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1. Introduction 

The research field of nanoparticle synthesis and related nanoparticle applied sciences have 

been steadily growing in the past two decades. The chemical synthesis of nanoparticles was 

improved up to the point that the organic and inorganic nanoparticle colloids are produced 

with a low size dispersion and with a well defined nanoparticle shape in large quantities. A 

stunning feature of a drying nanoparticle colloidal solution is the ability to create self-

assembled arrays of nanoparticles. The self-assembled nanoparticle arrays mimic the natural 

crystals. The size of perfectly ordered domains is limited by the size dispersion of 

nanoparticles. Consequently the defects in the self-assembled structure are obvious and 

unavoidable. Despite these defects, the self-assembled nanoparticle arrays represent a new 

class of nanostructures built on “bottom-up” technological approach to fabrication. The 

traditional way of “top-down” fabrication technology primarily based on nano-lithography 

is complex, including many technological steps, time consuming and expensive. The main 

advantage is the tight control of all parameters governing the final nanostructures. On the 

other hand, the emerging fabrication technologies based on the self-assembled nanoparticles 

are fast, less complex and more price competitive. An extensive research is now focused on 

a deeper understanding of processes that control the self-assembly. New routes for directed 

or stimulated self-assembly are studied to achieve a tighter control than readily available in 

the spontaneous self-assembly. In this chapter we will discuss the spontaneous nanoparticle 

self-assembly with emphasis on characterization of nanoparticle arrays at various stages of 

the self-assembly process. The main diagnostic technique used throughout this chapter will 

be the grazing-incidence small-angle X-ray scattering (GISAXS) that represents a reliable 

and simple monitor of nanoparticle arrangement. The theoretical background of GISAXS 

and required instrumentation are described in Section 2. The most flexible surface to study 

the nanoparticle self-assembly processes is the liquid surface. The Section 3. reviews the 

latest results of studies combing the GISAXS technique with Langmuir nanoparticle layers 

on the water subphase. Almost all relevant nanoparticle applications rely on self-assembled 

arrays on solid surfaces. The Section 4 describes in detail the possibilities of nanoparticle 

transfer from liquid onto solid surfaces. The post-processing of self-assembled nanoparticle 

arrays and their applications are reviewed in the last Section 5. 
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2. SAXS/GISAXS techniques and their employment for nanoparticle research 

The transmission (TEM) and scanning (SEM) electron microscopy provide information on 
the nanoparticle shape, average size and size distribution. However, this information is 
usually obtained after numerical evaluation of real space micrographs from limited data 
sets. Alternative approach is based on the angle-resolved analysis of scattered X-rays or 
neutrons from the nanoparticles and their assemblies. In this chapter we will employ the 
small-angle X-ray scattering (SAXS) (Guinier and Fournet 1955) for the nanoparticle 
colloidal solutions. For nanoparticles immobilized at interfaces, a related technique so-called 
grazing-incidence small-angle X-ray scattering (GISAXS) is used that has been recently 
reviewed (Renaud, Lazzari et al. 2009). A general scheme of the GISAXS experiment is 
shown in Fig. 1. 

 

Fig. 1. The GISAXS measurement geometry 

The collimated X-ray beam defined by 


ik  is incident under a small grazing angle on the 
sample surface. The scattered radiation is recorded by a two dimensional X-ray detector. 
Each point at the detector plane receives the scattered radiation given by a set of two angles 
(f, f) that corresponds to a unique scattering vector 


q  in the reciprocal space. The 

relationship between the scattering vector in reciprocal space and the scattering angles in 
the real space is given by the following equations (Müller-Buschbaum 2009) 
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The SAXS/GISAXS signal is given by constructive interferences of X-ray waves partially 

scattered on individual nanoparticles. The total scattered intensity (also called the scattering 

cross-section) at specific 

q  vector in the reciprocal space is given as (Feigin, Svergun et al. 

1987) 

  
1 1 

        N N
j ,*i

i j
i j

I q F (q ).F (q ).exp iq.(r r )  (2) 
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where N is the total number of nanoparticles, 
iF (q ) is the form-factor of the ith nanoparticle 

and 

ir  defines the position of the ith nanoparticle. Within the simple Born (kinematic) 

approximation (BA) the nanoparticle form-factor is simply given by the Fourier transform of 

the nanoparticle density function 


i(r ) as follows (Glatter and Kratky 1982) 

  
    i

iF (q ) (r ).exp(iq.r )dr  (3) 

For the nanoparticles immobilized at interfaces we have to include the refraction/reflection 

phenomena at the interfaces and the associated multiple scattering events. This is treated in 

detail within the framework of the distorted-wave Born approximation (DWBA) which 

introduces a modified form-factor for each nanoparticle confined near the interface (Holý, 

Pietsch et al. 1999). A detailed survey of the DWBA theory can be found in the following 

reference (Renaud, Lazzari et al. 2009). A typical DWBA effect is the presence of the Yoneda 

enhancement at the critical exit angle in the GISAXS patterns (Yoneda 1963). In many cases 

we can avoid the DWBA multiple scattering terms by recording the GISAXS pattern at the 

incident angle several times larger than the critical angle for the total X-ray reflection of the 

supporting substrate (Daillant and Gibaud 2009). If we assume that the nanoparticles can be 

described by an average form-factor 
2

F(q )  than the eq. (2) in BA can be rearranged as 

follows 

  2
( ) ( )I q N F q S q
  

 
 (4) 

Here the  S q  represent the nanoparticle interference function. The nanoparticle 

interference function is the reciprocal space equivalent of the nanoparticle pair correlation 

function  P r  defined in real space (Lazzari 2009). The pair correlation function is 

proportional to the probability of finding a nanoparticle at the position vector 

r  centered at 

an arbitrarily selected nanoparticle. This function is directly accessible from the TEM/SEM 

micrographs. 

The GISAXS experimental technique was confined for a long time to synchrotron facilities 

as the scattering cross-section is generally very low. Each synchrotron ring has a 

dedicated SAXS beamline that can support conventional GISAXS setup. The Fig. 2 shows 

the typical GISAXS scheme of the BW4 beamline at the DORIS III ring at HASYLAB, 

Hamburg (Stribeck 2007). The front-end of the experimental setup is a wiggler that 

generates the X-ray radiation. The crystal monochromator is used to select a single 

wavelength typically at 0.139 nm. The radiation is further conditioned with slits and two 

cylindrical mirrors to focus the radiation in both directions at the detector plane. The 

additional beryllium X-ray lenses can be attached to focus the radiation at the sample 

position (Roth, Do ̈hrmann et al. 2006). 

The distance between the sample and detector can vary between 3 m and 13 m that allows 

flexibility in the accessible range of the reciprocal space. The two-dimensional (2D) X-ray 

CCD detector is used to record the X-ray radiation scattered by the sample. The primary and 

specularly reflected beams are suppressed by the beamstops.  
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Fig. 2. The sketch of the experimental GISAXS geometry at BW4 beamline, HASYLAB 

 

Fig. 3. a) The scheme of the laboratory GISAXS setup and (b) the photograph of its 
realization at Institute of Physics SAS. 

The latest advances in the low-power X-ray generators and the efficient X-ray optics opened 

a new era of laboratory equipments suitable for GISAXS measurements (Michaelsen, 

Wiesmann et al. 2002). Nowadays already several companies (Bruker AXS, Anton Paar, 

Hecus XRS, Rigaku) supply complete X-ray solutions supporting GISAXS measurement 

modes for solid-state samples. The Fig. 3a and Fig. 3b show the laboratory setup scheme and 

the photograph of a home-built GISAXS instrumentation developed at the Institute of 

Physics SAS, respectively (Siffalovic, Vegso et al. 2010). This setup supports GISAXS 

measurements on solid as well as liquid surfaces. The core of the experimental apparatus is 

a compact low-power (30 W) X-ray source (Cu-K) equipped with a loosely focusing X-ray 

Montel optics (Wiesmann, Graf et al. 2009). The source can be freely rotated and translated 

in the vertical direction. This is important for the precise adjustment of the incident angle in 

the GISAXS measurements at liquid surfaces. The unwanted scattered radiation is 

eliminated by laser-beam precisely cut tungsten pinholes. The sample is fixed on a 

goniometer that allows precise height and tilt adjustments.  
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Fig. 4. a) The SEM micrograph of Fe-O self-assembled nanoparticles. Measured (b) and 
simulated (c) GISAXS pattern of self-assembled nanoparticles. d) The extracted line-cut from 
the measured GISAXS pattern along with the simulation. 

The auxiliary knife-edge blade is used to reduce the parasitic air-scattering. The additional 

vacuum flight-tube can be inserted between the sample and the X-ray detector to reduce the 

air scattering and absorption. The detector used is a fast acquisition CMOS based 2D X-ray 

detector of PILATUS detector family (Kraft, Bergamaschi et al. 2009).  

To illustrate the capability of the GISAXS technique to characterize the self-assembled 
nanoparticle monolayers we use an example of iron oxide nanoparticles (Siffalovic, Majkova 
et al. 2007). The Fig. 4a shows the SEM image of a self-assembled array of iron oxide 
nanoparticles. The inset of Fig. 4a shows the Fourier transform of SEM micrograph with 
partially smeared-out spots corresponding to the hexagonal arrangement. The smearing-out 
is due to mutually misaligned nanoparticle domains originating from finite nanoparticle 
size dispersion which is in sharp contrast to natural atomic crystals. The Fig. 4a and 4b show 
the measured and simulated GISAXS pattern, respectively. The characteristic side maxima 

located at the 10 82  yq . nm are the “finger prints” of the self-assembly in the nanoparticle 

array. In the first approximation, the mean interparticle separation can be estimated from 
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the side maximum position in the reciprocal space as 2 7 7   yq . nm . This simple 

estimation is valid only for a slowly varying nanoparticle form-factors within the kinematic 
BA. A precise fitting of the measured GISAXS data using the full DWBA theory can provide 
further information on the nanoparticle size and size dispersion as well as their correlation 
length (Lazzari 2002). The Fig. 4d shows a line cut extracted from the measured GISAXS 
pattern with the corresponding fit. The fitted nanoparticle diameter was 6.1±0.6 nm and the 
lateral correlation length in the nanoparticle array was 87 nm. It has to be noted that 
colloidal nanoparticles are covered by a surfactant shell to avoid their spontaneous 
agglomeration in colloidal suspensions. In the case of Fe-O nanoparticles discussed above, 
oleic acid and oleylamine were used. A GISAXS pattern fitting provides basic information 
on the metallic-like nanoparticle core size while the organic shell is rather invisible for X-
rays. On the other hand, the positions of the side maxima in the GISAXS pattern are always 
connected with the interparticle distance which is affected by the surfactant shell. This 
example clearly demonstrates the ability of GISAXS technique to extract main nanoparticle 
parameters in the self-assembled arrays. The main advantage is that the GISAXS technique 
does not require any specific sample environment conditions such as vacuum nor special 
sample preparation. On the other hand it can be applied even in very aggressive 
environments such as UV/ozone reactor (Siffalovic, Chitu et al. 2010). Moreover, a rapid 
GISAXS data acquisition in millisecond range can be used for a real-time in-situ probing of 
nanoparticle reactions and self-assembly processes (Siffalovic, Majkova et al. 2008).  

3. Nanoparticle self-assembly at liquid/air interfaces 

In the last ten years we have seen a tremendous progress in the colloidal nanoparticle 
chemistry (Feldheim 2002; Nagarajan 2008; Niederberger and Pinna 2009). The refined 
chemical synthesis routes can produce large quantities of highly monodisperse 
nanoparticles in colloidal solutions with the size dispersion below 10 % (Park, An et al. 
2004). The low nanoparticle dispersion is the “holy grail” of the large-scale nanoparticle self-
assembly (Pileni 2005). Being able to prepare nanoparticles with zero size dispersion, we 
could fabricate genuine artificial nanoparticle crystals competing with natural ones in terms 
of the structure perfection and long-range order. However the finite nanoparticle size 
dispersion permits only a limited extent of ordering in nanoparticle self-assembled arrays. A 
typical model for description of the real nanoparticle assemblies is the paracrystal model 
(Hosemann and Bagchi 1962; Guinier 1963). Here a paracrystal order parameter summed up 
with the mean interparticle distance defines degree of the array perfection. 

The colloidal nanoparticle solutions can be applied on a solid substrate directly or in two 
steps, utilizing liquid surface for self-assembly with a subsequent transfer onto a solid 
substrate. Drop casting followed by solvent evaporation is an example of the former method 
(Chushkin, Ulmeanu et al. 2003) that proved to be successful e.g. for preparation of large-
area self-assembled arrays of noble metal nanoparticles with the diameter of a few tens nm. 
In addition to the nanoparticle size, surfactant type affects the self-assembly as well. For 
smaller nanoparticles, such as those presented in this chapter with the diameter below 
10 nm, a direct application of the colloidal nanoparticle solutions on solid substrate 
produces only locally well assembled regions but is not suitable for large-area nanoparticle 
depositions. Here, the latter above mentioned method is promising as it will be shown later. 
The GISAXS technique can be employed to track the nanoparticle assemblies in rapidly 
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drying colloidal solution at solid surfaces (Siffalovic, Majkova et al. 2007). We used the 
focused X-ray beam to map the nanoparticle self-assembly at arbitrary selected position 
within the colloidal drop. The Fig. 5 shows the three typical GISAXS patterns.  

 

Fig. 5. The GISAXS pattern recorded from a drying colloidal Fe-O nanoparticle drop at three 
different stages: a) directly after drop casting, b) intermediate phase. c) dried colloidal drop. 

The Fig. 5a shows the GISAXS pattern directly after application of a colloidal Fe-O 
nanoparticle solution onto silicon substrate. The GISAXS pattern does not show any maxima 
typical for self-assembled nanoparticle layers. The visible scattering in the GISAXS pattern is 
characteristic for a diluted nanoparticle solution and can be described by the nanoparticle 
form-factor. The Fig. 5b shows the intermediate state when the X-ray beam partially passes 
through the colloidal drop surface. The scattering streaks originating from interfaces also 
called “detector scans” are visible. The first one can be attributed to the scattering from the 
substrate surface and the second one originates from the colloidal drop surface. The angle 
between the two detector streaks directly maps the angle between the normal of substrate 
surface and the normal of the probed colloidal drop surface. The side maxima belong to the 
already dried self-assembled areas. The Fig. 5c shows the final GISAXS pattern after the 
colloidal solution is completely evaporated. The interparticle distance of final nanoparticle 
assembly are clearly manifested in the GISAXS pattern by the side maxima.  

The spatially static GISAXS technique can track the nanoparticle assembly only in one 
selected probing volume within the evaporating colloidal drop. In order to monitor various 
probe volumes inside the colloidal nanoparticle drop during the self-assembly process we 
introduced a scanning GISAXS technique. The scanning GISAXS method is based on the fast 
vertical or horizontal scanning of the evaporating colloidal drop by the probing X-ray beam 
(Siffalovic, Majkova et al. 2008). The sketch of the scanning GISAXS technique is shown in 
Fig. 6a. The colloidal drop composed of iron oxide nanoparticles dispersed in toluene was 
applied onto silicon substrate located on a vertically scanning goniometer. As the 
evaporating drop was gradually scanned across the incoming X-ray beam we continuously 
recorded X-ray scattering from three different drop zones. In the zone Z0 the X-ray beam 
passed above the evaporating drop. These data were used for the background correction. In 
the zone Z1 we recorded exclusively the X-ray scattering originating from the drying drop 
surface and drop interior. In the zone Z2 we additionally detected the X-ray scattering 
coming from the substrate surface. The Fig. 6b shows the line cuts extracted from the 
GISAXS frames taken in zone Z1 corresponding to the three different stages of the colloidal 
drop evaporation process: 1.) directly after drop casting, 2.) intermediate state, and 3.) final 
state characterized by the complete solvent evaporation. It is important to notice that the 
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experimental data for all three evaporation stages can be fitted solely using the nanoparticle 
form-factor function. According to the eq. (4) the interference function is constant in this 

case, i.e.   1


S q . 

 

Fig. 6. a) The scheme of the GISAXS scanning technique. b) The GISAXS pattern line cuts at 
the critical exit angle for the three different stages of the colloidal Fe-O nanoparticle drop 
evaporation. 

This means that the nanoparticles do not create self-assembled domains at the evaporating 

drop surface or in its volume at any time that suggests the origin of the nanoparticle self-

assembly to be located at the three-phase boundary as predicted for a drying drop of 

dispersed particles (Deegan, Bakajin et al. 1997). The scanning GISAXS technique clearly 

demonstrates the ability to track the nanoparticle self-assembly process in real-time with 

millisecond time resolution.  

As mentioned above, colloidal nanoparticles are usually terminated by surfactant molecules 
to avoid spontaneous agglomeration in colloidal suspensions. The nanoparticles with 
hydrophobic termination allow self-assembly at liquid/air interfaces and formation of 
Langmuir films in the form of simple 2D systems (Ulman 1991). Controlling the surface 
pressure by changing the nanoparticle layer area and the temperature of the subphase, we 
can produce large-area and homogenous self-assembled nanoparticle layers. The electron 
microscopy techniques including SEM, TEM or scanning probe techniques (AFM, STM) 
cannot be utilized to monitor the nanoparticle self-assembly at liquid/air interface. The 
visible/UV optical microscopy and Brewster angle microscopy are limited in resolution due 
to diffraction limit (Born and Wolf 1999). For a certain kind of metal and metal oxide 
nanoparticles exhibiting plasmonic properties (Au, Ag, Al, Cu) the interparticle distance can 
be indirectly monitored by the energy shift in localized surface plasmon resonance due to 
the dipole-dipole coupling of excited plasmons in the self-assembled nanoparticle arrays 
(Rycenga, Cobley et al. 2011). On the other hand the GISAXS technique can be employed to 
directly monitor the interparticle distance in self-assembled arrays directly in the Langmuir 
trough. The laboratory GISAXS setup shown in Fig. 3 was used to record the GISAXS 
patterns of Ag nanoparticles (6.2±0.7 nm) directly in the Langmuir trough. The GISAXS 
patterns of self-assembled Ag nanoparticles with oleic acid as surfactant at the surface 
pressures of 16 mN/m and 26 mN/m are shown in Fig. 7a and Fig. 7b, respectively. 
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Fig. 7. The GISAXS patterns of self-assembled Ag nanoparticle Lagmuir films at surface 
pressure a) 16 mN/m and b) 26 mN/m. 

The surface pressure of 16 mN/m corresponds to a closed nanoparticle monolayer on the 

water surface. The interference function produces two symmetrical side maxima at 
10 87  yq . nm  (truncation rods) corresponding to the average interparticle distance of 

7.2 nm. The higher order side maxima are absent due to the short exposition time. The two-

dimensional nanoparticle monolayer has a constant interference function in the zq direction 

where the modulation visible on the truncation rods is produced solely by the nanoparticle 

form-factor (Holý, Pietsch et al. 1999). At the surface pressure of 26 mN/m, the second 

nanoparticle layer forms and changes the observed GISAXS pattern (Vegso, Siffalovic et al. 

2011). The newly formed nanoparticle vertical correlation perpendicular to the Langmuir 

film plane results in the modulation of the observed truncation rod depicted by the dashed 

white line in Fig. 7b. It can be shown that the modulation along the truncation rod is 

associated with the second nanoparticle layer laterally shifted in analogy with the “AB 

stacking” in solid state crystals (Kittel 2005). The presence of the second layer can be verified 

also by distinct second order maxima in Fig. 7b. The presented GISAXS results show the 

possibility to study not only the lateral but also the vertical nanoparticle correlations in 3D 

nanoparticle assemblies that is due to the ability of GISAXS to inspect non-destructively 

buried layers and interfaces. This useful feature of the GISAXS technique to study the buried 

vertical correlations of interfaces was already applied in studies of multilayered thin films 

(Salditt, Metzger et al. 1994; Siffalovic, Jergel et al. 2011).  

Recently we have performed in-situ real-time studies of compression and decompression of 
Ag nanoparticle Langmuir films. We were interested in the correlation between the 
macroscopic elastic properties of nanoparticle layers and microscopic layer parameters like 
the interparticle distance. As a convenient measure of macroscopic elastic properties we use 
the surface elastic modulus defined as (Barnes, Gentle et al. 2005) 

 
T

E A
A


 



 
 
 

 

 (1) 

Here  is the measured surface pressure of the nanoparticle layer with the area A at a 

constant subphase temperature T. The Fig. 8 shows the evaluated side maximum position 

along the yq direction in the GISAXS reciprocal space map similar to the one shown in 

Fig. 7a.  
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Fig. 8. The evaluated GISAXS peak maximum position and the surface elastic modulus of 
the Ag nanoparticle layer at water/air interface as a function of the layer area. 

After spreading the nanoparticle solution onto the water subphase, the nanoparticles 

assemble into small clusters with hexagonal ordering that has been identified by 

independent ex situ experiments (to be published). Increasing the surface pressure by 

reducing the layer area results in the formation of a continuous monolayer without a change 

of the interparticle distance. This compression stage is characterized by a constant elastic 

modulus as the isolated nanoparticle clusters are joining into larger entities. At surface area 

of approximately 250 cm2 we observe an increase in the elastic modulus peaking at the area 

of 180 cm2. This stage can be associated with the densification of the nanoparticle layer 

accompanied by the nanoparticle rearrangements along the individual cluster boundaries 

and cluster coalescence. At the maximum of surface elastic modulus we observe also a slight 

compaction of the nanoparticle layer at nanoscale indicated by the change of the 

interparticle distance. This phase ends up with a compact nanoparticle layer. A further 

compression of the nanoparticle layer results in the formation of a second nanoparticle layer 

that induces a sudden drop in the elastic modulus and significant release of the mean 

interparticle distance. The nanoparticles forming the second layer create vacancies in the 

first one that is accompanied by deterioration of the order in the first nanoparticle layer. In 

this case the paracrystal model of the nanoparticle layer predicts a shift of the maximum to 

lower yq  values in the reciprocal space (Lazzari 2009) that was confirmed by this 

experimental observation. After the decompression the interparticle distance in the 

nanoparticle layer does not relax to the initial value. It has to be noted that the second layer 

formation and tendency to form 3D ordered nanoparticle assemblies was demonstrated here 

for Ag nanoparticles with oleic acid as surfactant, however, other types of metallic 

nanoparticles with other type of surfactant may behave differently. This example shows the 

benefit of GISAXS technique to precisely monitor microscopic parameters of the 

nanoparticle assemblies prior to the deposition onto solid substrates that will be discussed 

in the following section. 
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4. Transfer of self-assembled layers from liquid onto solid surfaces 

In the previous section we discussed the formation of nanoparticle monolayers at water/air 
interface. The Langmuir film represented by self-assembled nanoparticle monolayer seems 
to be the most promising candidate for the homogenous deposition of large-area 
nanoparticle arrays. The two important questions are remaining. The first one is: “What is 
the suitable surface pressure for deposition and how to monitor it?” The second one 
is: ”How to transfer the Langmuir film onto solid substrate with a minimum damage of the 
self-assembled layer?” In this section we try to give answers to them. 

The first question was partially addressed in the previous section. We have shown the 

GISAXS technique gives a precise tool to monitor the monolayer formation at nanoscale. In 

Fig. 8 we showed the evolution of the interparticle distance with increasing surface pressure 

and we related formation of the second nanoparticle layer to a sudden drop in the observed 

surface elastic modulus. Additionally, we can track the evolution of the interference 

function in the zq direction. We showed that the interference along the zq  axis is a constant 

function for the nanoparticle monolayer. A new vertical correlation between the two layers 

may appear with the monolayer collapse accompanying the formation of the second 

nanoparticle layer as discussed in the previous section. This transition is manifested in the 

modulation of the X-ray scattered intensity along the truncation rod. The Fig. 7b shows the 

GISAXS pattern of the nanoparticle multilayer with a new peak formed along the first 

truncation rod (marked with dashed white line). For the nanoparticle monolayer, the 

intensity is at maximum at the critical exit angle, i.e. at the Yoneda peak. The formation of 

the second layer shifts the maximum intensity upward in the zq  direction.  

 

Fig. 9. The integral intensity of the first Bragg peak along the first truncation rod 
corresponding to the formation of a vertically correlated Ag nanoparticle multilayer as a 
function of the layer area. 

The Fig. 9 shows the integral intensity of the newly formed Bragg peak along the first 
truncation rod corresponding to the vertically correlated nanoparticles as a function of the 
surface area. The GISAXS measurement clearly shows that the decrease in the elastic 
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modulus is associated with the formation of the second nanoparticle layer. Moreover we 
observe a hysteretic behavior during the Langmuir film decompression associated with the 
irreversibility of the expanded nanoparticle layer that is also documented by the 
interparticle distance behavior shown in Fig. 8. After opening the barriers the nanoparticle 
layer does not relax into a monolayer but fragments into small islands still exhibiting a 
certain amount of nanoparticles in the second layer (see also further). The GISAXS 
measurements confirmed the assumption that the fully closed nanoparticle monolayer 
forms short before the monolayer collapse evidenced by a maximum in surface elastic 
modulus. 

 

Fig. 10. The BAM images taken at surface areas a) 500 cm2, b) 293 cm2 and c) 122 cm2 taken 
during the Ag nanoparticle layer compression and BAM images at surface areas d) 139 cm2, 
e) 302 cm2 and f) 501 cm2 taken during the nanoparticle layer expansion. 

The Brewster angle microscopy (BAM) provides further evidence of the nanoparticle 

monolayer formation at microscale (Henon and Meunier 1991). The laser based BAM 

provides much better contrast between the nanoparticle monolayer and water subphase 

than the conventional normal incident microscopy. The Fig. 10a)-10c) show three images 

taken during the nanoparticle layer compression and Fig. 10d)-10f show three images taken 

during the nanoparticle layer decompression. The nanoparticle layer was composed of 

surfactant terminated Ag nanoparticles with a core size of 6.2±0.7 nm. The nanoparticle 

surfactant was oleic acid. The nanoparticle layer shows vacant areas in Fig. 10a). Decreasing 

the film area, we close the vacancies and a compact nanoparticle monolayer forms as shown 

in Fig. 10c). The subsequent expansion of the nanoparticle layer is accompanied by the 

generation of millimeters long cracks across the nanoparticle layer as shown in Fig. 10d). A 

further increase of the area available for the nanoparticle expansion leads to the disruption 

of nanoparticle layer into micrometer large needle-like clusters as shown in Fig. 10e) and 

Fig. 10f). The hysteretic behavior of the nanoparticle layer at microscale during the 
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compression and decompression cycle is obvious and supports the interpretation of the 

GISAXS measurements. The Fig. 10 shows selected BAM images during the compression 

and expansion cycles. However we have recorded a full series of BAM images at 15 second 

time intervals during the compression cycle. Based on the BAM images we can calculate the 

average nanoparticle surface coverage based on the ratio between the bright areas that can 

be attributed to the nanoparticle layer and the black areas corresponding to the water 

subphase.  

 

Fig. 11. The nanoparticle surface coverage based on BAM measurement along with the 
surface elastic modulus as a function of the Ag nanoparticle layer area during compression. 

We have to keep in mind that the calculation is correct only at microscale as the nanoscale 
vacancies are invisible due to the BAM diffraction limit. The Fig. 11 shows the calculated 
nanoparticle surface coverage as a function of the film area. The graph shows also the 
calculated elastic modulus based on the measured nanoparticle layer surface pressure. The 
nanoparticle surface coverage reaches its maximum value of 100% short before the 
maximum in the film elastic modulus appears during the compression cycle. This is in a 
very good correlation with the GISAXS measurement that relates the nanoparticle 
monolayer collapse to the maximum in elastic modulus. The BAM measurements 
underestimate the nanometer-sized vacancies in the forming monolayer. This is the reason 
that the BAM indicate formation of nanoparticle monolayer already before the monolayer 
collapse. An alternative would be the imaging ellipsometry being able to track the 
nanoparticle layer formation at microscale more quantitatively than the BAM technique 
(Roth and et al. 2011).  

In order to understand the formation of nanoparticle monolayer at nanoscale we deposited 

the nanoparticle layers on silicon substrates. The probes were deposited at different surface 

pressures by simply immersing the substrate into the nanoparticle covered water subphase. 

The selected areas of nanoparticle layers were studied by the non-contact atomic force 

microscopy (AFM) rather than the scanning electron microscopy as the latter one cannot 

provide the information on the layer height. 
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Fig. 12. The AFM images of Ag nanoparticle layers taken at the following surface pressures: 
a) 10 mN/m, b) 15 mN/m, c) 20 mN/m and d) 30 mN/m. 

The Fig. 12 shows the AFM images of Ag nanoparticle layers deposited at different surface 

pressures. The nanoparticle monolayer deposited at the 10 mN/m shown in Fig. 12a 

displays vacancies in the nanoparticle coverage. At this stage the isolated nanoparticle 

clusters are coalescing into a single nanoparticle layer. The Fig. 12b shows a nanoparticle 

layer deposited at 15 mN/m. This AFM image shows the nanoparticle clusters forming 

almost a closed nanoparticle monolayer. The maximum of the surface elastic modulus was 

reached shortly after 15 mN/m. The AFM image shown in Fig. 12c deposited at the 

20 mN/m clearly demonstrates the formation of the second nanoparticle layer after the 

monolayer collapse. The preferential sites for the formation of the second layer are located at 

the boundaries of the nanoparticle clusters. The final AFM image shown in Fig. 12d 

deposited at the surface pressure of 30 mN/m exhibits already a significant number of 

nanoparticles forming the second layer. The Fig. 13 shows calculated AFM height 

histograms of the nanoparticle layers deposited at different surface pressures. Only a single 

peak located at 6 nm corresponding to the height of monolayer is present up to the surface 

pressure of 15 mN/m. For the sample deposited at 20 mN/m shown in Fig. 12c, appearance 

of a shoulder suggests onset of formation of a second nanoparticle layer. For higher surface 

pressures, the newly formed peak at 12 nm in the height histogram distribution gives clear 

evidence of the second nanoparticle layer. 
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Fig. 13. The height histograms of the Ag nanoparticle layers deposited at different surface 
pressures obtained by analysis of the AFM images.  

The number of nanoparticles occupying the second layer is steadily growing with the 

increasing surface pressure. At the surface pressure of 30 mN/m already more than 50% of 

the second nanoparticle layer was formed. The ex-situ AFM measurements provide 

important additional information to the in-situ GISAXS and BAM measurements. However 

we cannot rule out possible relaxations in the nanoparticle assemblies due to their transfer 

from the liquid to solid surface. 

Based on the previous analyses we can conclude that the optimum deposition conditions for 

the nanoparticle monolayer deposition occur at the surface pressure slightly below the 

threshold pressure for the monolayer collapse. To achieve homogenous nanoparticle 

deposition over large areas of solid substrates, we modified the conventional Langmuir-

Schaefer deposition (Chitu, Siffalovic et al. 2010). The scheme of the deposition trough is 

shown in Fig. 14. 

 

Fig. 14. The scheme of the modified Langmuir-Blodgett trough. 
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Differently to the conventional Langmuir-Schaefer deposition, the deposited substrate is 
immersed into the subphase. After spreading the nanoparticles at the water subphase and 
adjusting the deposition surface pressure, the water is slowly removed by opening an outlet 
valve. The moving water/air interface will slowly cross the inclined substrate, depositing 
the nanoparticle array onto it. This deposition technique produces highly homogenous 
nanoparticle layers on large substrates. The Fig. 15a shows a silicon wafer with the total area 
of some 18 cm2 homogenously covered with an iron oxide nanoparticle monolayer 
(6.1±0.6 nm). 

 

Fig. 15. a) Photograph of the homogenous Fe-O nanoparticle monolayer deposited onto 
silicon substrate. b) The SEM micrographs of a selected spot at the different magnifications.  

To check the monolayer homogeneity we arbitrarily selected one spot at the deposited 

substrate and analyzed it with the SEM. The Fig. 15b shows four SEM micrographs of the 

selected spot at different magnification levels.  

 

Fig. 16. a) The GISAXS pattern of the Fe-O nanoparticle monolayer. b) The extracted GISAXS 
line-cuts at the critical exit angle from six different locations at the substrate. 
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At the lowest magnification we notice the absence of any cracks in the deposited monolayer. 
On the contrary the traditional vertical Langmuir-Blodgett deposition is forming a series of 
long cracks and is not suitable for large-scale deposition. At the highest magnification we 
can observe a dense hexagonally ordered layer of the iron oxide nanoparticles. The SEM is 
suitable for detailed analysis of the selected areas of the nanoparticle monolayer but is not 
convenient for a rapid screening across the large areas. We have already shown that the 
scanning GISAXS technique provides a fast probe of the nanoparticle order at nanoscale 
over macroscopic areas. The Fig. 16a shows the GISAXS reciprocal space map of an 
arbitrarily selected location at the substrate. The integral intensity and the position of the 
side maxima are the measure of the nanoparticle order in the X-ray probed area. Comparing 
the GISAXS patterns from the different locations at the substrate we obtain the information 
on the homogeneity of the deposited nanoparticle monolayer. The Fig. 16b shows six line 
cuts extracted from the GISAXS patterns measured at different locations. The differences 
between the measured curves are less than ±5% that indicates a relatively high homogeneity 
of the deposited monolayer. 

5. Processing and application of the self-assembled nanoparticle layers 

In this section we focus on the issues connected with applications of deposited self-

assembled nanoparticle layers. We discuss possibilities of removing the nanoparticle 

surfactant to increase the electrical conductivity of the nanoparticle layer as required for 

many applications. We address deposition of the nanoparticle layers onto thin membranes 

for sensor applications. We present also embedded self-assembled nanoparticle layers for 

organic solar cells and spintronic devices. 

The surfactant molecules terminating the nanoparticles are inevitable for the synthesis and 
deposition of nanoparticles. However for many applications the electrical conductivity is 
required (Schmid 2010) while non-conductive organics is mostly used as surfactant. The 
surfactant molecules can be eliminated by the vacuum annealing, plasma etching, 
UV/ozone cleaning and many other techniques. In this section we analyze the impact of the 
UV/ozone cleaning on the Fe-O nanoparticle arrangement in self-assembled arrays. The 

UV/ozone cleaning is based on the reaction of UV light (=6.7 eV) with the oxygen 
molecules producing the highly reactive ozone. The UV light initiates photo-dissociation of 
the surfactant molecules that further react with the ozone molecules and are removed from 
the nanoparticle surface. Also a direct reaction of the surfactant molecules with the ozone 
molecules also called ozonolysis removes the surfactant molecules from the nanoparticle 
surface. In our experiment we removed the surfactant molecules from the self-assembled 
monolayer of iron oxide nanoparticle with the core diameter of 6.1±0.6 nm. The SEM 
micrographs along with the calculated nanoparticle pair correlation functions for the as-
deposited sample and the sample processed in UV/ozone reactor are shown in Fig. 17a and 
Fig. 17b, respectively. For the as deposited nanoparticle monolayer the mean interparticle 
distance is given by the position of the first maximum in the pair correlation function that is 
7.4 nm. After removal of the surfactant molecules terminating the nanoparticles the mean 
interparticle distance decreased to 6.4 nm. Moreover the nanoparticle array re-assembled 
into a labyrinth-like structure as shown by the SEM micrograph in Fig. 17b. This is very 
important for the electrical conductivity as the new nanoparticle assembly contains 
percolated conductive paths across the nanoparticle array. 
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Fig. 17. The SEM micrograph and the corresponding pair correlation function for a) as 
deposited monolayer and b) monolayer treated in UV/ozone reactor. 

We have demonstrated that the GISAXS technique is very suitable as an in-situ probe of the 

processes at nanoscale. We performed a time-resolved measurement of the nanoparticle re-

assembly directly in the UV/ozone reactor. The above described changes in the nanoparticle 

pair correlation function in the direct space are manifested here as changes of the 

interference function in the reciprocal space. The best way of extracting the shape of the 

nanoparticle interference function from the GISAXS pattern is its lateral line cut along the 

yq  direction at the critical exit angle. The Fig. 18a shows the temporal evolution of such a 

line cut constructed from a series of time-resolved GISAXS frames. 

 

Fig. 18. a) The temporal evolution of the GISXAS line cut along the qy direction at the critical 
exit angle. b) The corresponding temporal evolution of the nanoparticle pair correlation 
function. 

The initial as-deposited self-assembled state is characterized by a maximum located at 
10 9 yq . nm . After switching on the UV/ozone reactor the maximum corresponding to the 
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initial self-assembled state moves slightly to higher qy-values and its integral intensity 

significantly drops. Simultaneously a new peak located at 10 2 yq . nm  develops. The new 

peak corresponds to the cluster formation that can be seen in the SEM micrograph in Fig. 
17b. The measured GISAXS data can be recalculated into a time-resolved nanoparticle pair 
correlation function shown in Fig. 18b. This function reflects in detail the nanoparticle re-
assembly due to the removal of the surfactant molecules. The first maximum of the pair 
correlation function is shifted by some 0.9 nm to lower values within the first 200 seconds. 
This is in full agreement with the change of the interparticle distance calculated from the 
SEM micrographs in Fig. 17. This example demonstrates the possibilities of GISAXS to track 
fast temporal changes in the nanoparticle assemblies even in the strongly reducing 
environments. 

Application of the conductive layers composed of metal oxide nanoparticles can be 

exemplified on the latest generation of the Fe-O nanoparticle-based gas sensors like SO2, 

NOX, CO, O3 and CH4. The NO2 sensors are of primary importance for public security as 

they detect trace amounts of the explosives like EGDN, TNT, PETN, RDX, etc. A large 

nanoparticle-covered active surface for the gas adsorption is the main advantage when 

compared to the conventional thin films sensors. The Fig. 19a show a complete sensor based 

on the metal oxide nanoparticle multilayers (Luby, Chitu et al. 2011). 

 

Fig. 19. a) The photograph of a nanoparticle gas sensor. b) The electrical response of the 
sensors fabricated with iron oxide (full line) or cobalt iron oxide (dashed line) nanoparticles. 
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Visible is the heating meander as the sensor working temperature is 350°C. The active area 
of the sensor is composed of seven monolayers of Fe2O3 or CoFe2O4 nanoparticles. The 
Fig. 19b shows the dynamic electrical response of the sensors to 5 ppm of NO2 gas. 

The nanoparticle layers exhibiting plasmonic properties in the visible and near-infrared 
parts of the solar spectra are potential candidates for the next generation of plasmonic solar 
cells (Catchpole and Polman 2008; Atwater and Polman 2010). The enhanced scattering 
cross-section of the plasmonic nanoparticles can efficiently trap the light into the active layer 
of the solar cells and to increase their external quantum efficiency. 

 

Fig. 20. a) The GISAXS reciprocal space map of the active layer deposited on Ag 
nanoparticle monolayer. The vertical b) and horizontal c) line-cuts across the GISAXS 
reciprocal space map. 

The Ag nanoparticles fulfill both requirements for application in solar cells. In particular, 

they exhibit plasmon resonance in visible region and are highly electrically conductive. We 

deposited a monolayer of Ag nanoparticles (6.2±0.7 nm) at the ITO (indium tin oxide) 

transparent conductive layer supported on a glass substrate. Subsequently an organic active 

layer composed of polymer blend of P3HT (poly(3-hexylthiophene)) and PCBM (phenyl-

C61-butyric acid methyl ester) of a 100 nm thickness was spin-coated on the nanoparticle 

monolayer. The Fig. 20a shows the GISAXS pattern of the final structure.  

A prominent Bragg peak at 13 65 zq . nm  originates from the molecular P3HT stacking with 

the inter-molecular distance of 1.7 nm and is clearly visible also in the vertical line cut in Fig. 

20b The nanoparticle correlation is visible as a small peak at 10 66 yq . nm in the Fig. 20c 

that corresponds to the mean interparticle distance of some 9.5 nm. Here the GISAXS 

method provides the information on the correlations in the nanoparticle monolayer located 

at the buried interface hardly accessible by other analytical techniques. 
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Another example is the embedded nanoparticle monolayer in the hybrid tunnel junction of 

novel spintronic devices (Siffalovic, Majkova et al. 2009). Here the surfactant shell is 

inevitable to provide the tunnelling effect. The Fig. 21a shows schematically the multilayer 

structure containing iron oxide nanoparticle monolayer. The first fabrication step is the 

vacuum deposition of a metallic layer forming the bottom electrode. The second step is the 

deposition of the nanoparticle monolayer that is overcoated by another vacuum deposited 

metallic layer in the final step. The Fig. 21b shows the evolution of a line cut in the GISAXS 

pattern with the growing thickness of the metallic overlayer. The peak at 10 83 yq . nm  

marked with the dashed line corresponding to the nanoparticle layer can be seen 

throughout the entire deposition process. These examples demonstrate that the buried 

nanoparticle monolayer confined to the interface with a thin metallic film can be monitored 

using the GISAXS technique. 

 

Fig. 21. a) A sketch of the spintronic structure that contains a Fe-O nanoparticle monolayer. 
b) Extracted line-cuts from the GISAXS reciprocal space maps at the critical exit angle in the 
different fabrication stages of spintronic structure. 

The nanoparticle monolayers and multilayers can be deposited also on flexible membranes 

to be employed for monitoring mechanical properties like strain (Herrmann, Müller et al. 

2007). The principle of a strain sensor is based on a change of electrical current across the 

nanoparticle layer as a function of the applied mechanical stress that modifies the 

interparticle distance in the film and consequently the electrical resistivity. The sensitivity of 

the nanoparticle-based strain sensors is roughly by two orders of magnitude better than that 

of the conventional thin metallic film ones. We investigated the nanoscale response of the 

nanoparticle monolayer to the applied external stress (Siffalovic, Chitu et al. 2010). We 

deposited a monolayer composed of iron oxide nanoparticles (6.2±0.7 nm) onto a mylar foil 

(1 m thickness). The mylar foil was fixed in a stretching device for in-situ SAXS tensile 

stress measurements as shown in Fig. 22a. 
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Fig. 22. a) Scheme of the experimental setup with an in-situ SAXS tensile stage. b) The 
evaluated interparticle separation as a function of the strain in two perpendicular directions. 

The mylar foil was strained up to 11% in the z-direction and the SAXS patterns were 

recorded. Relying on them, the mean interparticle distance was evaluated in the applied 

stress direction and in the direction perpendicular to it. The results are shown in Fig. 22b. In 

the direction perpendicular to the applied stress the nanoparticle separation remained 

constant. However in the direction of the applied stress the interparticle distance followed 

linearly the measured foil strain. These measurements provide the test basis for the future 

strain sensors based on the nanoparticle layers. 

In this section we included only a few of a large variety of practical applications of the 

nanoparticle monolayers. The nanoparticle deposition, eventual post-deposition processing 

of the nanoparticle layer and the test measurements of the macroscopic properties of interest 

are common for all these applications. The presented SAXS/GISAXS techniques offer an 

efficient and direct access to the nanoparticle arrangement within the final device.  

6. Conclusion 

The chapter provides an introductory guide to X-ray scattering studies of nanoparticle self-

assembly processes at liquid/air and solid/air interfaces. It is primarily intended for 

graduate and post-graduate students but it is aimed also at other scientific community in the 

field addressing the issues of general interest. In particular, it shows the latest advances in 

the rapidly growing field of self-assembled nanoparticle layers. The X-ray scattering 

diagnostic technique was reviewed that provides an easy access even to buried nanoparticle 

assemblies. The main advantage of the X-ray scattering analysis is the possibility to track 

technologically important processes connected with the nanoparticle self-assembly or re-

assembly in real time. The self-assembly process after colloidal drop casting and 
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evaporation was described shortly while a detailed study of the self-assembly process at the 

liquid/air interface was the core of the chapter. This interface represents an ideal system for 

the nanoparticle assembling as the nanoparticles are confined to the interface but still keep 

translational mobility along it. The processes accompanying the formation of a nanoparticle 

monolayer and its transition to a multilayer were described in detail. Ideal deposition 

conditions for the nanoparticle monolayer formation were derived relying on the surface 

pressure and surface elastic modulus measurements. A modified Langmuir-Schaefer 

technique suitable for large-area deposition of nanoparticle arrays was presented. Selected 

applications of the deposited self-assembled layers were reviewed. 

It has to be stressed that the colloidal nanoparticle self-assembly is a complex process 

resulting from an interplay between many factors where the nanoparticle type and size as 

well as the chemical composition of surfactant play a crucial role. Therefore none of the self-

assembly techniques described in the chapter is generally applicable to any colloidal 

nanoparticle solution. It is also the reason why different techniques were presented with 

different types of nanoparticles. 

It has to be also noted that in addition to the spontaneous nanoparticle self-assembly 

treated in this chapter of limited length, other approaches to assembling based on recent 

developments are of growing interest in the nanoparticle community. These include e.g. 

directed self-assembly of nanoparticles on pre-patterned substrates, chemically driven 

self-assembly, nanoparticle self-assembly stimulated by a magnetic or electro-magnetic 

field. 
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