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1. Introduction 

Spinocerebellar Ataxia type 3 (SCA3) or Machado-Joseph disease (MJD) is one of the most 

common polyglutamine (polyQ) diseases, which comprise a group of inherited 

neurodegenerative conditions characterized by the pathological expansion of CAG 

trinucleotide repeats in the translated regions of unrelated genes. The expansion of a (CAG) 

tract in the coding region of the causative gene MJD1, translates into an expanded 

polyglutamine tract that confers a toxic gain of function to the ataxin-3 protein. The mutant 

protein form has 55-84 consecutive glutamines, in contrast to the normal ataxin-3, which 

carries 10-51 glutamines.  

MJD is a fatal disease of the central nervous system (CNS) and a dominant 

neurodegenerative disorder of adult onset, characterized by a wide range of clinical 

symptoms, including gait and limb ataxia, peripheral neuropathy, bulging eyes, 

ophthalmoplegia, postural instability, dystonia, amyotrophy, dysarthria, nystagmus, lingual 

fasciculation’s, facial myokymia and, in some cases, parkinsonism. The expression of mutant 

ataxin-3 is widespread, although neurodegeneration in MJD has been described in particular 

brain regions such as the cerebellum, brainstem, substantia nigra, pontine nuclei and 

striatum. A hallmark of the disease is the presence of neuronal intranuclear inclusions of 

mutant ataxin-3. The genetic basis of MJD is well described, however, the molecular basis is 

still poorly understood and controversial. Several pathogenesis mechanisms have been 

proposed for MJD (as well for other polyQ diseases), which could be explored as potential 

therapeutic approaches to MJD. Decreasing the expression of mutant ataxin-3 through gene 

silencing has been shown to be one of the most promising therapeutic approaches to MJD. 

However, several others are presently under investigation, such as the inhibition of protein 

cleavage, and the induction of autophagy, as well as strategies based on neuroprotection or 

regulation of transcriptional dysfunction. The main aim of this chapter is to review the 

current knowledge about MJD/SCA3, including a short review of clinical and 

neuropathological aspects of MJD and a particular focus on the pathogenesis and potential 

therapeutic strategies for the disease. 
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2. Machado-Joseph disease 

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is the most common 

autosomal subtype of ataxia worldwide (Coutinho and Andrade, 1978; Rosenberg, 1992; 

Ranum et al., 1995; Schols et al., 2004). It is caused by the unstable expansion of a CAG 

repeat in the MJD1 gene, which translates into a polyglutamine tract within the ataxin-3 

protein (Takiyama et al., 1993; Kawaguchi et al., 1994). This neurodegenerative disorder of 

adult onset was named after Antone Joseph and William Machado, of Portuguese Azorean 

origin, who migrated to USA. MJD was subsequently identified in Brazil, Japan, China, 

Australia and many other countries. In the islands of the Azores, namely São Miguel and 

Flores, MJD reaches the highest prevalence (1:140 in the small island of Flores) reported 

worldwide (Sudarsky and Coutinho, 1995). 

3. Clinical and physiological features 

MJD is characterized primarily by cerebellar ataxia and pyramidal signs variably associated 

with a dystonic-rigid extrapyramidal syndrome or peripheral amyotrophy (Lima and 

Coutinho, 1980; D’Abreu et al., 2010). The clinical hallmark of MJD is progressive ataxia, a 

dysfunction of motor coordination that can affect gaze, speech, gait, and balance (Taroni and 

DiDonato, 2004). Other clinical manifestations include external progressive 

ophthalmoplegia, dystonia, intention fasciculation-like movements of facial and lingual 

muscles, as well as bulging eyes. Progressive ataxia, hyperreflexia, nystagmus, and 

dysarthria may occur early in the disease (Lima and Coutinho, 1980; Sudarsky and 

Coutinho, 1995).  

 

MJD 
type 

Age of onset Prevalence Symptoms 

I 5-30 years  
Limb and gait ataxia, severe dystonia, pyramidal signs, 
progressive external ophthalmoplegia. Fast progression 

of symptoms 

II ≈ 36 years The most common 
Ataxia, pyramidal deficits and progressive external 

ophthalmoplegia 

III ≈ 50 years 
The second most 

common 

Limb and gait ataxia, with marked pyramidal signs. The 
progressive external ophthalmoplegia can or not 

manifest. This type has a moderate progression and can 
evolve to one of the other types 

IV 38-47 years 
In patients with the 
fewest CAG-repeats 

expansion 

Slow progressive parkinsonism, responsive to the L-
DOPA treatment, fasciculations and peripheral 

neuropathy 

V   
Marked spastic paraplegia with or without cerebellar 

ataxia. This type is usually mis-diagnosed as hereditary 
spastic paraplegia (HSP) 

Table 1. Classification of MJD according to symptoms, prevalence and age of onset. 

Recent clinical data has demonstrated increased incidence of non-motor symptoms, which 

include cognitive and psychiatric disturbances, olfactory dysfunction, and sleep disorders 

(Rub et al., 2008). Levodopa-responsive parkinsonism symptoms resembling Parkinson’s 

disease were also reported (Gwinn-Hardy et al., 2001). MJD patients present attention and 
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executive dysfunctions, and mildly depressed mood (Klinke et al., 2010). Based on clinical 

manifestations, MJD was divided into four sub phenotypes (Riess et al., 2008), which in 

some cases during the progression of the disease can evolve from one type to the other 

(Fowler, 1984). Recently, an additional MJD type (V) has been proposed based in a 

homozygous 33-years old patient of Portuguese/Brazilian descent (Lysenko et al., 2010) 

(Table 1). 

4. Neuropathological features 

The neuropathological alterations of MJD in the brain consist of widespread neuronal 

degeneration affecting multiple neuronal systems and not confined to the cerebellum, brain 

stem, and basal ganglia (Rub et al., 2008). The neuropathology involves cerebellar systems 

(particularly dentate nucleus and pontine neurons), substantia nigra, and cranial nerve 

motor nuclei, with relative preservation of cerebellar cortex, particularly Purkinje cells and 

inferior olive (Sudarsky and Coutinho, 1995; Durr et al., 1996; Yamada et al., 2008). However 

in some cases, loss of granule and Purkinje cells was found in the cerebellum, mainly in the 

vermis (Munoz et al., 2002). A marked degeneration of Clarke’s column nuclei and 

vestibular and pontine nuclei is observed (Durr et al., 1996). Marked neuronal loss is also 

observed in the anterior horn of the spinal cord, and motor nuclei of the brainstem (Rub et 

al., 2008). Involvement of cerebellar cortex, autonomic ganglia and striatum were also 

confirmed in MJD (Yamada et al., 2001; Paulson et al., 1997b; Alves et al., 2008b). Recent 

data based on neuroimaging techniques (magnetic resonance imaging – MRI, and 

quantitative 3-D volumetry) confirmed a severe atrophy in MJD patients in the whole 

brainstem (midbrain, pons, and medulla), whole cerebellum, cerebellar hemispheres and 

cerebellar vermis, putamen and caudate nuclei (Schulz et al., 2010). Significant correlation of 

both brainstem and cerebellar atrophy with CAG repeat length, age, disease duration and 

degree of disability has also been recently reported (Camargos et al., 2011). Furthermore, an 

inverse relationship has been found in MJD patients between posture, gait and limb kinetic 

subscore (assessed by the Scale for Assessment and Rating Ataxia) and the brainstem and 

cerebellar hemispheric volumes (Jacobi et al., 2011). 

5. The MJD1 gene 

MJD is associated with an unstable expansion of a CAG tract in the coding region of the 

MJD1 gene localized on chromosome 14q32.1 (Takiyama et al., 1993; Kawaguchi et al., 1994). 

MJD1 encodes ataxin-3, a polyubiquitin-binding protein whose physiological function has 

been linked to ubiquitin-mediated proteolysis (Burnett et al., 2003; Donaldson et al., 2003; 

Doss-Pepe et al., 2003; Scheel et al., 2003; Chai et al., 2004; Durcan et al., 2011). The mutation 

results in an expanded polyglutamine tract at the C-terminus of ataxin-3 (Kawaguchi et al., 

1994; Durr et al., 1996). The CAG repeats in the MJD1 gene range from 10 to 51 in the normal 

population and from 55 to 87 in MJD patients (Cummings and Zoghbi, 2000; Maciel et al., 

2001; Gu et al., 2004; Padiath et al., 2005). This high threshold of pathogenicity is a special 

characteristic of this disorder, since in most other polyglutamine disorders trinucleotide 

repeats over 36 to 40 become pathogenic. There is an inverse correlation between the age of 

onset and the number of CAG repeats, as is the case for other polyglutamine disorders 

(Maciel et al., 1995; Maruyama et al., 1995; Globas et al., 2008). 
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6. The ataxin-3 protein 

Ataxin-3 is a modular protein with an overall molecular weight of 42 kDa, containing a 

conserved N-terminal Josephin domain (Masino et al., 2003; Scheel et al., 2003; Albrecht et 

al., 2004), followed by two ubiquitin-interaction motif (UIM) domains and the 

polyglutamine repeat region (Figure 1). Alternative splicing of the MJD1 gene has been 

shown to result in the production of different isoforms of ataxin-3 varying at the C-terminal 

portion of the protein (Goto et al., 1997), one of these containing a third UIM domain after 

the polyglutamine region (Ichikawa et al., 2001). Fifty-six alternative splicing variants of the 

ataxin-3 mRNA were recently identified, from which 50 had not been previously described, 

and 26 were only found in MJD patients (Bettencourt et al., 2010). Alternative splicing of 

ataxin-3 sequences distinct from the trinucleotide repeat may alter the properties of the 

encoded polyglutamine disease protein and thereby perhaps contribute to selective 

neurotoxicity (Harris et al., 2010). The protein is expressed in various tissues, suggesting 

that it plays an important role in eukaryotic cells (see Matos et al., 2011 for an extensive 

revision of putative ataxin-3 functions). 

 

Fig. 1. Structure of the ataxin-3 protein. Ataxin-3 is mainly composed of a highly conserved 
N-terminal domain (Josephin), encoding a predicted ubiquitin-specific protease with the 
catalytic triad of amino acids (Cys14, His119, and Asn136), a nuclear export signal (NES), 
followed by a flexible C-terminal tail with 2 or 3 ubiquitin-interacting motifs (UIM), a 
nuclear localization signal (NLS) and the polyglutamine stretch (Q(n)). Rad23 and VCP/p97, 
the two most frequently described interacting partners of ataxin-3, bind to the Josephin 
domain and the C-terminal region of the protein, respectively. 

Regarding subcellular localization, ataxin-3 has been detected both in the nucleus and in the 

cytoplasm (Paulson et al., 1997a; Trottier et al., 1998; Ichikawa et al., 2001). A putative 

nuclear localization signal (NLS) has been identified upstream the polyglutamine repeat 

region at position 282 (Tait et al., 1998; Albrecht et al., 2004), and shown to have a weak 

nuclear import activity (Antony et al., 2009). Furthermore, two nuclear export signals (NES) 

with significant activity were identified in ataxin-3: NES 77 (177-Y99) and NES 141 (E141-

E258) (Antony et al., 2009). Ataxin-3 its actively imported to and exported from the cell 

nucleus, and this nuclear export activity could also be dependent on a motif localized at is 

N-terminal region (Rodrigues et al., 2007; Macedo-Ribeiro et al., 2009), which is coherent 

with the hypothesis of the presence of a nuclear export signal (NES 174) following the 

Josephin domain (Albrecht et al., 2004). 
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Although the precise cellular role of ataxin-3 and how it is altered upon polyglutamine 
expansion is presently unknown, ataxin-3 was shown to be a polyubiquitin-binding protein 
(Donaldson et al., 2003; Doss-Pepe et al., 2003), interacting via the first two UIM domains 
with K48-linked tetraubiquitin chains (Burnett et al., 2003; Chai et al., 2004). Several lines of 
evidence suggest that ataxin-3 plays a major role in the ubiquitin proteasomal system, by 
interacting with ubiquitin and an ubiquitin-like protein called NEDD8 (Ferro et al., 2007). 
Ataxin-3 was reported to bind and hydrolyze polyubiquitin chains in vitro (Burnett et al., 
2003). Recently, it was shown that ataxin-3 deubiquitinates parkin directly (Durcan et al., 
2011). The same study argued that compared with wild-type ataxin-3, MJD-linked polyQ-
expanded mutant ataxin-3 is more active, possibly owing to its greater efficiency at DUB 
K27- and K29-linked Ub conjugates on parkin. Ataxin-3 has been also shown to be involved 
in the regulation of the proteasome by interacting with various substrates (Wang et al., 2006, 
2007; Rodrigues et al., 2009). Ataxin-3 deubiquitinating activity is thought to contribute to 
proteasomal degradation of ubiquitinated proteins by removing the poly-ubiquitin chains 
from substrates prior to digestion (Boeddrich et al., 2006; Winborn et al., 2008; Todi et al., 
2009; Scaglione et al., 2011). Ubiquitination and deubiquitination enzymes help to control 
neuronal fate determination, axonal path finding and synaptic communication and plasticity 
(see Todi and Paulson, 2011 for a review). Altogether, these data imply that ataxin-3 
modulates ubiquitin-dependent mechanisms, having an active role in the ubiquitin-
proteasome pathway. 

7. Nuclear inclusions 

In MJD, mutant ataxin-3 aggregates into intranuclear inclusions (NIIs) with many affected 

neurons exhibiting more than one inclusion body, both in and outside areas affected by 

neurodegeneration (Paulson et al., 1997b; Schimdt et al., 1998; Rub et al., 2006a, b). 

Aggregates are also found in the cytoplasm of neurons in several affected areas (Hayashi et 

al., 2003), and in axons within fiber tracts (corpus callosum, the nigrostriatal tract, the 

olivocerebellar fiber, and others) known to undergo neurodegeneration in MJD (Seidel et al., 

2010). The presence of these NIIs is a hallmark of neurodegeneration in the brains of MJD 

patients (Figure 2A), and to all the CAG repeat diseases except for the spinocerebellar ataxia 

type 6 (SCA6) (Paulson, 1999; Schols et al., 2004; Soong and Paulson, 2007). NIIs are 

eosinophilic round structures and vary in size from 0.7 to 3.7 μm. Ultra structurally, NIIs are 

non-membrane bound, heterogeneous in composition, and contain a mix of granular and 

filamentous structures. Both normal and expanded ataxin-3, and ubiquitin are components 

of NIIs of affected neurons in MJD patients (Paulson et al., 1997a), as well as other proteins, 

including heat shock proteins (HSPs) and transcription factors (Hayashi et al., 2003; Perez et 

al., 1998; Yamada et al., 2001). Ataxin-2, the protein that upon polyglutamine expansion 

causes spinocerebellar ataxia type 2 – SCA2, and the TATA box binding protein (TBP) were 

also found in NIIs of the pontine neurons of MJD patients (Uchihara et al., 2001).  

The NIIs in MJD are distributed in many neurons covering a wide range of central and 
peripheral nervous system regions, including the cerebral cortex (Figure 2B), thalamus and 
autonomic ganglia (Schilling et al., 1999). The exact role of NIIs in neuronal cell death of 
MJD patients remains unclear and controversial (Bates, 2003; Michalik and Broeckhoven, 
2003; Yamada et al., 2008). However, as NIIs are present in degenerated as well as spared 
brain regions in advanced MJD patients, NIIs are not thought to be directly pathogenic in 
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affected nerve cells (Rub et al., 2006b). In the other polyglutamine disorders the cytotoxicity 
of NIIs is also controversial. Several studies raised the possibility that NII formation may be 
a cellular reaction to reduce the toxic effect of mutant proteins (Klement et al., 1998; Saudou 
et al., 1998; Cummings et al., 1999). On the other hand, other studies revealed that the 
presence of transcription factors in NIIs (Yamada et al., 2001; Shimohata et al., 2000a,b), may 
induce secondarily transcriptional abnormalities in cell nuclei, resulting in slowly 
progressive neuronal degeneration. 

 

Fig. 2. Intranuclear inclusions in the striatum of Machado Joseph disease patients. (A) 
Fluorescence analysis shows ataxin-3 reaction intranuclear inclusions (green) in the neurons 
of the striatum of postmortem brain samples of MJD patients (white arrows). (B) 
Fluorescence microscopy analysis shows ataxin-3 intranuclear inclusions (green) in neurons 
of the cortex of postmortem brain samples of MJD patients (white arrows). Scale bar: 40µm. 
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8. Pathogenesis 

The genetic basis of MJD is well described, however, the molecular basis is still poorly 
understood and controversial. It is widely accepted that polyglutamine diseases may share 
pathogenic mechanisms. In this section several pathogenic mechanisms that could be 
implicated in MJD are reviewed (Figure 3). 

 
 

 

Fig. 3. Mechanisms of pathogenesis in Machado-Joseph disease. Several events and 
mechanisms could contribute to pathogenesis in MJD and other polyglutamine diseases. 
The presence of mutant ataxin-3 with an expanded tract in the cellular environment, triggers 
several events that lead to neurodegeneration in selective areas of the brain. For the 
neuronal cytoxicity and dysfunction several mechanisms related to the toxicity of the 
expanded polyglutamine stretch are important such as the oligomerization and aggregation, 
the formation of toxic fragments or posttranslational modifications. Furthermore, the 
normal function of ataxin-3 in the cell could contribute to the impairment of UPS in MJD, 
and thus contribute to a dysfunction in cellular quality-control mechanisms. Other 
mechanisms could also be important to MJD pathogenesis, such as dysregulation of 
transcription, mitochondrial dysfunction, aberrant protein-protein interactions, calcium 
homeostasis dysregulation and axonal transport disruption. 
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8.1 Toxicity of the polyglutamine stretch 

A common feature of polyglutamine diseases is the deposition of insoluble intracellular 
ubiquitinated inclusions containing the misfolded disease protein (Paulson, 1999). These 
inclusions have long been suspected to be pathologic structures in polyglutamine diseases 
(Ross, 1997; Martindale et al., 1998; Yamada et al., 2000). Although this correlation is 
controversial and unclear (Bates, 2003; Michalik and Broeckhoven, 2003; Yamada et al., 
2008), the NIIs could physically impair axonal transport or nuclear function (Morfini et al., 
2005). Furthermore, the NIIs recruit other proteins, transcription factors and proteasome 
subunits (Chai et al., 1999a,b), underlying misfolding events that may be critical to 
pathogenesis (Paulson, 1999; Goti et al., 2004; Jana and Nukina, 2004; Taylor et al., 2002). 

Polyglutamine monomers of ataxin-3 acquire β-strand conformations that have been shown 
to be cytotoxic in cultured cells (Nagai et al., 2007), assembling into oligomers (Bevivino and 
Loll, 2001; Takahashi et al., 2008), both of ataxin-3 as well as other polyglutamine monomers 
(Stott et al., 1995; Lathrop et al., 1998; Tanaka et al., 2001; Thakur and Wetzel, 2002), and can 
also simultaneously dissociate into monomers (Schaffar et al., 2004). Thus, it seems that β-
stranded polyglutamine monomers are important for pathogenesis in MJD and other 
polyglutamine diseases, however its contribution to neurotoxicity is still controversial. 

In several neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, 
prion diseases, and polyglutamine diseases, including MJD, oligomers of causative proteins 
have been proposed to be the most toxic structures (Walsh et al., 2002; Kayed et al., 2004) 
and candidates for a pathogenic intermolecular structure. Polyglutamine oligomers, in 
particular, have been shown to induce greater toxicity than polyglutamine monomers or 
inclusion bodies in differentiated neurons (Takahashi et al., 2008). This and other findings 
support the hypothesis that polyglutamine oligomers may have a crucial role in cytotoxicity 
(Poirier et al., 2002; Sanchez et al., 2003; Kayed et al., 2003; Ross and Poirier, 2005; Behrends 
et al., 2006). 

The proteolytic cleavage of mutant protein may produce smaller toxic fragments containing 
an expanded polyglutamine tract, in this way facilitating the entry of cytoplasmic 
polyglutamine proteins into the nucleus. These toxic cleavage fragments upon release 
undergo the conformational change required for aggregation formation (Wanker, 2000; Ross 
et al., 2003). The misfolded expanded fragments may interact with full-length ataxin-3, 
possibly inducing a misfolding event in the polyQ tract of ataxin-3, which facilitates its 
stable incorporation into the fibrillar aggregates (Ikeda et al., 1996; Haacke et al., 2006). The 
proteolytic fragment has been proposed to be a product of caspase enzymes (Wellington et 
al., 1998; Berke et al., 2004), of autolytic cleavage (Mauri et al., 2006) or of calpains (Haacke 
et al., 2007). This toxic fragments hypothesis was also proposed for other polyglutamines 
diseases (Walsh et al., 2005), namely Huntington disease (Goldberg et al., 1996; Schilling et 
al., 2006) and spinocerebellar ataxia type 7 (SCA7) (Young et al., 2007; Takahashi-Fujigasaki 
et al., 2011). The mutant ataxin-3 mjd1a putative–cleavage fragment was identified in 
permanent clones of a transfected cell line (Yamamoto et al., 2001), transgenic mice and MJD 
patient’s brains (Goti et al., 2004). Nevertheless, some controversy remains as other studies 
failed to identify the proteolytic fragments of ataxin-3 (Cemal et al., 2002; Berke et al., 2004; 
Chou et al., 2006). Recently, it was reported that the presence of a 259 N-terminal ataxin-3 
fragment (without the polyglutamine stretch) was sufficient to induce MJD neurological 
phenotype in mice (Hubener et al., 2011). 
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The toxicity of causative gene products in MJD and other polyglutamine diseases has been 
proposed to be influenced not only by the polyglutamine stretch but also by the post-
translational modification of amino acid residues outside the polyglutamine stretch, 
including phosphorylation (Fei et al., 2007; Tao et al., 2008; Mueller et al., 2009), acetylation 
(Li et al., 2002; Evert et al., 2006; Chou et al., 2011), ubiquitination (Matsumoto et al., 2004; 
Jana et al., 2005; de Pril et al., 2007), and sumoylation (Ueda et al., 2002; Shen et al., 2005). 
These modifications might result in aberrant interactions with other proteins or modification 
of the properties of causative proteins, including the stability or tendency to form toxic 
structures. 

8.2 Protein interactions 

The importance of expanded polyglutamine protein in disease progression is important, 
however, the toxicity of expanded polyglutamine protein does not fully explain the selective 
neuronal degeneration in MJD and in other polyglutamine diseases. Mutant ataxin-3 is 
widely expressed in the brain (Paulson et al., 1997a), even in areas with no significant 
neuronal degeneration. Thus, the normal function of ataxin-3 or interactions with other 
proteins in each neuronal subpopulation might explain its selective toxicity (Takahashi et 
al., 2010). Normal ataxin-3 is found in nuclear inclusions of different polyglutamine 
diseases, particularly in spinocerebellar ataxia type 1 – SCA1, SCA2, Dentatorubral-
pallidoluysian atrophy, (Uchihara et al., 2001) and in neuronal intranuclear hyaline 
inclusion disease (Takahashi et al., 2001). It is also found in Marinesco bodies under stressful 
conditions and aging in human and non-human primates brains (Fujigasaki et al., 2000; 
Fujigasaki et al., 2001; Kettner et al., 2002).  

Ataxin-3 recruitment to inclusions raises the possibility that normal ataxin-3 and ubiquitin-
mediated pathways may be involved in cellular reactions against stress and misfolded 
proteins (Fujigasaki et al., 2001). In a Drosophila model normal ataxin-3 suppressed the 
neurotoxicity of mutant ataxin-3 by an ubiquitin-mediated mechanism in association with 
the proteasome (Warrick et al., 2005). However in a MJD lentiviral rat model the 
overexpression of normal ataxin-3 did not mitigate the mutant ataxin-3 induced 
neurodegeneration and even aggravated inclusion generation (Alves et al., 2010).  

Several studies have revealed the importance of protein-protein interactions in 

understanding the normal function of the disease-causing protein (Steffan et al., 2001; 

Yoshida et al., 2002; Chen et al., 2004; Goehler et al., 2004; Ravikumar et al., 2004; Kaytor et 

al., 2005; Tsuda et al., 2005). Recently, the normal activity of ataxin-2 was shown to be 

important to MJD neurodegeneration, suggesting that toxicity of one polyglutamine disease 

protein could be modulated by the normal activity of another (Lessing and Bonini, 2008). 

The protein-protein interaction and alteration of the activity of causative proteins was also 

reported for other neurodegenerative disorders and is therefore an important subject of 

research (Lim et al., 2006; Zoghbi and Orr, 2009; Elden et al., 2010). 

8.3 Dysregulation of transcription 

Expanded polyglutamine proteins tend to accumulate in the nucleus, where the high 
concentration of solutes creates favorable conditions for interaction with transcriptional 
factors or cofactors (Yamada et al., 2000; Lim et al., 2008). Furthermore, many of the proteins 
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affected by polyglutamine expansion, such as ataxin-1 or ataxin-2 either interact or function 
as transcription factors (Fernandez-Funez et al., 2000; Lim et al., 2006; Lastres-Becker et al., 
2008) suggesting that transcriptional dysregulation may be a central feature of the 
neurodegenerative mechanism in the polyglutamine disorders (Steffan et al., 2001; Nucifora 
et al., 2001; Minamiyama et al., 2004; La Spada et al., 2001; Hughes et al., 2001; Yamada et al., 
2000; Lim et al., 2008; Godavarthi et al., 2009; Yamanaka et al., 2008, Riley and Orr, 2006). 
Accordingly, the transcription factor TBP and transcription co-factor CBP were shown to be 
incorporated into nuclear inclusions of polyglutamine-expanded ataxin-3 (McCampbell et 
al., 2000). Thus, it is possible that mutant polyglutamine ataxin-3 causes transcriptional 
dysregulation and resulting neurotoxicity. Downregulation of mRNA levels of genes 
involved in glutamatergic signaling and signal transduction, but no neurological phenotype, 
were reported in a MJD transgenic mouse expressing ataxin-3 with 79 CAG repeats in brain 
regions affected in the disease. This suggests the involvement of transcriptional abnormality 
in initiating the pathological process of MJD, with expanded ataxin-3 disrupting the normal 
pattern of gene transcription and contributing to cerebellar dysfunction and ataxia (Chou et 
al., 2008). 

8.4 Ubiquitin-proteasome system dysfunctions 

Cells produce a large amount of misfolded proteins, thus protein degradation systems like 
the UPS or autophagy are crucial to maintain cellular function and viability. A dysfunction 
in the UPS leads to the accumulation of misfolded proteins, resulting in dysfunction and cell 
death in neurons. The normal function of ataxin-3 has been linked to protein surveillance 
pathways (Chai et al., 2004). Ataxin-3 acts as polyubiquitin-binding protein, recruiting poly-
ubiquitinated substrates through a carboxy-terminal cluster of ubiquitin interaction motifs 
(Burnett et al., 2003; Raoul et al., 2005). A loss of mutant ataxin-3 function could affect the 
UPS and in that way enhance neuronal degeneration and death. Moreover, mutant ataxin-3 
nuclear inclusions are ubiquitinated and contain proteasome components, suggesting that 
the UPS may be disrupted by expanded protein (Paulson et al., 1997b; Chai et al., 1999b). 

8.5 Autophagy impairment 

There are strong evidences that proteins with a mutant polyglutamine tract are inefficiently 
degraded by the UPS but could be degraded by macroautophagy, a mechanism with a 
crucial role in degradation of insoluble aggregate-prone proteins and essential for neuronal 
survival (Cuervo, 2004a, b; Williams et al., 2006). Recently, our group has shown that 
important autophagy proteins are sequestered by mutant ataxin-3 inclusions in an MJD 
lentiviral model and abnormally accumulate in MJD patient’s brain (Nascimento-Ferreira et 
al., 2011). As it happens with the UPS system a disruption in the autophagy system could 
enhance neurodegeneration and cell death induced by mutant ataxin-3. Accordingly, 
impairments in the autophagy pathway have been reported in other neurodegenerative 
diseases (Shibata et al., 2006, Pickford et al., 2008; Crews et al., 2010), as well as a decrease of 
activity with ageing (Cuervo, 2004b; Vellai, 2009). 

8.6 Mitochondrial dysfunction 

There is growing evidence that mitochondrial dysfunction may play important roles in 
neurodegeneration (Knott et al., 2008), and could be implicated in the pathogenesis of MJD 
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(Yu et al., 2009) and other polyglutamine diseases (Browne et al., 1997; Panov et al., 2002; 
Cui et al., 2006). In addition, mitochondrial dysfunction has been implicated in ageing, 
which is a major risk factor of progressive neurodegenerative diseases. Oxidative stress is 
induced by reactive oxygen species (ROS) or free radicals, and increasing with age, and 
possibly diminished capacity to deal with oxidative stress may cause modification of 
cellular macromolecules and lead to cell damage. 

8.7 Impairment of axonal transport 

The function and survival of neurons demands continuous axonal transport of mRNA and 
proteins. Several studies suggest that axonal transport disturbance is an attractive 
hypothesis that could explain the vulnerability of neurons (Gunawardena et al., 2003; 
Szenbenyi et al., 2003; Caviston et al., 2007). However, currently there is no sufficient 
evidence to confirm this hypothesis in polyglutamine diseases. Recently, the presence of 
inclusions in axons was identified in several brain regions of MJD patients affected by 
neurodegeneration (Seidel et al., 2010). It was hypothesized that the presence of axonal 
inclusions could be detrimental to axonal transport mechanisms and thereby contribute to 
degeneration of nerve cells in MJD. 

8.8 Dysregulation of intracellular Ca2+ homeostasis 

Intracellular Ca2+ homeostasis is important for the function and survival of neurons, and it 
has become clear that cellular Ca2+ overload, or perturbation of intracellular Ca2+ 
compartmentalization, can cause cytotoxicity and trigger either apoptotic or necrotic cell 
death (Orrenius et al., 2003). Several studies proposed that deranged Ca2+ signaling might 
play an important role in Huntington’s disease (Tang et al., 2003; 2005; Bezprozvanny and 
Hayden, 2004; Wu et al., 2006). Abnormal Ca2+ homeostasis has been reported in 
mitochondria isolated from lymphoblast’s from patients and from brains of the YAC72 HD 
mouse model (Hodgson et al., 1999; Panov et al., 2002). This Ca2+ role could also be 
important in other polyglutamine diseases, as it is generally assumed that many of these 
diseases share a common pathogenic mechanism (Cummings and Zoghbi, 2000; Gusella and 
MacDonald, 2000; Zoghbi and Orr, 2000; Gatchel and Zoghbi, 2005). Accordingly, recent 
evidence suggests that abnormal neuronal Ca2+ signaling might also contribute to 
pathogenesis in SCAs (Bezprozvanny, 2009; Kasumu and Bezprozvanny, 2010). In MJD, data 
also suggest that deranged neuronal Ca2+ signaling plays a significant role in pathology 
onset and progression (Chen et al., 2008). Mutant ataxin-3 has been shown to specifically 
bind to and activate an intracellular calcium channel, similar to huntingtin. Moreover, long-
term feeding of MJD-transgenic mice with a Ca2+ stabilizer (dantrolene) alleviated age-
dependent motor coordination deficits and prevented neuronal loss in pontine nuclei and 
substantia nigra regions (Chen et al., 2008). 

9. Therapeutic strategies in MJD 

Expansion of the polyglutamine tract of ataxin-3 initiates a cascade of events that include 
the accumulation of insoluble inclusions and culminates in degeneration of specific 
neurons. The strategies that can be used to treat MJD or other polyglutamine diseases can 
be grouped into five main approaches: i) reducing the levels of expanded proteins, ii) 
preventing mutant ataxin-3 cleavage, oligomerization and aggregation, iii) activating the 
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clearance mechanisms, iv) targeting a specific cellular mechanism and v) promoting 
neuroprotection (Figure 4). 

 

Fig. 4. Potential therapeutic strategies to Machado-Joseph disease. Expansion of the 
polyglutamine tract of ataxin-3 initiates a cascade of events that culminates with the 
accumulation of insoluble inclusions and degenerations in selected neurons. The strategies 
that can be used to treat MJD or other polyglutamine diseases can be grouped into five 
approaches: i) reducing the levels of expanded proteins (using gene silencing by RNAi-
based strategies), ii) preventing mutant ataxin-3 cleavage, oligomerization and aggregation 
(inhibiting proteolysis, using aggregation inhibitors or preventing the nuclear transport), iii) 
activation of the clearance mechanisms (upregulation of UPS and autophagy), iv) targeting a 
specific cellular mechanism (increase transcription, stabilize Ca2+ homeostasis or inhibit 
oxidative stress) and v) neuroprotection strategies (using drugs, proteins or factors to 
protect neurons). 

www.intechopen.com



 
Machado-Joseph Disease / Spinocerebellar Ataxia Type 3 

 

115 

9.1 RNA interference-based therapeutics 

Although several approaches could be envisioned to treat MJD and other polyglutamine 
diseases, the most direct solution to counter these diseases pathogenesis is to reduce the 
expression of the mutant allele (Kim and Rossi, 2007). RNA interference (RNAi) is a 
powerful tool for selective knockdown of gene expression. Gene silencing by RNAi has been 
successfully used to downregulate the expression of mutant genes and rescue phenotype in 
various neurodegenerative diseases, including Huntington’s disease (Harper et al., 2005; 
Rodriguez-Lebron et al., 2005; DiFiglia et al., 2007, van Bilsen et al., 2008; Lombardi et al., 
2009; Pfister et al., 2009), familial forms of amyotrophic lateral sclerosis (ALS) (Raoul et al., 
2005; Ralph et al., 2005; Azzouz, 2006), SCA1 (Xia et al., 2004), and MJD (Miller et al., 2003; 
Alves et al., 2008a, 2010; Hu et al., 2009).  

However, a major problem of gene silencing may be the lack of discrimination between 
normal and mutant forms of the causative protein. In some diseases partial silencing of 
normal protein could be tolerated; for example in HD transgenic animal models silencing of 
mutant huntingtin and 75% of endogenous protein led to behavioral enhancement 
(Boudreau et al., 2009). However, it has been reported that in cellular MJD models absence 
of wild-type ataxin-3 leads to cytoskeletal disorganization and increased cell death 
(Rodrigues et al., 2010). This would suggest that for some polyglutamine disorders it might 
be prudent to preserve the wild-type protein, as prolonged full knockdown of normal 
protein function could be harmful. This would demand specific targeting of the mutant 
allele for RNAi.  

It was first demonstrated in cell models that RNAi species could be engineered to 

specifically silence the causative genes while preserving the wild-type, which differed in a 

single nucleotide (Miller et al., 2003). More recently, our group showed both in vitro and in a 

rat model of MJD that lentiviral-mediated silencing of the mutant human ataxin-3 was 

efficient and selective, allowing preservation of wild-type ataxin-3 (Alves et al., 2008a). 

Specific silencing has also been later reported to SNPs targeting ataxin-7 in SCA7 

(Scholefield et al., 2009) and huntingtin in Huntington’s disease (Zhang et al., 2009; Hu et al., 

2009). This allele-specific silencing of ataxin-3 significantly decreased the severity of the 

neuropathological abnormalities associated with the disease by targeting a single nucleotide 

polymorphism (SNPs) that is present in more than 70% of the patients with MJD (Stevanin 

et al., 1995; Gaspar et al., 1996). These data support the therapeutic potential of RNAi for 

MJD. However, this therapy would benefit ~70% of MJD patients at best. Whether silencing 

not discriminating between wild type and mutant alleles would be safe and effective was 

recently investigated, by either overexpressing or silencing wild-type ataxin-3 in a rat model 

of MJD. It was shown that (i) overexpression of wild-type ataxin-3 did not protect against 

MJD pathology, (ii) knockdown of wild-type ataxin-3 did not aggravate MJD pathology and 

that (iii) non-allele-specific silencing of ataxin-3 strongly reduced neuropathology in a rat 

model of MJD. These findings indicate that therapeutic strategies involving non-allele-

specific silencing to treat MJD patients may also be safe and effective (Alves et al., 2010). 

9.2 Preventing the cleavage of ataxin-3 

In MJD, it was proposed that production of a cleavage fragment of mutant ataxin-3 
contributes to neurotoxicity (Ikeda et al., 1996; Goti et al., 2004; Colomer-Gould, 2005; 
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Haacke et al., 2006). Thus, blocking the proteases involved in ataxin-3 cleavage and 
decreasing the concentration of the cleavage fragment bellow a critical level in the brain 
could be an effective strategy for MJD treatment. This approach has been used for other 
neurodegenerative diseases, including Alzheimer (Citron, 2004) and Huntington’s diseases 
(Ona et al., 1999; Gafni et al., 2004) and therefore could also be a therapeutic strategy for 
MJD (Tarlac and Storey, 2003). Nevertheless, the natures of the protease and of the cleavage 
fragment still need investigation. 

9.3 Acceleration of the degradation of misfolded proteins 

The acceleration of the proteolysis mechanisms (UPS and autophagy machinery) could 
promote mutant ataxin-3 degradation and probably prevent or delay the MJD progression. 
Overexpression of chaperones has been shown to aid in the handling of misfolded or 
aggregated polyglutamine-expanded ataxin-3 and suppress polyglutamine aggregation with 
a parallel decrease in toxicity (Chai et al., 1999b). Thus the induction of such molecular 
chaperones can be envisaged as a strategy for therapy of polyglutamine diseases (Nagai et 
al., 2010; Robertson et al., 2010). Accordingly, the use of chemical chaperones such as the 
organic solvent dimethyl sulfoxide – DMSO, cellular osmolytes glycerol, trimethylamine N-
oxide – TMAO, and ectoine reduce aggregate formation and cytotoxicity induced by 
truncated expanded ataxin-3 (Yoshida et al., 2002), alters subcellular localization of 
inclusions and reduces apoptotic cell death induced by mutant ataxin-3 (Furusho et al., 
2005). 

It was also shown that overexpression of UPS-related factors or proteins (e.g. E64 or CHIP) 
increase ubiquitination and degradation rate and decrease aggregation and cell death 
(Matsumoto et al., 2004; Jana et al., 2005; Miller et al., 2005). Therefore, overexpression of 
these proteins could be a molecular approach for therapy of MJD. It was shown that CRAG 
(guanosine triphosphatase) acts as an activator of promylocytic leukaemia protein-
associated ubiquitin ligase and leads to the degradation of polyQ through the ubiquitin-
proteasome pathway (Qin et al., 2006). Because the expression levels of CRAG decrease in 
the adult brain (Qin et al., 2006), it was suggested that a reduced level of CRAG could 
underlie the onset of polyglutamine diseases. In fact, lentiviral-mediated overexpression of 
CRAG in Purkinje cells of a transgenic mice model extensively cleared polyQ aggregates 
and re-activated dendritic differentiation, resulting in a striking rescue from ataxia 
(Torashima et al., 2008). It was also suggested that the activity of normal ataxin-3 could 
provide a therapeutic approach to MJD, enhancing the cellular pathways in which it 
participates (Warrick et al., 2005). However, in a lentiviral-based rat model for MJD as well 
as in double-transgenic mice, the overexpression of normal ataxin-3 did not decrease the 
pathological abnormalities induced by mutant ataxin-3 (Alves et al., 2010; Hübener et al., 
2010). 

Another possible therapeutic approach to MJD and to other polyglutamine diseases could 
be the up-regulation of autophagy, leading to a selective clearance of the mutant protein. 
Rapamycin, an activator of the autophagy pathway alleviated neurodegeneration in 
Drosophila and in a transgenic mouse model of HD. However, this drug failed to prolong life 
span in a mouse model (Ravikumar et al., 2004). In MJD, it was recently shown that the 
administration of a rapamycin esther improves motor coordination in a transgenic model of 
MJD (Menzies et al., 2010). The rapamycin esther reduced the number of aggregates in the 
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brains of transgenic mice and decreased the levels of cytosolic soluble mutant ataxin-3, 
while endogenous wild-type protein levels remained unaffected.  

Recently, our group showed that lentiviral-mediated overexpression of beclin-1, a crucial 
protein in early and late steps of autophagy, led to a stimulation of autophagic flux, mutant 
ataxin-3 clearance and overall neuroprotective effects in neuronal cultures and in a 
lentiviral-based rat model of MJD (Nascimento-Ferreira et al., 2011). The same study found 
an abnormal expression of endogenous autophagy markers, accumulation of 
autophagosomes and decreased levels of beclin in the brain of MJD patients. Overall, these 
data suggest that up-regulation of UPS or autophagy can be a therapeutic option for MJD 
and for other polyglutamine diseases. 

9.4 Inhibition of nuclear transport  

It has been shown that ataxin-3 translocates to the nucleus, and that the polyglutamine 
expansion is not essential for this transport (Tait et al., 1998). The resulting presence of 
ataxin-3 in the nucleus has been shown to drastically aggravate the pathology in Machado-
Joseph disease (Bichelmeier et al., 2007). Therefore, inhibition of nuclear transport may slow 
the disease progression, and might be sufficient to ameliorate the disease symptoms, and 
thus could be explored as therapeutic approach for MJD (Breuer et al., 2010). 

9.5 Prevention of protein misfolding, oligomerization and aggregation 

Protein misfolding, oligomerization, and formation of insoluble inclusions represent a 

common physiological response to pathogenic proteins. Thus, different research groups 

have developed high-throughput screening assays aiming at the discovery of molecules 

with selective binding affinities for polyglutamine expanded proteins, with the ability to 

modulate their pathogenic properties and potential therapeutic applications (Desai et al., 

2006; Lansbury and Lashuel, 2006). Several compounds have been identified as potential 

inhibitors of polyglutamine aggregation (Heiser et al., 2000, 2002; Apostol et al., 2003; 

Sanchéz et al., 2003; Tanaka et al., 2005; Wolfgang et al., 2005; Herbst and Wancker, 2006). 

The prevention of aggregation and oligomerization by polyglutamine disease can also be 

promoted by modulation of molecular chaperones (Nagai et al., 2010; Roberston et al., 2010). 

The Hsp90 inhibitor geldanamycin suppresses aggregation of polyQ-expanded mutant 

huntingtin through induction of endogenous molecular chaperones (Sittler et al., 2001). In 

MJD Drosophila models, it was shown that the administration of a less toxic derivative of 

geldanamycin suppresses polyQ-induced neurodegeneration through the induction of 

multiple endogenous molecular chaperones (Fujikake et al., 2008). 

Another therapeutic approach involves the use of small peptides or molecules with the 
ability to modulate protein folding, stabilize proteins in their native conformation, and 
prevent or inhibit aggregation (Tanaka et al., 2005). Several compounds proved to be 
suitable in preventing polyglutamine proteins aggregation, mainly for Huntington Disease 
(Table 2). In a screening of 16,000 compounds a small molecule (IC50) that inhibits 
polyglutamine aggregation in HD neurons and suppresses neurodegeneration in vivo was 
found (Zhang et al., 2005). In a MJD Drosophila model a tandem repeat of the polyglutamine 
binding peptide QBP1, which preferentially binds to polyglutamine stretches, has been 
shown to decrease aggregate formation and rescue survival (Nagai et al., 2003). More 
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recently a high-content chemical and RNAi screening in a Drosophila primary neuronal 
culture of HD model identified several compounds that suppress mutant huntingtin 
aggregate formation (Schulte et al., 2011).  

 

Compound Disease tested Study 

Geldanamycin Huntington Disease Sittler et al., 2001 

17-(allylamino)-17-
demethoxygeldanamycin (17AAG) 

Machado-Joseph Disease Fujikake et al., 2008 

Congo red Huntington Disease Frid et al., 2007 

C2-8 Huntington Disease Chopra et al., 2007 

Trehalose Huntington Disease Tanaka et al., 2005 

GW5074 Huntington Disease Schulte et al., 2011 

Juglone Huntington Disease Schulte et al., 2011 

Radicicol Huntington Disease Schulte et al., 2011 

Rapamycin Huntington Disease Schulte et al., 2011 

Rapamycin esther Machado Joseph disease Menzies et al., 2010 

Camptothecin Huntington Disease Schulte et al., 2011 

Etoposide Huntington Disease Schulte et al., 2011 

Ouabain Huntington Disease Schulte et al., 2011 

Proscillaridin A Huntington Disease Schulte et al., 2011 

Ethacrynic acid Huntington Disease Schulte et al., 2011 

IC50 Huntington Disease Zhang et al., 2005 

Table 2. Compounds that have shown to prevent or inhibit polyglutamine proteins 
aggregation. 

9.6 Targeting transcriptional dysfunction 

Polyglutamine-expanded ataxin-3 (as other polyglutamine expanded proteins) has been 
shown to repress transcription. Ataxin-3 acts through distinct mechanisms involving both the 
polyglutamine-containing C-terminus and the N-terminus of ataxin-3 (Li et al., 2002). 
Transcriptional dysregulation has been suggested to play a central role in neurodegenerative 
mechanisms of the polyglutamine disorders (Chou et al., 2008). The overexpression of 
transcription factors that interact with polyglutamine diseases reduces the cytotoxicity of 
mutant proteins (Dunah et al., 2002; Taylor et al., 2003). Moreover, it was shown that the use of 
several reagents that increase transcription reduce the toxicity of expanded polyglutamine 
(Steffan et al., 2001; Ferrante et al., 2003, 2004; Hockly et al., 2003; Gardian et al., 2005; 
Shimohata et al., 2005). Recently, it was shown that regulation of transcriptional activity 
through an inhibition of histone hypoacetylation (Chou et al., 2011) might be a promising 
therapeutic intervention for MJD. Histone acetylation, which is controlled by histone 
acetyltransferase and histone deacetylase (HDAC), plays an important role in regulating 
transcriptional activity (Kurdistani et al., 2004). The H3 and H4 histones were hypoacetylated 
in the cerebellum of MJD transgenic mice, which displayed transcription downregulation and 
ataxic symptoms. Daily administration of a HDAC inhibitor (sodium butyrate) reversed 
histone hypoacetylation and transcriptional downregulation in the cerebellum of the MJD 
transgenic mice, delaying the onset of ataxic symptoms, ameliorated the neurological 
phenotype and improved the survival rate of the mice (Chou et al., 2011). 
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9.7 Targeting the calcium homeostasis 

It has been shown that deranged calcium signaling might play an important role in MJD 

pathology (Chen et al., 2008). The same study found that feeding a MJD transgenic mice 

with dantrolene, a clinically relevant stabilizer of intracellular Ca2+ signaling, improved 

motor performance and prevented neuronal cell loss in pontine nuclei and substantia nigra 

regions. Therefore, calcium-signaling stabilizers such as dantrolene may be considered as 

potential therapeutic drugs for the treatment of MJD patients. 

9.8 Targeting mitochondrial dysfunctions 

Several studies have shown that administration of antioxidants ameliorates motor deficits 

and prolongs survival in transgenic mouse model of HD (Ferrante et al., 2002). Moreover, 

drugs that improve transcriptional regulation of genes necessary for energy metabolism also 

improve HD motor phenotype (Hathorn et al., 2011). In MJD, evidences point to a role of 

mitochondrial dysfunction in MJD pathogenesis (Yu et al., 2009). Decreased mitochondrial 

DNA copy numbers were found in mutant cells stably transfected with ataxin-3 with 78 

CAG repeats and in MJD patients, compared to normal controls. Furthermore, 

mitochondrial DNA depletion was higher in MJD patients compared with that in normal 

individuals. Overall, mutant ataxin-3 may influence the activity of enzymatic components to 

remove O2* and H2O2 efficiently and promote mitochondrial DNA damage or depletion, 

which leads to dysfunction of mitochondria (Yu et al., 2009). Therefore, therapies targeting 

mitochondrial dysfunction in MJD should be further investigated. 

9.9 Neuroprotection 

The possibility of administration of drugs or molecules with neuroprotective properties in 

neurodegenerative diseases has also been explored. Many research groups have 

investigated the use of neurotrophic factors for therapy of polyglutamine disorders over the 

last decade (Bensadoun et al., 2000; de Almeida et al., 2001; Zala et al., 2004; Xie et al., 2010). 

In HD the BDNF supply to striatal neurons is compromised. Therefore delivery of this factor 

has been investigated as a replacement therapy for the missing factor (Zuccato et al., 2001). 

BDNF replacement was later shown to enhance the motor phenotype (Canals et al., 2004), 

and BDNF overexpression prevented loss and atrophy of striatal neurons and motor 

dysfunction (Xie et al., 2010), both in in HD transgenic mice. 

Studies in mouse models of Alzheimer’s and Parkinson’s diseases found that caffeine could 

alleviate pathological signs and behavior deficits in these neurodegenerative disease 

paradigms, by antagonizing A2A adenosine receptors (Arendash and Cao, 2010; Prediger, 

2010; reviewed in Cunha and Agostinho, 2010). Moreover, administration of caffeine and 

other stimulants in orexin/ataxin-3 transgenic narcoleptic mice induced an increase in 

motor activity but the effects on neuropathology remain to be investigated (Okuro et al., 

2010) and should be further investigated in MJD models.  

Several evidences suggest that neuroprotective compounds could be also explored as a 

therapeutic strategy in MJD and the drug ability of some of these compounds may 

contribute to earlier access of patients to much needed disease-modifying therapies.  
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