contains
the essential physics may be quite suitable.

2.1 Molecular interactions

Classical MD simulation consists of the numerical, step-by-step solution of the classical
Newtonian equations of motion, which for a simple atomic system may be written as

mi�̈ri = �Fi = − ∂

∂�ri
Φ, (1)

where the vector symbol in the partial derivative is a physicsts’ abbreviatory notation for

the derivate of each individual component. To solve Eq. 1 one needs to calculate the forces �Fi

acting on the atoms, which are usually derived from a potential energy function Φ(�rN), where
�rN = (�r1,�r2, ...,�rN) represents the complete set of 3N atomic coordinates.

2.1.1 Bonded interactions

Using the notion of intermolecular potentials acting between the particles of a system
one cannot only model fluids made of simple spherically symmetric particles but also
more complex molecules with internal degrees of freedom (due to their specific monomer
connectivity). If one intends to incorporate all aspects of the chemical bond in complex
molecules one has to treat the system with quantum chemical methods. Usually, one

5
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considers the internal degrees of freedom of polymers and biomacromolecules by using
generic potentials that describe bond lengths li, bond angles θ and torsion angles φ. When
neglecting the fast electronic degrees of freedom, often bond angles and bond lengths can be
assumed to be constants. In this case, the potential includes lengths l0 and angles θ0, φ0 at
equilibrium about which the molecules are allowed to oscillate, and restoring forces which
ensure that the system attains these equilibrium values on average. Hence the bonded
interactions Φbonded for polymeric macromolecular systems with internal degrees of freedom
can be treated by using some or all parts of the following potential term:

Φbonded(r, θ, φ) =
κ

2 ∑
i

(|�ri −�ri−1 − l0 |)2 +
kθ

2 ∑
k

(θk − θ0)
2 +

β

2 ∑
m

(φm − φ0)
2. (2)

Here, the summation indices sum up the number of bonds i at positions�ri, the number of
bond angles k between consecutive monomers along a macromolecular chain and the number
of torsion angles m along the polymer chain. A typical value of κ = 5000 ensures that
the fluctuations of bond angles are very small (below 1%). The terms l0, θ0 and φ0 are the
equilibrium distance, bond angle and torsion angle, respectively.

In particular in polymer physics, very often a Finitely Extensible Non-linear Elastic (FENE)
potential is used which - in contrast to a harmonic potential - restricts the maximum bond
length of a polymer bond to a prefixed value R0 (Steinhauser, 2005):

ΦFENE(r) =

{

− 1
2 κR2

0 ln(1 − r2

R2
0
) r < R0,

∞ otherwise.
(3)

The FENE potential can be used instead of the first term on the right hand side of the
bonded potential in Eq. 2. Figure 1 illustrates the different parameters which are used in
the description of bonded interactions in Eq. 2. Further details on the use of potentials in
macromolecular biology and polymer physics may be found in (Feller, 2000; Schlenkrich et al.,
1996; Siu et al., 2008; Steinhauser, 2008).

Fig. 1. Illustration of the potential parameters used for modeling bonded interactions.

2.1.2 Non-bonded interactions

Various physical properties are determined by different regions of the potential hypersurface
of interacting particles. Thus, for a complete determination of potential curves, widespread
experiments are necessary. For a N−body system the total energy Φnb, i.e. the potential

6 Molecular Dynamics – Studies of Synthetic and Biological Macromolecules
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hypersurface of the non-bonded interactions can be written as (Allen & Tildesly, 1991)

Φnb(�r) =
N

∑
i

φ1(�ri) +
N

∑
i

N

∑
j>i

φ2(�ri,�rj) +
N

∑
i

N

∑
j>i

N

∑
k>j>i

φ3(�ri,�rj,�rk) + · · ·, (4)

where φ1, φ2, φ3, ... are the interaction contributions due to external fields (e.g. the effect of
container walls) and due to pair, triple and higher order interactions of particles. In classical
MD one often simplifies the potential by the hypothesis that all interactions can be described
by pairwise additive potentials. Despite this reduction of complexity, the efficiency of a MD
algorithm taking into account only pair interactions of particles is rather low (of order O(N2))
and several optimization techniques are needed in order to improve the runtime behavior to
O(N).

The simplest general Ansatz for a non-bonded potential for spherically symmetric systems,
i.e. Φ(�r) = Φ(r) with r = |�ri −�rj| is a potential of the following form:

Φnb(r) = ΦCoulomb(r) +

(

C1

r

)12

+

(

C2

r

)6

. (5)

Parameters C1 and C2 are parameters of the attractive and repulsive interaction and the
electrostatic energy ΦCoulomb(r) between the particles with position vectors�ri and�rj is given
by:

ΦCoulomb(r) =
1

ǫ
k · ∑

i
∑
j>i

zizje
2

|�ri −�rj|
. (6)

The constant k = 1 in the cgs–system of units and ǫ is the dielectric constant of the medium,
for example ǫair = 1 for air, ǫprot = 4 for proteins or ǫH20 = 82 for water. The variables zi and
zj denote the charge of individual monomers in the macromolecule and e is the electric charge
of an electron.

The probably most commonly used form of the potential of two neutral atoms which are only
bound by Van-der-Waals interactions, is the Lennard-Jones (LJ), or (a-b) potential which has the
form (Haberland et al., 1995)

Φa,b(r) = αε

[

(σ0

r

)a
+

(σ0

r

)b
]

, (7)

where

α =
1

a − b

(

aa

bb

)
1

a−b

, Φmin = ε and Φ(σ) = 0. (8)

The most often used LJ-(6-12) potential for the interaction between two particles with a
distance r = |�ri −�rj| then reads (cf. Eq. 5):

ΦLJ(r) = 4ε

[

(σ0

r

)12
+

(σ0

r

)6
]

. (9)

Parameter ε determines the energy scale and σ0 the length scale. In simulations one uses
dimensionless reduced units which tend to avoid numerical errors when processing very small
numbers, arising e.g. from physical constants such as the Boltzmann constant kB = 1.38 ×

7
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10−23J/K. In these reduced (simulation) units, one MD timestep is measured in units of τ̂ =
(mσ2/ε)1/2, where m is the mass of a particle and ε and σ0 are often simply set to σ0 = ε =
kBT = 1. Applied to real molecules, for example to Argon with m = 6.63 × 10−23kg, σ0 ≈
3.4 × 10−10m and ε/kB ≈ 120K one obtains a typical MD timestep of τ̂ ≈ 3.1 × 10−13s.

Using an exponential function instead of the repulsive r−12 term, one obtains the Buckingham
potential (Buckingham, 1938):

Φ(r) = b exp(−ar)− c

r6
− d

r8
. (10)

This potential however has the disadvantage of using a numerically very expensive
exponential function and it is known to be unrealistic for many substances at small distances
r where it has to be modified accordingly.

For reasons of efficiency, a classical MD potential should be short-ranged in order to keep the
number of force calculations between interacting particles at a minimum. Therefore, instead of
using the original form of the potential in Eq. 9, which approaches 0 at infinity, it is common to
use a modified form, where the potential is simply cut off at its minimum value r = rmin = 6

√
2

and shifted to positive values by ε such that it is purely repulsive and smooth at r = rcut =
6
√

2:

Φcut
LJ (r) =

⎧

⎨

⎩

4 ε

{

(σ0

r

)12
−

(σ0

r

)6
}

+ ε r ≤ 21/6σ0,

0 otherwise.
(11)

Another extension of the potential in Eq. 9 is proposed in (Steinhauser, 2005) where a smooth
attractive part is introduced again, in order to allow for including different solvent qualities
of the solvent surrounding the polymer:

Φcos(r) =

[

1

2
· cos(αr2 + β) + γ

]

ε. (12)

This additional term adds an attractive part to the potential of Eq. 11 and at the same time – by
appropriately choosing parameters α, β and γ – keeps the potential cutoff at rcut smooth. The
parameters α, β and γ are determined analytically such that the potential tail of Φcos has zero
derivative at r = 21/6 and at r = rcut, while it is zero at r = rcut and has value γ at r = 21/6,
where γ is the depth of the attractive part. Further details can be found in (Steinhauser, 2005).
When setting rcut = 1.5 one sets γ = − and obtains α and β as solutions of the linear set of
equations

21/3α + β = π, (13)

2.25α + β = 2π. (14)

The total unbounded potential can then be written as:

ΦTotal(r, λ) =

⎧

⎪

⎨

⎪

⎩

Φcut
LJ (r)− λε 0 < r < 21/6 σ0,

λ Φcos(r) 21/6 σ0 ≤ r < rcut,

∞ otherwise,

(15)

8 Molecular Dynamics – Studies of Synthetic and Biological Macromolecules
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where λ is a new parameter of the potential which determines the depth of the attractive
part. Instead of varying the solvent quality in the simulation by changing temperature T
directly (and having to equilibrate the particle velocities accordingly), one can achieve a phase
transition in polymer behavior by changing λ accordingly, cf. Fig. 2.

Fig. 2. Graph of the total unbounded potential of Eq. 15 which allows for modeling the
effects of different solvent qualities.

Using coarse-grained models in the context of lipids and proteins, where each amino acid of
the protein is represented by two coarse-grained beads, it has become possible to simulate
lipoprotein assemblies and protein-lipid complexes for several microseconds (Shih et al.,
2006).

The assumption of a short ranged interaction is usually fulfilled very well for all (uncharged)
polymeric fluids. However, as soon as charged systems are involved this assumption breaks
down and the calculation of the Coulomb force requires special numerical treatment due to
its infinite range.

2.2 Calculation of forces

The most crucial part of a MD simulation is the force calculation. At least 95% of a MD code
is spent with the force calculation routine which uses a search algorithm that determines
interacting particle pairs. Therefore this is the task of a MD program which has to be
optimized first and foremost. We will review a few techniques that have become standard
in MD simulations which enhance the speed of force calculations considerably and speed up
the algorithm from O(N2) run time to O(N) run time. Starting from the original LJ potential
between two particles i and j with distance r = |�ri −�rj| of Eq. 7, one obtains the potential
function for N interacting particles as the following double sum over all particles:

Φ(�r1, ...,�rN) =
N

∑
i=1

N

∑
j=i+1

ΦLJ(r) = 4ε
N

∑
i=1

N

∑
j=i+1

(σ0

r

)6
×

(

(σ0

r

)6
− 1

)

. (16)

9
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The corresponding force �Fi exerted on particle i by particle j is given by the gradient with
respect to�ri as:

�Fi = −∇�ri
ΦLJ(�r1, ...,�rN) = −24 × ε

N

∑
j=1,j �=i

1

r2
×

(σ0

r

)6
×

(

1 − 2 ×
(σ0

r

)6
)

�rij, (17)

where�rij = (�ri −�rj) is the direction vector between particles i and j at positions�ri and�rj, and

r = |�ri −�rj|. Hence, in general, the force �Fi on particle i is the sum over all forces �Fij := −∇�ri
Φ

between particle i and all other particles j:

�Fi =
N

∑
i=1,j �=i

�Fij. (18)

The least favorable method of looking for interacting pairs of particles and for calculating
the double sum in Eqs. 16 and 17 is the “brute force” method that simply involves taking a
double loop over all particles in the (usually) cubic simulation box, thus calculating 1

2 N(N −
1) interactions with a N2 efficiency. This algorithm becomes extremely inefficient for systems
of more than a few thousand particles, cf. Fig. 3(a).

2.3 The MD algorithm

The last decade has seen a rapid development in our understanding of numerical algorithms
which have been summarized in a recent book (Steinhauser, 2008) that presents the current
state of the field.

When introducing an N-dimensional position vector�rN = (�r1,�r2, ...,�rN), the potential energy
Φ(�rN) and the momenta �pN = (�p1,�p2, ...,�pN), in terms of which the kinetic energy may be
written as K(�pN), then the total energy H of a classical conservative system is given by H =
Φ + K. The equations of motion determining all dynamics of the particles can be written as

�ri = �pi/mi and �pi = �Fi. (19)

This is a system of coupled ordinary differential equations. Many methods exist to solve
this set of equations numerically, among which the so-called velcity Verlet-algorithm is the one
that is the most used. This algorithm integrates the equations of motion by performing the

following four steps, where�ri, �vi,�ai = �Ti/mi are the position, velocity and acceleration of the
i-th particle, respectively:

Calculate�vi(t +
1

2
δt) = �vi(t) +

1

2
δt�Fi(t), (20)

Calculate�ri(t + δt) =�ri(t) + δt�vi(t +
1

2
δt), (21)

Derive�ai(t + δt) from the interaction potential using�r(t + δt), (22)

Calculate�vi(t + δt) = �vi(t +
1

2
δt) + +

1

2
δt�ai(t + δt). (23)

10 Molecular Dynamics – Studies of Synthetic and Biological Macromolecules
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Further details about this standard algorithm can be found elsewhere (Steinhauser, 2008). It is
exactly time reversible, symplectic, low order in time (hence permitting large timesteps), and
it requires only one expensive force calculation per timestep.

2.3.1 Neighbor lists

In general, in molecular systems, the potential as well as the corresponding force decays very
fast with the distance r between the particles. Thus, for reasons of efficiency, in molecular
simulations one often uses the modified LJ potential of Eq. 11 which introduces a cutoff rcut

for the potential. The idea here is to neglect all contributions in the sums in Eqs. 16 and 17 that
are smaller than the threshold rcut which characterizes the range of the interaction. Thus, in

this case the force �Fi on particle i is approximated by

�Fi ≈ −24 × ε
N

∑
j=1,j �=i
0<r≤rcut

1

r2
×

(σ0

r

)6
×

(

1 − 2 ×
(σ0

r

)6
)

�rij. (24)

Contributions to the force on particle i that stem from particles j with r ≤ rcut are neglected.
This introduces a small error in the computation of the forces and the total energy of the
system, but it reduces the overall computational effort from O(N2) to O(N). For systems
with short-ranged or rapidly decaying potentials, a very efficient algorithm for the search of
potentially interacting particles, i.e. those particles that are within the cutoff distance rcut of
a particle i, has been developed (Hockney, 1970). In MD this algorithm can be implemented
most efficiently by geometrically dividing the volume of the (usually cubic) simulation box
into small cubic cells whose sizes are slightly larger than the interaction range rcut of particles,
cf. Fig. 3b. The particles are then sorted into these cells using the linked-cell algorithm (LCA).
The LCA owes its name to the way in which the particle data are arranged in computer
memory, namely as linked list for each cell. For the calculation of the interactions it is then
sufficient to calculate the distances between particles in neighboring cells only, since cells
which are further than one cell apart are by construction beyond the interaction range. Thus,
the number of distance calculations is restricted to those particle pairs of neighboring cells
only which means that the sums in Eq. 18 are now split into partial sums corresponding to the

decomposition of the simulation domain into cells. For the force �Fi on particle i in cell number
n one obtains a sum of the form

�Fi = ∑
cell m
m∈Ω(n)

∑
j∈{all particles in cell m}

j �=i

�Fij, (25)

where Ω(n) denotes cell n itself together with all cells that are direct neighbors of cell n. The
linked-cell algorithm is a simple loop over all cells of the simulation box. For each cell there
is a linked list which contains a root pointer that points to the first particle in the respective
cell which then points to the next particle within this particular cell, until the last particle is
reached which points to zero, indicating that all particles in this cell have been considered.
Then the algorithm switches to the root pointer of the next cell and the procedure is repeated
until all interacting cells have been considered, cf. Fig. 3.

Assuming the average particle density in the simulation box as 〈ρ〉 then the number of
particles in each one of the subcells is 〈ρ〉 r3

cut. The total number of subcells is N/ 〈ρ〉 r3
cut and

11
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Fig. 3. MD Optimization schemes for the search of potentially interacting particles. (a) The
least efficient all particle “brute force” approach with run time O(N2) (b) The linked-cell
algorithm which reduces the search effort to O(N). (c) The linked-cell algorithm combined
with neighbor lists which further reduces the search effort by using a list of potentially
interacting neighbor particles which can be used for several timesteps before it has to be
updated. In this 2D representation, the radius of the larger circle is rcut + rskin and the inner
circle, which contains actually interacting particles, has radius rcut.

the total number of neighbor cells of each subcell is 26 in a cubic lattice in three dimensions
(3D). Due to Newton’s third law only half of the neighbors actually need to be considered.
Hence, the order to which the linked-cell algorithm reduces the search effort is given by:

26

2

(

〈ρ〉 r2
cut

) N

〈ρ〉 r3
cut

= 13(〈ρ〉 r3
cut)

2N. (26)

For this method to function, the size of the simulation box has to be at least 3rcut, cf.
Fig. 3. For simulations of dense melts with many particles, this requirement is usually met.
Consequently, by this method, the search-loop effort is reduced to O(N), but with a pre-factor
that still can be very large, depending on the density of particles 〈ρ〉 and the interaction range
rcut.

2.3.2 Boundary conditions

In a MD simulation only a very small number of particles can be considered. To avoid
the (usually) undesired artificial effects of surface particles which are not surrounded by
neighboring particles in all directions and thus are exerted to non-isotropic forces, one
introduces periodic boundary conditions. Using this technique, one measures the “bulk”
properties of the system, due to particles which are located far away from surfaces. As a rule,
one uses a cubic simulation box were the particles are located. This cubic box is periodically
repeated in all directions. If, during a simulation run, a particle leaves the central simulation
box, then one of its image particles enters the central box from the opposite direction. Each of
the image particles in the neighboring boxes moves in exactly the same way, cf. Fig. 4 for a
two dimensional visualization.

The cubic box is used almost exclusively in simulations with periodic boundaries, mainly due
to its simplicity, however also spherical boundary conditions have been investigated were the
three-dimensional surface of the sphere induces a non-Euclidean metric. The use of periodic
boundary conditions allows for the simulation of bulk properties of systems with a relatively
small number of particles.

12 Molecular Dynamics – Studies of Synthetic and Biological Macromolecules
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Fig. 4. Two-dimensional schematic of periodic boundary conditions. The particle trajectories
in the central simulation box are copied in every direction.

2.3.3 Minimum image convention

The question whether the measured properties with a small, periodically extended system are
to be regarded as representative for the modeled system depends on the specific observable
that is investigated and on the range of the intermolecular potential. For a LJ potential with
cut-off as in Eq. 11 no particle can interact with one of its images and thus be exposed to the
artificial periodic box structure which is imposed upon the system. For long range forces, also
interactions of far away particles have to be included, thus for such systems the periodic box
structure is superimposed although they are actually isotropic. Therefore, one only takes into
account those contributions to the energy of each one of the particles which is contributed by
a particles that lies within a cut-off radius that is at the most 1/2LB with boxlenth LB. This
procedure is called minimum image convention. Using the minimum image convention, each
particle interacts with at the most (N − 1) particles. Particularly for ionic systems a cut-off
has to be chosen such that the electro-neutrality is not violated. Otherwise, particles would
start interacting with their periodic images which would render all calculations of forces and
energies erroneous.

3. Complex formation of charged macromolecules

A large variety of synthetic and biological macromolecules are polyelectrolytes (Manning,
1969). The most well-known polyelectrolyte biopolymers, proteins, DNA and RNA, are
responsible for functions in living systems which are incomparably more complex and
diverse than the functions usually discussed for synthetic polymers present in the chemical
industry. For example, polyacrylic acid is the main ingredient for diapers and dispersions
of copolymers of acrylamide or methacrylamide and methacrylic acid are fundamental for
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cleaning water. In retrospect, during the past 30 years, despite the tremendous interest
in polyelectrolytes, unlike neutral polymers (de Gennes, 1979; Flory, 1969), the general
understanding of the behavior of electrically charged macromolecules is still rather poor.
The contrast between our understanding of neutral and charged polymers results form the
long range nature of the electrostatic interactions which introduce new length and time
scales that render an analytical treatment beyond the Debye-Hückel approximation very
complicated (Barrat & Joanny, 2007; Debye & Hückel, 1923). Here, the traditional separation
of scales, which allows one to understand properties in terms of simple scaling arguments,
does not work in many cases. Experimentally, often a direct test of theoretical concepts is not
possible due to idealizing assumptions in the theory, but also because of a lack of detailed
control over the experimental system, e.g. in terms of the molecular weight. Quite recently,
there has been increased interest in hydrophobic polyelectrolytes which are water soluble,
covalently bonded sequences of polar (ionizable) groups and hydrophobic groups which are
not (Khoklov & Khalatur, 2005). Many solution properties are known to be due to a complex
interplay between short-ranged hydrophobic attraction, long-range Coulomb effects, and the
entropic degrees of freedom. Hence, such polymers can be considered as highly simplified
models of biologically important molecules, e.g. proteins or lipid bilayers in cell membranes.
In this context, computer simulations are a very important tool for the detailed investigation
of charged macromolecular systems. A comprehensive review of recent advances which have
been achieved in the theoretical description and understanding of polyelectrolyte solutions
can be found in (Holm et al., 2004).

3.1 Two oppositely charged macromolecules

The investigation of aggregates between oppositely charged macromolecules plays an
important role in technical applications, particularly in biological systems. For example, DNA
is associated with histone proteins to form the chromatin. Aggregates of DNA with cationic
polymers or dendrimers are discussed in the context of their possible application as DNA
vectors in gene therapies (Gössl et al., 2002; Yamasaki et al., 2001). Here, we present MD
simulations of two flexible, oppositely charged polymer chains and illustrate the universal
scaling properties of the resulting polyelectrolyte complexes that are formed when the chains
collapse and build compact, cluster-like structures which are constrained to a small region in
space (Steinauser, 1998; Winkler et al., 2002). The properties are investigated as a function of
chain length N and interaction strength ξ. Starting with Eq. 5 and using k = 1 (cgs-system of
units) the dimensionless interaction parameter

ξ = ξBkBT/ǫσ (27)

can be introduced, where the Bjerrum length ξB is given by:

ξB = e2/ǫkBT, (28)

where kB is the Boltzmann constant, T is temperature, ǫ is the energy scale from the
Lennard-Jones potential of Eq. 11, σ defines the length scale (size of one monomer) and e
is the electronic charge.

The interaction parameter for the here presented study is chosen in the range of ξ = 0, ..., 100
which covers electrically neutral chains (ξ = 0) in good solvent as well as highly charged
chain systems (ξ = 100). The monomers in the chains are connected by harmonic bonds
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Fig. 5. Twisted, DNA-like polyelectrolyte complexes formed by electrostatic attraction of two
oppositely charged linear macromolecules with N = 40 at different time intervals τ = 0 (a),
τ = 10500 (b), τ = 60000 (c) and τ = 120000 (d), where τ is given in reduced Lennard-Jones
units (Allen & Tildesly, 1991). The interaction strength is ξ = 8 (Steinauser, 1998;
Winkler et al., 2002).

using the first term of the bonded potential of Eq. 2. The interaction with the solvent is taken

into account by a stochastic force (�Γi) and a friction force with a damping constant χ, acting
on each mass point. The equations of motion of the system are thus given by the Langevin
equations

m�̈ri = �Fi − χm�̇ri +�Γi. (29)

The force�Fi comprises the force due to the sum of the potentials of Eq. 11 with cutoff rcut = 1.5,
Eq. 6 with k = 1, zi/j = ±1, and the first term on the right-hand side of the bonded
potential in Eq. 2 with κ = 5000ε/σ and bond length l0 = σ0 = 1.0. The stochastic force
�Γi is assumed to be stationary, random, and Gaussian (white noise). The electrically neutral
system is placed in a cubic simulation box and periodic boundary conditions are applied for
the intermolecular Lennard-Jones interaction according to Eq. 11, thereby keeping the density
ρ = N/V = 2.1 × 10−7/σ3 constant when changing the chain length N. The number of
monomers N per chain was chosen as N = 10, 20, 40, 80 and 160 so as to cover at least
one order of magnitude. For the Coulomb interaction a cutoff that is half the boxlength
rcut = 1/2LB was chosen. This can be done as the eventually collapsed polyelectolyte
complexes which are analyzed are confined to a small region in space which is much smaller
than rcut. In the following we discuss exemplarily some scaling properties of charged linear
macromolecules in the collapsed state. The simulations are started with two well separated
and equilibrated chains in the simulation box. After turning on the Coulomb interactions
with opposite charges zi/j = ±1 in the monomers of both chains, the chains start to attract
each other. In a first step during the aggregation process the chains start to twist around each
other and form helical like structures as presented in Fig. 5. In a second step, the chains start
to form a compact globular structure because of the attractive interactions between dipoles
formed by oppositely charged monomers, see the snapshots in Fig. 6(a).

Figure 6(a) exhibits the universal scaling regime of Rg obtained for intermediate interaction

strengths ξ and scaled by (N − 1)2/3. Here, the data of various chain lengths fall nicely
on top of each other. This scaling corresponds to the scaling behavior of flexible chains
in a bad solvent and is also in accordance with what was reported by Shrivastava and
Muthukumar (Srivastava & Muthukumar, 1994). The change of Rg is connected with a change
of the density ρ of the polyelectrolyte aggregate. However, in Fig. 6(b), which presents an
example of ρ for ξ = 4, only a slight dependence of the density on the chain length N can be
observed. ρ measures the radial monomer density with repsect to the center of mass of the
total system. For longer chains, there is a plateau while for short chains there is a pronounced
maximum of the density for small distances from the center of mass. While this maximum
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Fig. 6. (a) Radii of gyration as a function of the interaction strength ξ for various chain
lengths according to (Steinhauser, 2008; Winkler et al., 2002). The radius of gyration Rg

2

which is measure for the size of a polymer chain is scaled by (N − 1)2/3, where (N − 1) is the
number of bonds of a single chain. Also displayed are sample snapshots of the collapsed
globules with N = 40 and interaction strengths ξ = 0.4, 4, 40. (b) Radial density of monomers
with respect to the center of mass of a globule and interaction strength ξ = 4 for different
chain lengths, N = 20 (blue), N = 40 (red), N = 80 (green) and N = 160 (brown).

vanished with decreasing ξ it appears also at higher interaction strengths for longer chains.
Monomers on the outer part of the polyelectrolyte complex experience a stronger attraction
by the inner part of the cluster than the monomers inside of it, and for smaller ξ, chains of
different lengths are deformed to different degrees which leads to a chain length dependence
of the density profile.

4. Equilibrium and Non-Equilibrium Molecular Dynamics (NEMD)

An understanding of the behavior of fully flexible linear polymers in dilute solutions
and of dense melts has been achieved decades ago by the fundamental works of Rouse
and Zimm (Zimm, 1956), as well as of Doi and Edwards (Doi & Edwards, 1986) and
deGennes (de Gennes, 1979). In contrast to the well understood behavior of fully
flexible linear polymers in terms of the Rouse (Prince E. Rouse, 1953) and the reptation
model (de Gennes, 1979; Doi & Edwards, 1986), semiflexible polymer models have received
increasing attention recently, as on the one hand they can be applied to many biopolymers
like actin filaments, proteins or DNA (Käs et al., 1996; Ober, 2000) and on the other hand even
for polymers considered flexible, like Polyethylene, the Rouse model fails as soon as the local
chemical structure can no longer be neglected. One of the effects of this structure is a certain
stiffness in the polymer chain due to the valence angles of the polymer backbone (Paul et al.,
1997). Thus, semiflexible polymers are considerably more difficult to treat theoretically,
as they require the fulfillment of additional constraints, such as keeping the total chain
length fixed, which render these models more complex and often nonlinear. A deeper
understanding of the rheological, dynamical and structural properties of semiflexible or even
rod-like polymers is thus of great practical and fundamental interest.
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4.1 Theoretical framework

The Kratky-Porod chain model (or worm-like chain model, WLC) (Kratky & Porod,
1949) provides a simple description of inextensible semiflexible polymers with positional
fluctuations that are not purely entropic but governed by their bending energy Φbend and
characterized e.g. by their persistence length Lp. The corresponding elastic energy

Φbend =
κ

2

∫ L

0
ds

(

∂2
r

∂s2

)2

(30)

of the inextensible chain of length L depends on the local curvature of the chain contour
s, where �r(s) is the position vector of a mass point (a monomer) on the chain and κ is a
constant (Doi & Edwards, 1986).

Harris and Hearst formulated an equation of motion for the WLC model by applying
Hamilton’s principle with the constraint that the second moment of the total chain length

be fixed and obtained the following expressions for the bending �Fbend and tension forces �Ftens

�Fbend = μ
∂4�r

∂s4
, (31)

�Ftens = ω
∂2�r

∂s2
. (32)

Applying this result to elastic light scattering, this model yields correct results in the flexible
coil limit (Harris & Hearst, 1966), but it fails at high stiffness, where it deviates from the
solution obtained for rigid rods (Harris & Hearst, 1967).

A different model was proposed by Soda (Soda, 1973), where the segmental tension forces are
modeled by stiff harmonic springs. This approach avoids large fluctuations in the contour
length but has the disadvantage that an analytic treatment of the model is possible only for
few limiting cases. Under the assumption that the longitudinal tension relaxes quickly, the
bending dynamics can be investigated using a normal mode analysis (Aragón & Pecora, 1985;
Soda, 1991). However, this approach cannot account for the flexible chain behavior which is
observed on large length scales in the case Lp ≪ L.

Winkler, Harnau and Reineker (Harnau et al., 1996; R.G. Winkler, 1994) considered a Gaussian
chain model and used a Langevin equation similar to the equation employed by Harris
and Hearst, but introduced separate Lagrangian multipliers for the end points of the chain,
thus avoiding the problems of the Harris and Hearst equation in the rod-like limit. Thus,
the equation used in (Harris & Hearst, 1966) is contained in the model used by Winkler,
Harnau and Reineker and can be regained by setting all Lagrangian multipliers equal along
the chain contour and at the end points. The expansion of the position vector �r(s) in
normal coordinates in the approach used in (R.G. Winkler, 1994) and resolving the obtained
equations for the relaxation times τp or the normal mode amplitudes Xp(t) leads to a set of
transcendental equations, the solution of which cannot be given in closed form. For some
limiting cases, Harnau, Winkler and Reineker showed the agreement of the approximate
solution of the transcendental equations with atomistic simulation results of a n-C100H202

polymer melt (Harnau et al., 1999) that were performed by Paul, Yoon and Smith (Paul et al.,
1997).
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In contrast to fully flexible polymers, the modeling of semiflexible and stiff macromolecules
has received recent attention, because such models can be successfully applied to biopolymers
such as proteins, DNA, actin filaments or rodlike viruses (Bustamante et al., 1994; Ober, 2000).
Biopolymers are wormlike chains with persistence lengths lp (or Kuhn segment lengths lK)
comparable to or larger than their contour length L and their rigidity and relaxation behavior
are essential for their biological functions.

4.2 Modeling and simulation of semiflexible macromolecules

Molecular Dynamics simulations were performed using the MD simulation package
"MD-Cube", which was originally developed by Steinhauser (Steinhauser, 2005). A
coarse-grained bead-spring model with excluded volume interactions as a model for dilute
solutions of polymers in solvents of varying quality, respectively for polymer melts, is
employed (Steinhauser, 2008; Steinhauser & et. al., 2005). A compiler switch allows for
turning on and off the interaction between different chains. Thus, one can easily switch the
type of simulation from single polymers in solvent to polymer melts. The excluded volume
for each monomer is taken into account through the potential of Eq. 11.

Neighboring mass points along the chains are connected by harmonic bonds with the
following potential for the bonded interactions

Φbonded(r) =
K

2
(r − d0)

2 , (33)

which is often used in polymer simulations of charged, DNA-like biopolymers, see
e.g. (Steinauser, 1998; Winkler et al., 2002). Note, that the potential in Eq. 33 corresponds to the
first term on the right-hand side of Eq. 2. In order to keep fluctuations of the bond lengths and
thus the fluctuations of the overall chain length L small (below 1%), a large value for the force
constant K = 10000ε/σ2 is chosen, where ε and σ are parameters of the truncated LJ-potential
in Eq. 11. The average bondlength d0 is taken to be 0.97σ which is the equilibrium distance
of a potential that is composed of the FENE (Finite Extensible Non-Linear Elastic) potential –
which is frequently employed in polymer simulations (Steinhauser, 2005) – and the truncated
LJ-potential of Eq. 11. In combination with the LJ-potential this particle distance keeps the
chain segments from artificially crossing each other (Steinhauser, 2008). The FENE potential
exhibits very large fluctuations of bond lengths which are unrealistic for the investigation of
semiflexible or stiff polymers. This is the reason for choosing the simple harmonic potential in
Eq. 33). It is noted, that in principle the exact analytic form of the bonded potential when
using a coarse-grained polymer model is actually irrelevant as long as it ensures that the
the basic properties of polymers are modeled correctly such as the specific connectivity of
monomers in a chain, the non-crossability of monomer segments (topological constraints), or
the flexibility/stiffness of a chain. Thus, very often, a simple potential that can be quickly
calculated in a numerical approach is used.

The stiffness, i.e. the bending rigidity of the chains composed of N mass points, is introduced
into the coarse-grained model by the following bending potential

Φbend =
κ

2

N−1

∑
i=1

(�ui+1 −�ui)
2 = κ

N−1

∑
i=1

(1 −�ui+1 ·�ui) , (34)
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where �u is the unit bond vector �ui = (�ri+1 −�ri)/|�ri+1 −�ri | connecting consecutive
monomers, and �ri is the position vector to the i-th monomer. The total force acting on
monomer i is thus given by

�Fi = −∂/∂�riΦtotal = −∂/∂�ri

(

Φcut
LJ + Φbonded + Φbend

)

. (35)

Assuming a NVT ensemble at temperature kBT = 1ε, the trajectories of all particles i =
(1, ..., N) are generated by integrating the stochastic equations of motion

d2�ri

dt2
= −ξ

d�ri

dt
+

1

m
�Fi +

1

m
�Fi

S , (36)

with a particle friction coefficient ξ and a Gaussian stochastic force �Fi
S that satisfies

< �Fi
S(t) >= 0 , (37)

and the fluctuation-dissipation-theorem

< Fi
S(t)Fj

S(t′) >= 2kTξδijδ(t − t′) . (38)

The equations of motion are integrated using the Brownian dynamics algorithm proposed by
van Gunsteren and Berendsen for a canonical ensemble (van Gunsteren & Berendsen, 1982)
which – for vanishing particle friction ξ – changes into the velocity Verlet algorithm for a
microcanonical ensemble. The algorithm is used with a constant timestep of ∆t = 5 × 10−3τ,
where τ is the time unit of the simulation.

4.2.1 Results

The crossover scaling from coil-like, flexible structures on large length scales to stretched
conformations at smaller scales can be seen in the scaling of the structure function S(q) when
performing simulations with different values of kθ (Steinhauser, Schneider & Blumen, 2009).

In Fig. 7(a) the structure functions of the simulated linear polymer chains of length N = 700
are displayed for different persistence lengths. The chains show a scaling according to qν.
The stiffest chains exhibit a q−1–scaling which is characteristic for stiff rods. The dotted and
dashed lines display the expected theoretical scaling behavior.

Thus, by varying parameter kθ , the whole range of bending stiffness of chains from fully
flexible chains to stiff rods can be covered. The range of q–values for which the crossover from
flexible to semiflexible and stiff occurs, shifts to smaller q–values with increasing stiffness kθ of
the chains. The scaling plot in Fig. 7(b) shows that the transition occurs for q ≈ 1/lK, i.e. on a
length scale of the order of the statistical Kuhn length. In essence, only the fully flexible chains
(red data points) exhibit a deviation from the master curve on large length scales (i.e. small
q–values), which corresponds to their different global structure compared with semi-flexible
macromolecules. Examples for snapshots of stiff and semiflexible chains are displayed in
Fig. 8.

For a theoretical treatment, following Doi and Edwards (Doi & Edwards, 1986), we expand
the position vector�r(s, t) of a polymer chain, parameterized with time t and contour length s
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Fig. 7. (a) Structure function S(q) of single linear chains with N = 700 and varying stiffness
kθ . The scaling regimes (fully flexible and stiff rod) are indicated by a straight and dashed
line, respectively. (b) Scaling plot of S(q)/lK versus q · lK using the statistical segment length
lK, adapted from (Steinhauser, Schneider & Blumen, 2009).

Fig. 8. Simulation snapshots of (a) flexible chains (kθ = 0), (b) semiflexible chains (kθ = 20),
(c) stiff, rod-like chains (kθ = 50).

in normal modes �Xp(t) as follows:

�r(s, t) = �X0(t) + 2
∞

∑
p=1

(t) cos
( pπ

L
s
)

. (39)

Resolving Eq. 39 for the normal modes and inserting the result into the Langevin equations of
motion for�r(s, t) one obtains after some algebraic manipulations for the relaxation time τp

τp =
3kBTπ2 p2

2L2ξ

[

1

Lp
+

Lpπ2

NL
p2

]

, (40)

which can be interpreted physically as arising from contributions due to an entropic force
term ∝ p2 and a bending force term ∝ p4. In Fig. 9 we show that our simulation results for
semiflexible chains scale according to Eq. 40.

Figure 10 exhibits the results of a NEMD step-shear simulation, from which the shear modulus
G(t) has been determined. The NEMD scheme produces the same results for the shear
modulus G(t) as conventional methods at equilibrium, which are based on the Green-Kubo
equation.

Finally, in Fig. 11 we illustrate our step-shear simulation scheme for polymer melts with two
corresponding NEMD simulation snapshots.
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Fig. 9. Scaling of relaxation time τp for semiflexible chains (N = 700) with different Lp. The
dotted and dashed lines show the scaling behavior according to Eq. 40. The inset shows τp of
our simulated flexible chains compared with the Rouse model.

Fig. 10. Shear modulus G(t) obtained from NEMD simulations compared with conventional
(red line) equilibrium methods. The dashed line displays the expected Rouse scaling
behavior and γ0 displays the respective shear rates of the systems.

5. Shock wave failure of granular materials

In the following we discuss a recently proposed concurrent multiscale approach
for the simulation of failure and cracks in brittle materials which is based on
mesoscopic particle dynamics, the Discrete Element Method (DEM), but which
allows for simulating macroscopic properties of solids by fitting only a few model
parameters (Steinhauser, Grass, Strassburger & Blumen, 2009).
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Fig. 11. Non-equilibrium shear-simulation of N = 100 polymer chains with N = 100 particles
each (a) before and (b) after shearing the system. For reasons of clarity only 30 different
chains of the system are displayed.

5.1 Introduction: Multiscale modeling of granular materials using MD

Instead of trying to reproduce the geometrical shape of grains on the microscale as seen in
two-dimensional (2D) micrographs, in the proposed approach one models the macroscopic
solid state with soft particles, which, in the initial configuration, are allowed to overlap, cf.
Fig. 12(a). The overall system configuration, see Fig. 12(b), can be visualized as a network of
links that connect the centers of overlapping particles, cf. Fig. 12(c).

The degree of particle overlap in the model is a measure of the force that is needed to detach
particles from each other. The force is imposed on the particles by elastic springs. This simple
model can easily be extended to incorporate irreversible changes of state such as plastic flow
in metals on the macro scale. However, for brittle materials, where catastrophic failure occurs
after a short elastic strain, in general, plastic flow behavior can be completely neglected.
Additionally, a failure threshold is introduced for both, extension and compression of the
springs that connect the initial particle network. By adjusting only two model parameters
for the strain part of the potential, the correct stress-strain relationship of a specific brittle
material as observed in (macroscopic) experiments can be obtained. The model is then applied
to other types of external loading, e.g. shear and high-speed impact, with no further model
adjustments, and the results are compared with experiments performed at EMI.

Fig. 12. The particle model as suggested in (Steinhauser, Grass, Strassburger & Blumen,
2009). (a) Overlapping particles with radii R0 and the initial (randomly generated) degree of
overlap indicated by d0

ij. Here, only two particles are displayed. In the model the number of
overlapping particles is unlimited and each individual particle pair contributes to the overall
pressure and tensile strength of the solid. (b) Sample initial configuration of overlapping
particles (N = 2500) with the color code displaying the coordination number: red (8), yellow
(6), and green (4). (c) The same system displayed as an unordered network.
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5.2 Model potentials

The main features of a coarse-grained model in the spirit of Occam’s razor with only few
parameters, are the repulsive forces which determine the materials resistance against pressure
and the cohesive forces that keep the material together. A material resistance against pressure

load is introduced by a simple Lennard Jones type repulsive potential Φ
ij
rep which acts on every

pair of particles {ij} once the degree of overlap dij decreases compared to the initial overlap
d0

ij:

φ
ij
rep

(

γ, dij
)

=

⎧

⎨

⎩

γR0
3

(

(

d0
ij

dij

)12
− 2

(

d0
ij

dij

)6
+ 1

)

: 0 < dij < d0
ij

0 : dij ≥ d0
ij

. (41)

Parameter γ scales the energy density of the potential and prefactor R0
3 ensures the correct

scaling behavior of the calculated total stress Σijσ
ij = ΣijF

ij/A which, as a result, is
independent of N. Figure 13 shows that systems with all parameters kept constant, but only
N varied, lead to the same slope (Young’s modulus) in a stress-strain diagram. In Eq. 41 R0

is the constant radius of the particles, dij = dij (t) is the instantaneous mutual distance of
each interacting pairs {ij} of particles, and d0

ij = dij (t = 0) is the initial separation which the
pair {ij} had in the starting configuration. Every single pair {ij} of overlapping particles
is associated with a different initial separation d0

ij and hence with a different force. The
minimum of each individual particle pair {ij} is chosen such that the body is force-free at
the start of the simulation.

Fig. 13. (a) Schematic of the intrinsic scaling property of the proposed material model. Here,
only the 2D case is shown for simplicity. The original system (Model Ma) with edge length L0

and particle radii R0 is downscaled by a factor of 1/a into the subsystem QA of MA (shaded
area) with edge length L, while the particle radii are upscaled by factor a. As a result, model
MB of size aL = L0 is obtained containing much fewer particles, but representing the same
macroscopic solid, since the stress-strain relation (and hence, Young’s modulus E) upon
uni-axial tensile load is the same in both models. (b) Young’s modulus E of systems with
different number of particles N in a stress-strain (σ − ε) diagram. In essence, E is indeed
independent of N.

When the material is put under a low tension the small deviations of particle positions from
equilibrium will vanish as soon as the external force is released. Each individual pair of
overlapping particles can thus be visualized as being connected by a spring, the equilibrium
length of which equals the initial distance d0

ij. This property is expressed in the cohesive
potential by the following equation:

Φ
ij
coh

(

λ, dij
)

= λR0

(

dij − d0
ij
)2

, dij
> 0. (42)
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In this equation, λ (which has dimension [energy/length]) determines the strength of the
potential and prefactor R0 again ensures a proper intrinsic scaling behavior of the material
response. The total potential is the following sum:

Φtot = Σij

(

φ
ij
rep + φ

ij
coh

)

. (43)

The repulsive part of Φtot acts only on particle pairs that are closer together than their mutual

initial distance d0
ij, whereas the harmonic potential Φcoh either acts repulsively or cohesively,

depending on the actual distance dij. Failure is included in the model by introducing
two breaking thresholds for the springs with respect to compressive and to tensile failure,
respectively. If either of these thresholds is exceeded, the respective spring is considered to
be broken and is removed from the system. A tensile failure criterium is reached when the
overlap between two particles vanishes, i.e. when:

dij
> (2R0). (44)

Failure under pressure load occurs when the actual mutual particle distance is less by a factor
α (with α ∈ (0, 1)) than the initial mutual particle distance, i.e. when

dij
< α · d0

ij. (45)

Particle pairs without a spring after pressure or tensile failure still interact via the repulsive
potential and cannot move through each other.

An appealing feature of this model, as opposed to many other material models used
for the description of brittle materials, see e.g. (Cundall & Strack, 1979; Leszczynski, 2003;
Walton & Braun, 1986), is its simplicity. The proposed model has a total of only three free
parameters: γ and λ for the interaction potentials and α for failure. These model parameters
can be adjusted to mimic the behavior of specific materials.

5.3 Shock wave simulations and comparison with experiments

Finally, in Fig. 14, non-equilibrium MD simulation (NEMD) results for systems with varying
shock impact velocities are presented and compared with high-speed impact experiments
performed at EMI with different ceramic materials (Al2O3 and SiC) in the so-called
edge-on-impact (EOI) configuration. These oxide and non-oxide ceramics represent two major
classes of ceramics that have many important applications. The impactor hits the target at the
left edge. This leads to a local compression of the particles in the impact area.

The top series of snapshots in Fig. 14(a) shows the propagation of a shock wave through the
material. The shape of the shock front and also the distance traveled by it correspond very
well to the high-speed photographs in the middle of Fig. 14(a). These snapshots were taken
at comparable times after the impact had occurred in the experiment and in the simulation,
respectively. In the experiments which are used for comparison, specimens of dimensions
(100 × 100 × 10)mm were impacted by a cylindrical blunt steel projectile of length 23 mm,
mass m = 126 g and a diameter of 29.96 mm (Steinhauser et al., 2006). After a reflection
of the pressure wave at the free end of the material sample, and its propagation back into
the material, the energy stored in the shock wave front finally disperses in the material.
One can study in great detail the physics of shock waves traversing the material and easily
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Fig. 14. Results of a simulation of the edge-on-impact (EOI) geometry, except this time, the
whole macroscopic geometry of the experiment can be simulated while still including a
microscopic resolution of the system. The impactor is not modeled explicitly, but rather its
energy is transformed into kinetic energy of the particle bonds at the impact site. (a) Top row:
A pressure wave propagates through the material and is reflected at the free end as a tensile
wave (not shown). Middle row: The actual EOI experiment with a SiC specimen. The time
interval between the high-speed photographs is comparable with the simulation snapshots
above. The red arrows indicate the propagating shock wave front. Bottom row: The same
simulation run but this time only the occurring damage in the material with respect to the
number of broken bonds is shown. (b) Number of broken bonds displayed for different
system sizes N, showing the convergence of the numerical scheme. Simulation parameters
(α, γ, λ) are chosen such that the correct stress-strain relations of two different materials
(Al2O3 and SiC) are recovered in the simulation of uniaxial tensile load. The insets show
high-speed photographs of SiC and Al2O3, respectively, 4μs after impact.

identify strained or compressed regions by plotting the potential energies of the individual
pair bonds. Also failure in the material can conveniently be visualized by plotting only the
failed bonds as a function of time, cf. the bottom series of snapshots in Fig. 14(a). A simple
measure of the degree of damage is the number of broken bonds with respect to the their total
initial number. This quantity is calculated from impact simulations of Al2O3 and SiC, after
previously adjusting the simulation parameters γ, λ and α accordingly. Figure 14(b) exhibits
the results of this analysis. For all impact speeds the damage in the SiC-model is consistently
larger than in the one for Al2O3 which is also seen in the experiments.

The impactor is not modeled explicitly, but rather its total kinetic energy is transformed into
kinetic energy of the particles in the impact region. Irreversible deformations of the particles
such as plasticity or heat are not considered in the model, i.e. energy is only removed from
the system by broken bonds. Therefore, the development of damage in the material is slightly
overestimated.

6. Conclusions

In summary, we presented an introduction into the molecular dynamics method, discussing
the choice of potentials and fundamental algorithms for the implementation of the MD
method. We then discussed proto-typical applications of MD, namely the collapse of two
oppositely charged macromolecules (polyelectrolytes) and the simulation of semiflexible
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bio-macromolecules6. We demonstrated how semiflexibility, or stiffness of polymers can
be included in the potentials describing the interactions of particles. We finally showed a
somewhat unusual application of MD in the field of solid state physics where we modeled
the brittle failure behavior of a typical ceramic and simulated explicitly the set-up of
corresponding high-speed impact experiments. We showed that the discussed multiscale
particle model reproduces the macroscopic physics of shock wave propagation in brittle
materials very well while at the same time allowing for a resolution of the material on the
micro scale and avoiding typical problems (large element distortions, element-size dependent
results) of Finite Elements, which constitutes a different type of discretization for simulation
problems that are closely connected with macroscopic experiments. The observed failure and
crack pattern in impact MD simulations can be attributed to the random initial distribution
of particle overlaps which generates differences in the local strength of the material. By
generating many realizations of systems with different random initial overlap distributions
of particles, the average values obtained from these many simulations lead to the presented
fairly accurate results when compared with experimental high-speed impact studies.
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