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1. Introduction 

Dimension in the range of 1 to 100 nm, is called the nano regime. In recent years, 
nanoparticles/quantum dots are in a class of magnetic nanostructures (Aktaş et al., 2003, 
2006; Kartopu & Yalçın, 2010). Nanoparticles (NPs) have been steadily interesting in Physics, 
Chemistry, Biology, Biomedicine, Spintronics, etc. As the dimensions of magnetic NPs 
decrease down to the nanometer scale, these core-surface NPs start to exhibit new and 
interesting physical properties mainly due to quantum size effects. Even the intrinsic 
physical characteristics of NPs are observed to change drastically compared to their 
macroscopic counterparts. The potential applications of NPs are very attractive for magneto-
sensor, bio-sensor, magneto-electronics, data storage media, computer hard disks, 
microwave electronic devices, nano-transistors, etc. Especially, the studies of core-surface 
NPs are extremely important for technology because of transmission of data at high density 
to optical computer, nanorobot to assemble, compose rigid disk. The nanoparticles have 
relevance to thin film devices in the new breed of magnetoelectronics, spin-valve, spin-
transistors, spin-dependence tunneling devices and etc. (Babin, et al., 2003). The hysteresis 
in fine magnetic particles applied to new technologies such as Magnetic Random Access 
Memory (MRAM).  

In generally, a nanoparticle is divided into the inner, outer and intermediate regions. These 
zones are called core (C), surface (S) and core-surface (CS), respectively. The size effects of 
core-surface NPs are very important for technological and biomedicine applications 
(Fraerman et al., 2001; Pankhurst et al., 2003). Especially, superparamagnetic (single-
domain) NPs are important for non surgecial interfere of human body. The ferromagnetic 
(FM) orders in magnetic systems were dominated as mono-domain (or single-domain) 
nanoparticles consisting of FM surface and antiferromagnetic (AFM) core regions which 
couple with each other (Rego & Figueiredo, 2001; Leite & Figueiredo, 2004). At the lower 
temperatures, the FM surface and AFM core are only ordered in the noninteracting 
(monodomain) NPs. Stoner-Wohlfarth (Stoner & Wohlfarth, 1948) and Heisenberg model 
(Heisenberg, 1928) to describe the fine structure were fistly used in detail. Magnetic 
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evolutions with temperatures (Babin, et al., 2003; Szlaferek, 2004; Usov & Gudoshnikov, 
2005), thermodynamic properties (Vargas et al., 2002) and experimental techniques 
(Wernsdorfer et al., 1995; Wernsdorfer et al., 2000) were performed by different type works 
for the core-surface NPs. A simple (Bakuzis & Morais, 2004) and the first atomic-scale 
models of the ferrimagnetic and heterogeneous systems in which the exchange energy plays 
a central role in determining the magnetization of the NPs, were studied (Kodama et al., 
1996, 1999; Kodama & Berkowitz, 1999).  

Ising models and real magnets have provided a rich and productive field for the interaction 
between theory and experiment over the past 86 years (Ising, 1925; Peierls, 1936). Ising 
models (Erdem, 1995; Keskin, & Erdem 1997; Erdem & Keskin, 2001; Erdem, 2009; Erdem, 
2008; Chen & Levy, 1973) and thier variants such as Blume-Capel (Blume, 1966; Capel, 1966; 
Bakchich, et al., 1994), Blume-Emery-Griffiths (Blume, et al., 1971; Achiam, 1985; Hoston, & 
Berker, 1991; Bakkali, 1996; Goveas & Mukhopadhyay, 1997; Keskin, et al., 1999; Temizer, 
2008) and mixed spin (Benayad & Dakhama 1997; Kaneyoshi, 1998; Albayrak, & Yigit, 2005; 
Albayrak, & Yigit, 2006; Albayrak, 2007; Albayrak, 2007; Deviren, et al., 2009) models were 
regarded as theoretical simplifications, designed to model the essential aspects of 
cooperative system (Kikuchi,1951) without detailed correspondence to specific materials. 

In the scope of this chapter, we give a detailed analysis for both spin 1 /2S  and 1S   
Ising models of homegeneous and core-surface composite NPs to describe the magnetic 
properties of these particles. These models are based on the pair approximation in the 
Kikuchi version (Kikuchi, 1974; Keskin, 1986; Erdinç & Keskin, 2002; Yalçın, et al. 2008, 
Özüm, 2010; Çiftçi, 2011). Incorporating the pair correlations between the spins inside the 
NPs, we calculated the free energy and minimized with respect to pair variables to obtain 
the field-cooled magnetization. The field cooling magnetization (M) curves of homogeneous 
and composite NPs are given as a function of the reduced temperature with different radius 
and different type lattices. Hysteresis loops and coercive fields with their linear fit to the 
data were plotted as a function of radius and temperature of different NPs. We compared 
our result with other works (Kaneyoshi, 2005; Kodama, 1999; Usov & Gudoshnikov, 2005). 

2. Theoretical model 

2.1 Ising model  

Ising model, which was introduced in the field of magnetism, is one of the most studied 
models in modern statistical physics. Although its greatest success during the last century 
has been in the theory of phase transitions, the model today is viewed as a mathematical 
structure which can represent a variaty of different physical phenomena. In this section, we 
give a brief summary for the basics of the model before its application to the nanoparticle 
(NP) magnetism. 

Ising model is considered on a regular lattice where each interior site has the same number 
of nearest-neighbour sites. This is called the coordination number of the lattice and will be 
denoted by  . The system under consideration is composed of the magnetic atoms (also 
called the spins) located at the lattice sites. It is assumed that, in the thermodynamic limit, 
boundary sites can be disregarded and that, with N  sites, the number of nearest-neighbour 
site pairs is 2N . The standard Hamiltonian for the the simplest Ising model is given by 
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   ( )i i j i j
ij ij

S J S S h S S      , with 1iS   ,   (1) 

where h is the external magnetic field at the site i and the summation is performed for 
nearest-neighbour sites. J is the exchange interaction between neighbouring sites ij . Two 
distinctive cases corresponding to different signs of intersite interaction is considered, i.e., 

0J  (ferromagnetic (FM) coupling) and 0J  (antiferromagnetic (AFM) coupling). The 
fractions of 1iS   spins given by iX are called the point (or state) variables. The iX  are 
normalized by 

2
1

1ii
X


 . The long-range order parameter in the model is called the 

magnetization ( )M and it is defined by 1 2M X X  . From this definition and the 
normalization condition the point variables can be written as 

 1
1

(1 )
2

X M  , 2
1

(1 )
2

X M  .  (2) 

On the other hand, Eq. (1) may be extended by allowing values 0, 1, 2,...,s S    for the 
variables. It is then possible to consider higher order interactions such as 2 2

i jij
K S S or a 

chemical potential such as 2
ii

S . These generalizations are regarded as extensions of the 
Blume-Emery-Griffiths (BEG) model (Blume et al., 1971). Recently, there have been many 
theoretical studies of mixed spin Ising systems. These are of interest because they have less 
translational symmetry than their single-spin counterparts since they consist of two 
interpenetrating inequivalent sublattices. The latter property is very important to study a 
certain type of ferrimagnetism, namely molecular-based magnetic materials which are of 
current interest (Kaneyoshi et al., 1998).  

2.2 Pair approximation  

In the pair approximation, we consider the pair correlations between the spins. Besides the 
point variables ( )iX , we introduce new variables ( )ijY , indicating the average number of 
the states in which the first member of the nearest-neighbour pair is in state i  and the 
second member in state j . These will be called the pair or bond variables. The bond 
variables are normalized by 

, 1
1

n
iji j

Y  and related to the state varibales by the relations 

1
n

i ijj
X Y . Here n  is the number of spin states in the given spin S  model. The 
interaction energy E  and entropy ES  can be written in terms of ijY as 

 
,2

n

ij ij
i j

E N Y
   ,   (3)  

 
, 1 , 1

( 1) ln( ) ln( )
2

n n

E i i ij ji
i j i j

S Nk X X Y Y


 

 
   
 
 

  ,   (4) 

where 1 / kT   ( k  Boltzmann’s constant and T  temperature). In Eq. (3), the parameters 

ij  are called the bond energies for the spin pairs ( , )i j and determined from Eq. (1). The free 
energy per site   can be found from 
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 ( )E
F

E TS
N N

 
    .  (5) 

For the system at equilibrium, the minimization of Eq. (5) with respect to ijY  ( / 0ijY   ) 
leads to the following set of self-consistent equations: 

 1
( ) ij ij

ij i j

e
Y X X e

Z Z

   ,  (6) 

where ( 1) /     and Z  is the partition function:  

 
, 1

exp(2 / )
n

ij
i j

Z e 


   .  (7) 

In Eq. (7),   is introduced to maintain the normalization condition. Applications of the 
above formulation to 1 / 2S   and 1S   Ising systems can be found in many works in the 
literature (Meijer et al., 1986; Keskin & Meijer, 1986; Keskin & Erdinç, 1995; Erdinç & Keskin, 
2002). These applications are summerized for comparison in Table 1.  
 

 1 2S   1S   

Spin state variables  iX  1 2,X X  1 2 3, ,X X X  

Spin values  iS  1, 1   1, 0, 1   

Bond variables 
( , )ij i jY S S  

11 12

21 22

( 1, 1), ( 1, 1)

( 1, 1), ( 1, 1)

Y Y

Y Y

   
   

 
11 12 13

21 22 23

31 32 33

( 1, 1), ( 1,0), ( 1, 1)

(0, 1), (0,0), (0, 1)

( 1, 1), ( 1,0), ( 1, 1)

Y Y Y

Y Y Y

Y Y Y

    
 

    
 

Normalization 
2 2

1 , 1

1, 1i ij
i i j

X Y
 

    
3 3

1 , 1

1, 1i ij
i i j

X Y
 

    

Relations between point 
variables and 
pair variables 

2

1
i ij

j

X Y


  
3

1
i ij

j

X Y


  

1 11 12

2 21 22

X Y Y

X Y Y

 
 

 
1 11 12 13

2 21 22 23

3 31 32 33

X Y Y Y

X Y Y Y

X Y Y Y

  
  
  

 

Avarage 
magnetization ( iM S   )

1 2M X X   1 3M X X   

 11 12 21 22M Y Y Y Y     
 

11 12 13

31 32 33

M Y Y Y

Y Y Y

  

  
 

Quadrupole moment 
2

iQ Q S       
––––– 

1 3Q X X   

11 12 13 31 32 33Q Y Y Y Y Y Y       

Table 1. Comparison of the 1 2S   and 1S   Ising models under the pair approximation. 
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3. Magnetic properties of 1 / 2S   and 1S   Ising nanoparticles 

The magnetic particles become single domain below a critical size in contrast with the usual 
multidomain structure of the bulk materials. Therefore, in the scope of this section, we study 
size effects and magnetic properties of monodomain NPs manifestations. We consider a 
noninteracting monodomain NP with Ising spins on both hexagonal and square lattices for 
any two-dimensional (2D) regular arrays which can also be extended to hexagonal closed 
packed (hcp) and simple cubic (sc) lattices for the three-dimensional (3D) case as in Fig.1. 
The shells and their numbers originate from the nearest-neighbor pair interactions for the 
hexagonal and square lattices in 2D. In this structure, number of shells for hexagonal and 
square lattices can be associated with radius ( R ) of the NPs. This behaviour can be seen 
explicitly in Fig. 2 for hexagonal lattice and in Fig. 3 for square lattice. The value of 
R includes number of shells and the size of a NP increases as the number of shells increses. 
Therefore, we have considered Ising spins in three parts that are core (C ), core-surface ( CS ) 
and surface ( S ) within the NP. Each of these parts contain core spin number ( CN ), core-
surface spin number ( CSN ) and surface spin number ( SN ), respectively. The total number 
of spins ( N ) in a single NP involves core and surface spin numbers, i.e. C SN N N  . The 
C  and S  spins interact ferromagnetically ( 0)J  or antiferromagnetically ( 0)J  . The 

1 / 2S  and 1S   Ising model Hamiltonians with dipol-dipol interaction ( )J  for a NP is 
given by  

 C CS S      ,  (8) 

with  

, ,

( )C C i j i j
i j i j

J S S h S S      , 

  
,

CS CS i j
i j

J S    ,  (9)  

 
, ,

( )S S i j i j
i j i j

J h         ,   

where CJ , CSJ and SJ represent exchange interactions for C , CS and S  atoms, 
respectively. If C CS SJ J J  , the NP is known as a homegeneous NP. It is called a composite 
NP when C CS SJ J J  , C CS SJ J J  , C CS SJ J J   or CS C SJ J J  . In Eqs. (9), iS is called 
the core spin values and i is the surface spin values. These variables take on the values 

1  for 1 / 2S   and 0, 1  for 1S   Ising systems.  

The interaction energies for 1 / 2S   and 1S   models of an Ising NP in 2D can be written 

shortly in term of ijY as 

 
,

( )C C CS CS S S
P ij P ij P ij ij

i j

E N N N Y      ,  (10) 
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where the numbers of spin pairs for C , CS and S  regions are defined by 
( 2)C

P C C CSN N N  , 2 2CS
P CS CSN N   and 2S

P S SN N  , respectively. Similarly C , 

CS , S  denote the coordination numbers for these regions. Since we consider the arrays of 
Ising spins for a structure made up of bigger particles in 2D, we choose 6C  , 2CS S    
for hexagonal lattice and 4C  , 0S  , 2CS   for square lattice, as depicted in Figs. 2 
and 3, respectively. The values of these numbers for both suructures in 2D are given in Table 
2. The expressions for the bond energies C

ij , CS
ij and S

ij  of three regions are found using 
Eq. (9) for both models, as listed in Table 3.  

 

Fig. 1. A spherical monodomain magnetic NP spaced coherently in a form of 3D arrays. The 
shape of a single NP consists of the hexagonal lattice. The dashed lines displayed shells of 
spins in a 2D finite arrays. The radius of NP ( R ) includes shell numbers. The insets exhibit 
coordination numbers (  ) of hexagonal closed packed (hcp) and simple cubic (sc) lattices in 
3D as well as hexagonal and square lattices in 2D structure. 

www.intechopen.com



Magnetic Properties and Size Effects of Spin-1/2 and Spin-1 
Models of Core-Surface Nanoparticles in Different Type Lattices 

 

547 

 
Fig. 2. Schematic representation of a NP on a hexagonal lattice in 2D exhibiting nine shells of 
spins. Small full coloured circles correspond to ten radius of the NP. Solid grey lines are 
number of the core-shell pairs. Solid coloured lines are number of shell pair (this line 
corresponds to core and shell number for 2R  ). 
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Fig. 3. Same as Fig. 2 but for the NP on square lattice in 2D. 

 

Lattice Type R 2 3 4 5 6 7 8 9 10 

Hexagonal 
Lattice in 2D 

CN  7 19 37 61 91 127 169 217 271 

SN  12 18 24 30 36 42 48 54 60 

CSN  9 15 21 27 33 39 45 51 57 
C
PN  12 42 90 156 240 342 462 600 756 

S
PN  12 18 24 30 36 42 48 54 60 

CS
PN  18 30 42 54 66 78 90 102 114 

Square Lattice in 
2D 

CN  5 13 25 41 61 85 113 145 181 

SN  8 12 16 20 24 28 32 36 40 

CSN  6 10 14 18 22 26 30 34 38 
C
PN  4 16 36 64 100 144 196 256 324 

CS
PN  12 20 28 36 44 52 60 68 76 

Table 2. Numbers of the spins and spin pairs within the C , CS and S  regions (Yalçın, et al., 
2008). 

www.intechopen.com



Magnetic Properties and Size Effects of Spin-1/2 and Spin-1 
Models of Core-Surface Nanoparticles in Different Type Lattices 

 

549 

 
 

Spin Model 

Pair 

Bond energy 
for Core 

( C
ij ) 

Bond energy for 
Core –Surface 

( CS
ij ) 

Bond energy 
for Surface 

( S
ij ) 

 
1 2S   

( 2n  ) 

11  2CJ h   CSJ  2SJ h   

12  CJ  CSJ  SJ  

21  CJ  CSJ  SJ  

22  2CJ h   CSJ  2SJ h   

1S   
( 3n  ) 

11  2CJ h   CSJ  2SJ h   

12  h  0  h  

13  CJ  CSJ  SJ  

21  h  0  h  

22  0  0  0  

23  h  0  h  

31  CJ  CSJ  SJ  

32  h  0  h  

33  2CJ h   CSJ  2SJ h   

Table 3. Bond energies for 1 2S   and 1S   models. 

Using Eq. (6) we obtain four self-consistent equations of ijY  for 1 / 2S  model of core-
surface NPs:  

  

   
   
   
   

11
11 1 1 11 11 11

12
12 1 2 12 12 12

21
21 2 1 21 21 21

22 2 2 22 22 22

1
exp ,

1
exp ,

1
exp ,

1
exp

C C CS CS S S
P P P

C C CS CS S S
P P P

C C CS CS S S
P P P

C C CS CS S S
P P P

e
Y X X N N N

Z Z
e

Y X X N N N
Z Z

e
Y X X N N N

Z Z
e

Y X X N N N
Z









   

   

   

   

     
 

     
 

     
 

     
 

22 .
Z

  (11) 

Similarly, nine self-consistent equations of ijY  for 1S   model of these particles are  
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   
   
   
   

11
11 1 1 11 11 11

12
12 1 2 12 12 12

13
13 1 3 13 13 13

21 2 1 21 21 21

1
exp ,

1
exp ,

1
exp ,

1
exp

C C CS CS S S
P P P

C C CS CS S S
P P P

C C CS CS S S
P P P

C C CS CS S S
P P P

e
Y X X N N N

Z Z
e

Y X X N N N
Z Z

e
Y X X N N N

Z Z
e

Y X X N N N
Z









   

   

   

   

     
 

     
 

     
 

     
 

   
   
   
   

21

22
22 2 2 22 22 22

23
23 2 3 23 23 23

31
31 3 1 31 31 31

32 3 2 32 32 32

,

1
exp ,

1
exp ,

1
exp ,

1
exp

C C CS CS S S
P P P

C C CS CS S S
P P P

C C CS CS S S
P P P

C C CS CS S S
P P P

Z
e

Y X X N N N
Z Z

e
Y X X N N N

Z Z
e

Y X X N N N
Z Z

Y X X N N N
Z









   

   

   

   

     
 

     
 

     
 

   


   

32

33
33 3 3 33 33 33

,

1
. exp .C C CS CS S S

P P P

e

Z
e

Y X X N N N
Z Z

    

 


     
 

  (12) 

Eqs. (11) and (12) are solved numerically using Newton-Raphson method and normalized 
magnetization ( M ) is easily calculated for both 1 2S   and 1S   models of homegeneous 
and core-surface composite NPs. Results are shown as the magnetization curves and 
hysteresis loops in Figs. 4–9. 

4. Result and discussions 

4.1 Magnetization  

The evolution of normalized magnetization ( )M  as a function of the reduced temperature 
( 0/Bk T J ) and particle size dependence of the transition temperature CT  from FM to 
paramagnetic (PM) phases for homogeneous and composite Ising NPs are shown in Figs. 4 
and 5, respectively. The magnetization curves in Fig. 4 are plotted for 1 2S   and 1S   
models of homogeneous NPs using the FM core ( 0 1J  , 1CJ  ), FM surface ( 0SJ J ) and 
FM core-surface ( 0CSJ J ) interactions and the curves in Fig. 5 are obtained for both models 
of the composite NPs based on FM core ( 0CJ J ), FM surface ( 0SJ J ) and AFM core-
surface ( 0CSJ J  ) interactions. In the plots, different values for the applied magnetic field 
are considered ( 0.0-0.1h  ). The solid curves in the figures correspond to hexagonal lattice 
while dotted ones denote the square lattice. As seen from the figures, the changes in the 
magnetization with the reduced temperature point out an interesting aspect for NPs on the 
hexagonal and square lattices in 2D. The magnetization curves are decreasing from one (1) 
to zero (0) value while the reduced temperature is increasing (Figs. 4(a), 4(b), 5(a), 5(b)). 
These decreases terminate at the phase transition temperature (or Curie temperature, CT ) 
from FM phase to PM phase for 0.0h  , seen in Figs. 4(c) and 5(c). To show the size 
dependence of the critical temperature we plot CT vs R  in Figs. 4(d) and 5(d). All critical 
temperature values follow a linear increase with the particle radius. With increase in the 
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particle radius it approaches to the Crue temperatures of the bulk materials. This is 
consistent with the mean-field approximation for the magnetic structure of Heisenberg NP 
(Usov & Gudoshnikov, 2005). On the other hand, it is interesting that composite 1 2S   and 

1S   Ising NPs show smaller transition temperatures than their corresponding 
homegeneous NPs. This can easily be seen by comparing the same coloured fits in Figs. 4(d) 
and 5(d).  

 

 

 

 

 

 

Fig. 4. Normalized magnetization ( M ) vs. reduced temperature ( 0/Bk T J  ) and particle size 
dependence of the transition temperature CT  from FM to PM phases for homogeneous 

1 2S   and 1S   Ising NPs on the hexagonal and square lattices. 0 1C CS SJ J J J     and 
0.0-0.1.h   
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Fig. 5. Same as Fig. 4 but for the core-surface composite NPs with 

0 01, 1.C S CSJ J J J J        

4.2 Hysteresis loops  

The magnetic field evolution of normalized magnetization (or hysteresis loops) for the 
homegeneous S 1/2  and S 1  Ising NPs which has different particle sizes and their 
corresponding coercive field vs. 2-R  variation are given Figs. 6 and 7, respectively. We 
consider a FM coupling in core 0( )CJ J , surface 0( )SJ J and core-surface 0( )CSJ J  
regions with 0 1J   on the hexagonal and square lattice structures. The hysteresis curves of 
small diameters, namely with radius 2,4,5R   in Figs. 6(a)-6(d), are approximately the 
same. These behaviours are called superparamegnetic (SP) regime. However, the loops 
strongly depend on the size of NP. The hysteresis curves of high diamater values change 
sharply, as also shown in Figs. 6(a)-6(d). Moreover, the hysteresis curves for this type of NPs 
are broadening while the diamater of NPs is increasing so that it approaches to bulk 
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materials. The size dependence of the coercive fields Ch  is determined from the hysteresis 
loops in Fig. 7. In Fig. 7, the full red and blue circles correspond to the curves obtained for 

2 9R   in the Figs. 6(a) and 6(c), respectively. Similarly, the open red and blue circles 
correspond to the curves obtained for 3 11R    and 4 10R    in Figs. 6(b) and 6(d), 
respectively. The straight solid and dotted lines are the results from a linear fit to the 
calculated data. From this fit, it is obvious that the coercive field ( Ch ) depends linearly on 

21 R . 

 

Fig. 6. (a) Hysteresis loops of a homegeneous S 1/2  Ising NP on the hexagonal lattice for 
various sizes. (b) Same as Fig. 6(a) but for NP on the square lattice. (c) Hysteresis loops of  
a homegeneous S 1  Ising NP on the hexagonal lattice for different sizes. (d) Same as  
Fig. 6(c) but for NP on the square lattice. 0 1C CS SJ J J J     and 0300 BT J k  . 

Magnetic hysteresis loops of composite 1 / 2S  and 1S   Ising NPs on the hexagonal and 
square lattice (in 2D) structures for various values of particle sizes are shown in Fig. 8. The 
exchange interactions in the C  and S  regions are FM, i.e. 0 C SJ J J  , while the coupling 
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between C  and S  is an AFM exchange constant 0CSJ J   for each type of NP. From the 
figure, it is clear that the hysteresis loops strongly depend on the particle size. The loops for 
the 1 / 2S  and 1S   Ising NPs on the hexagonal lattice change suddenly in low radius 
values while those for the 1 / 2S  and 1S   Ising NPs on the square lattice in high radius 
values.  

 

Fig. 7. The coercive field ( Ch ) plotted as a function of -2R  for the hysteresis loops of the 
homegeneous NP in Fig. 6. 
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Fig. 8. Same as Fig. 6 but for the composite NP. 0 01, .C S CSJ J J J J      

Finally, the evolutions of hysteresis loops and their coercive field according to the 
temperature of composite Ising NPs are seen to change monotically as the temperature 
increases, illustrated in Fig. 9(a) and 9(b), respectively. Since the loops for both models of 
NPs on the hexagonal and square lattices display the same behaviour we have drawn only 
the loops of 1 / 2S   Ising NP on the hexagonal lattice. In this case, hysteresis for the NP is 
in superparamagnetic (SP) regime at 0700 / BJ k . But, the loops for the temperature regime 
between 0150 BJ k - 0600 / BJ k belong to the FM phase (Fig. 9(a)). The tempereture 
dependence of the coercivity ( Ch ) are determined from the hysteresis loops of Fig. 9(a), as 
given in Fig. 9(b).  
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Fig. 9. (a) Temperature dependence of the hysteresis loops for the 1 / 2S   Ising NP on the 
hexagonal lattice exhibiting five shells of spins ( 5R  ). (b) The coercive field ( Ch ) plotted as 
function of 1/2( )Bk T  for two models of NP on both structures studied above. 

0 01,C S CSJ J J J J     . 

5. Conclusion 

In the scope of this chapter, we have focused on the magnetic properties with size effects for 
homogeneous and core-surface composite NPs which have Ising spins ( 1, 1 2 ) on 2D lattice 
structures (hexagonal, square). The transition for all NPs corresponds to a second-order 
phase transition in the absence of magnetic field ( 0h  ). The spin disorder can be caused by 
lower coordination of the surface atoms in core-surface NPs broken exchange interactions 
that produce spin-glass (SG) like state of spatially disordered spin in the surface captions 
with inhomogeneous surface effects (Kodama, 1999; Kaneyoshi, 2005). Our theoretical 
observations are scrutinized below briefly. 

i. All critical temperature ( )CT  values of both types of Ising NPs on 2D lattice structures 
follow a linear increase with the particle size. With increase in the NP size it approaches 
to the Crue temperature of the bulk materials. These results agree with the mean-field 
magnetic structure of Heisenberg NPs (Usov & Gudoshnikov, 2005).  

ii. From the hysteresis loops for the homegeneous S 1/2  and S 1  Ising NPs which 
have different sizes and corresponding coercive field ( Ch ) vs. 2-R variations, it is clearly 
seen that the coercivity strongly depends on the particle size. Due to the 
superparamegnetic regime the hysteresis curves of small diameters are almost 
independent of each other while the curves of big diameters sharply change. This 
shows that the NP approaches to bulk materials. 

iii. The hysteresis loops at different temperatures show a monotonic change in the coercive 
field of composite Ising NPs on 2D lattice structures. This property probably is an 
important aspect in the future high-density magnetic data storage.  
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