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1. Introduction

It has long been known that atomic radiation processes near a macroscopic body differ from
those in free space substantially (Purcell, 1946). In particular, the lifetime of an excited state
of an atom or a molecule near surface (Arnoldus & George, 1988a;b; Barnes, 1998; Chance
et al., 1978; Drexhage et al., 1968; Ford et al., 1984; Fort & Grésillon, 2008; Garrett et al.,
2004; Hellen & Axelrod, 1987; Kreiter et al., 2002; Lukosz & Kunz, 1977; Macklin et al., 1996;
Milonni & Knight, 1973; Snoeks et al., 1995; Steiner et al., 2005; Yeung & Gustafson, 1996)
or in the vicinity of (or inside) a nanoparticle (Chew, 1987; 1988; Das & Metiu, 1985; Dung
et al., 2000; Gersten & Nitzan, 1981; Klimov, Ducloy & Letokhov, 1996; Klimov et al., 2001;
Klimov, Ducloy, Letokhov & Lebedev, 1996; Ruppin, 1982) may be increased or decreased
depending on specific conditions. This lifetime change is theoretically calculated in many
papers. These calculations made in a variety of ways. Nevertheless all of these papers can be
divided into two classes. The first class includes the papers that represent an excited atom as
a three-dimensional damped oscillator (Chance et al., 1978; Chew, 1987; 1988; Das & Metiu,
1985; Hellen & Axelrod, 1987; Klimov, Ducloy & Letokhov, 1996; Klimov, Ducloy, Letokhov &
Lebedev, 1996; Ruppin, 1982). The second class includes the papers that consider an excited
atom by means of quantum mechanics (Agarwal, 1975a;b; Arnoldus & George, 1987; 1988a;b;
Barnes, 1998; Dung et al., 2000; Wylie & Sipe, 1984; 1985; Yeung & Gustafson, 1996).

It is shown in the papers that are in the first class that the atomic oscillator rate of damping
take a different value in the case of radial and tangential orientation of the oscillating atomic
electric dipole. The magnitude of the rate of damping lies between these values in the case of
another atomic dipole orientation. However the atomic or molecule decay rate is measured by
the fluorescence detection after light pulse excitation of the atom or molecule. So, fluorescence
is two-step process, and hence, orientation of the oscillating atomic dipole in general is not the
same as exciting light polarization.

In the second class papers the problem of the atomic dipole orientation is either no discussed
explicitly or reduced to partitioning of the dipole matrix element on radial and tangential
parts as in the case of the classic atomic oscillator. The ratio between these two parts is either
no evaluated or assumed to be in the ratio 1:2 as in the case of free space. This approach
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2 Will-be-set-by-IN-TECH

one cannot consider as correct because of anisotropy of the atomic surroundings. The remark
about fluorescence as two-step process mentioned above refers equally to the papers.

To rigorous description of the vector nature of the atomic dipole moment it is necessary to
take into account the atomic angular degrees of freedom, that is degeneracy of atomic levels.
As far as we know, it was done only in the papers (Arnoldus & George, 1987; 1988a;b). In
the papers the steady-state fluorescence of the atom near an axial symmetrical surface was
theoretically investigated and influence of the surface was expressed in terms of electric field
correlation function.

The purpose of the chapter is to present the correct description of deexcitation dynamics of a
degenerate two-level atom in the vicinity of arbitrary body.

We start with a quantum mechanical expression for the atomic deexcitation probability
expressed in terms of the normal correlation function of the atomic dipole moment operator
and the antinormal correlation function of the electric field strength operator. Then the
antinormal correlation function is expressed in terms of the field susceptibility by use of the
fluctuation-dissipation theorem. The atomic dipole moment operator as well as the atomic
density matrix operator is expressed in terms of irreducible tensor operators. Finally, it is
shown that the atomic deexcitation rate at the instant immediately after pulse excitation
is proportional to a linear combination of the products of the so-called atomic polarization
moments, population and alignment, and anisotropic relaxation matrix.

To find out deexcitation dynamics, a master equation for atomic density matrix is derived from
an evolution equation for the total density matrix describing both atom and field. A consistent
system of linear first-order ordinary differential equations for the atomic polarization
moments is obtained from the master equation. Components of the anisotropic relaxation
matrix describing the consistent system are expressed in terms of the field susceptibility
tensor. Symmetries of the anisotropic relaxation matrix are found. It is shown that atomic
deexcitation in general is multi-exponential. The simple exponential decay of the excited
energy level takes place only if its total angular momentum is less then one. Deexcitation
dynamics is considered in more detail for the case when the total angular momenta of the
upper and lower levels are equal to 1 and 0 respectively. It is shown that in this case
deexitation dynamics also may be exponential at certain polarizations of the exciting light.

In conclusion, an intriguing issue that is why the simple model of classical oscillating dipole
for description of fluorescence is in good agreement with observational evidence(Amos &
Barnes, 1997; Chance et al., 1978; Drexhage et al., 1968; Fort & Grésillon, 2008; Kreiter et al.,
2002; Snoeks et al., 1995; Vallée et al., 2001), is clarified.

2. Atomic transition rate of a degenerate two-level atom in the vicinity of a material

body

To investigate deexcitation of a degenerate two-level atom in the vicinity of a nanoparticle we
consider more general problem of deexcitation of the atom in the vicinity of a material body
at first.

Our approach to the problem is based on using correlation functions that appear in
linear-response theory. It is about the same as used in number of works (Agarwal, 1975a;
Wylie & Sipe, 1984) concerning the quantum electrodynamics and life time of a non-generate
atom near an interface. It is most of all close to approach developed in (Klyshko, 2011).
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Deexcitation Dynamics of a Degenerate Two-Level Atom Near (Inside) a Body 3

2.1 Transition rate in dipole approximation vs atomic and fluctuating electric field

correlation functions

We will assume that both the atom and the electromagnetic field are quantized.

Let the atom and the field be independent at the initial time moment t0. Therefore at that
instant the quantum state of the system |mki〉is equal to |m〉|ki〉, where |m〉, |ki〉 are the initial
states of the atom and field, respectively. In the first order of the perturbation theory, the
amplitude cnk (t) of the transition into some state |nk〉 is proportional to the matrix element
of the interaction operator V̂, 〈nk|V̂|mki〉, where |n〉, |k〉 are states of the atom and field at the

final time moment t, respectively. In the dipole approximation, V̂ = −�̂d(t)�̂E(t), so,

cnk = − 1

ih̄

t∫

t0

dt′〈nk|�̂d(t′)�̂E(t′)|mki〉, (1)

where the operators of the atomic dipole moment �̂d(t) and the electric field strength �̂E(t) are
considered in the interaction picture, i.e., without the account for the perturbation.

In the rotating-wave approximation (Allen & Eberly, 1975), we have

− V̂(t)≈�̂d(−)(t)�̂E(+)(t) + �̂d(+)(t)�̂E(−)(t), (2)

where �̂d(+) and �̂E(+) are the positive-frequency parts of the operators, whereas �̂d(−) and �̂E(−)

are negative-frequency ones. At t − t0 ≡ T ≫ 1/ω̄, fast oscillating (with approximately twice

the mean frequency ω̄) products �̂d(+)�̂E(+) and �̂d(−)�̂E(−) have no contribution into the integral
(1).

The initial atomic state |m〉 has more high energy than the final atomic state |n〉 for the
deexcitation process under consideration. That is why only the second term in (2) gives a
nonzero contribution for this process. Hence, the probability of the atomic deexcitation is
given by

P(nk|mki) =
1

h̄2

t∫

t0

t∫

t0

dt′dt′′ ∑
αβ

〈m|d̂(−)
α (t′)|n〉〈n|d̂(+)

β (t′′)|m〉

× 〈ki|Ê(+)
α (t′)|k〉〈k|Ê(−)

β (t′′)|ki〉, (3)

where we have used the equality 〈r|Â(+)|s〉= 〈s|Â(−)|r〉∗ for the matrix element of an
operator Â between states |r〉 and |s〉. We also have used the Greek letters in subscripts for the
notation of the Descartes’s components of the vector operators.

One should sum the expression (3) over all possible states |nk〉if we are not interested in what
specific state the system under consideration has came. These states constitute the complete
set and satisfy the completeness condition

∑
nk

|nk 〉〈 nk| = Î. (4)
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4 Will-be-set-by-IN-TECH

Thus we can represent the total probability of the atomic deexcitation in the following way

P = h̄−2

t∫

t0

t∫

t0

dt′dt′′ ∑
αβ

f
(+)
αβ

(
t′, t′′

)
g
(−)
αβ

(
t′, t′′

)
, (5)

where

f
(+)
αβ

(
t′, t′′

)
≡
〈

d̂
(−)
α (t′)d̂(+)

β (t′′)
〉

,

g
(−)
αβ

(
t′, t′′

)
≡
〈

Ê
(+)
α (t′)Ê

(−)
β (t′′)

〉 (6)

are normally and anti-normally ordered correlation function (CF) of the atomic dipole
moment and the electric field strength in an initial state, respectively. The initial state may
be pure as well as mixed, of course.

We suppose that initial unperturbed states of both interacting systems are stationary. In this
case correlation functions (6) depend only on the difference of their arguments:

f
(±)
αβ (τ) ≡ f

(±)
αβ (t, t + τ) =

〈
d̂
(∓)
α (0)d̂

(±)
β (τ)

〉
=
(

f
(±)
βα (−τ)

)∗
, (7)

g
(±)
αβ (τ) ≡g

(±)
αβ (t, t + τ) =

〈
Ê
(∓)
α (0)Ê

(±)
β (τ)

〉
=
(

g
(±)
βα (−τ)

)∗
. (8)

Hence, the total probability of the atomic deexcitation (5) becomes

P = h̄−2

T∫

0

dτ (T − τ)∑
αβ

[
f
(+)
αβ (τ) g

(−)
αβ (τ) + (τ → −τ)

]
, (9)

where T ≡ t − t0 is observation time. When it is much more then the atomic and field
correlation time, the total probability of the atomic deexcitation (9) becomes proportional to
T. So, atomic transition rate W ≡ P/T independent on time one may introduce

W = h̄−2

∞∫

−∞

dτ ∑
αβ

f
(+)
αβ (τ) g

(−)
αβ (τ) , (10)

where limits of integration ±T are extended to ±∞. It is convenient rewrite (10) in terms of
the Fourier components of the correlation functions in the following way

W =
(

1/2πh̄2
) ∞∫

−∞

dω ∑
αβ

f
(+)
αβ (ω) g

(−)
αβ (−ω) , (11)

where the Fourier transform A (ω) of a function A (τ) is defined by

A (ω) =

∞∫

−∞

dτ eiωτ A (τ) . (12)
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Deexcitation Dynamics of a Degenerate Two-Level Atom Near (Inside) a Body 5

2.2 Transition rate in terms of electric field susceptibility

It is known that total correlation function is represented as a sum of normally and
anti-normally ordered correlation function in the case of stationary process. Indeed, the total
correlation function of the electric field strength may be written as

gαβ (t, t + τ) ≡
〈[

Ê
(+)
α (t) + Ê

(−)
α (t)

] [
Ê
(+)
β (t + τ) + Ê

(−)
β (t + τ)

]〉

= ∑
s′ ,s=±1

〈
Ê
(s′)
α (t)Ê

(s)
β (t + τ)

〉
(13)

Expressing Ê
(s′)
α (t) and Ê

(s)
β (t + τ) in terms of Fourier transforms, we obtain

gαβ (t, t + τ) ≡ (2π)−2
∞∫

−∞

∞∫

−∞

dω′ dωe−iωτe−i(ω′+ω)t ∑
s′ ,s=±1

〈
Ê
(s′)
α (ω′)Ê

(s)
β (ω)

〉
. (14)

Note, that

Ê
(s)
α (ω) ≡ θ (sω) Êα(ω) (15)

by definition, where θ (ω) is step function.

It is clear that (14) is independent on t only when expression in the angle brackets is
proportional to Dirac function:

〈
Ê
(s′)
α (ω′)Ê

(s)
β (ω)

〉
≡ 2πg

(s)
αβ (ω) δ

(
ω′ + ω

)
, (16)

where spectral density of the normally ordered correlation function g
(+)
αβ (ω) and

anti-normally ordered one g
(−)
αβ (ω) are introduced respectively. In turn, (16) and (15) imply

s′ = −s. Hence, in (14) only two terms are nonzero, and we have

gαβ (τ) = g
(+)
αβ (τ) + g

(−)
αβ (τ) . (17)

Note that from (14), (16), and (17) it is follows that relationship between g
(±)
αβ (ω) and g

(±)
αβ (τ)

is given by the ordinary formula (12). It is clear also that ordered correlation functions g
(±)
αβ (ω)

are expressed in terms of the ordinary correlation function gαβ (ω) similar to relation (15):

g
(±)
αβ (ω) = θ (±ω) gαβ (ω) (18)

At thermal equilibrium the correlation function gαβ (τ) is simply related with symmetrized
correlation function {g}αβ (τ) defined by

{g}αβ (τ) ≡
1

2

〈
Êα(0)Êβ(τ) + Êβ(τ)Êα(0)

〉
=

1

2

{
gαβ (τ) + gβα (−τ)

}
. (19)

There is a simple Kubo-Martin-Schwinger’s boundary condition

gβα (−τ) = gαβ (τ + ih̄ξ) , (20)
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where ξ ≡ 1/ (kT), k and T are Boltzmann’s constant and temperature respectively. It is easily
proofed by using the invariance of the trace under a cyclic permutation of the operators:

gβα (−τ) =
〈

Êβ(τ)Êα(0)
〉
≡ tr

{
ρ̂0eiĤτ/h̄ Êβe−iĤτ/h̄ Êα

}

= Z−1tr
{

e−ξĤeiĤτ/h̄ Êβe−iĤτ/h̄ Êα

}
(21)

= Z−1tr
{

Êαei(iξ+τ/h̄)Ĥ Êβe−i(iξ+τ/h̄)Ĥe−ξĤ
}
= gαβ (τ + ih̄ξ) ,

where ρ̂0 = Z−1e−ξĤ is the thermal equilibrium density operator, Z = tr
{

e−ξĤ
}

, and Ĥ is

unperturbed Hamiltonian of the system.

Using (20), we rewrite relation (19) as follows

{g}αβ (τ) =
1

2

{
gαβ (τ) + gαβ (τ + ih̄ξ)

}
. (22)

In turn, taking the Fourier transform, we obtain

{g}αβ (ω) =
1

2

{
1 + eh̄ωξ

}
gαβ (ω) . (23)

The Fourier transform of symmetrized correlation function {g}αβ (�r,�r′; ω) is related with

dynamical value Gαβ (�r,�r′; ω), the Fourier transform of the electric field susceptibility

Gαβ (�r,�r′; τ), by the fluctuation-dissipation theorem as follows (Bernard & Callen, 1959; Callen
et al., 1952; Callen & Welton, 1951; Landau & Lifshitz, 1980)

{g}αβ

(
�r,�r′; ω

)
=

1

2
ih̄
[

G∗
βα

(
�r′,�r; ω

)
− Gαβ

(
�r,�r′; ω

)]
coth

(
h̄ωξ

2

)
, (24)

where tensor Gαβ (�r,�r′; ω) relates Fourier transforms of the electric dipole d̂β(�r
′; ω) and

induced electric field Êα(�r; ω) as follows

Êα(�r; ω) = ∑
β

Gαβ

(
�r,�r′; ω

)
d̂β(�r

′; ω), (25)

and the electric field susceptibility tensor Gαβ (�r,�r′; τ) is defined by

Gαβ

(
�r,�r′; τ

)
≡ i

h̄
θ (τ)

〈[
Êα(τ), Êβ(0)

]〉
. (26)

Note that the same tensor Gαβ (�r,�r′; ω) relates classical, not quantum, values Eα(�r; ω) and

dβ(�r
′; ω) by the same way (25). So it can be found from the solution of the classical

electrodynamic problem in the same condition.

Using (18), (23), and (24), we obtain

g
(−)
αβ (−ω) = ih̄θ (ω)

1

2

[
1 + coth

(
h̄ωξ

2

)] [
G∗

βα

(
�r′,�r; ω

)
− Gαβ

(
�r,�r′; ω

)]
, (27)
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Deexcitation Dynamics of a Degenerate Two-Level Atom Near (Inside) a Body 7

When there is no external magnetic field, tensor Gαβ (�r,�r′; ω) is symmetrical one, and its

imaginary part is odd in ω. In this case (27) goes over into (Agarwal, 1975a)1

g
(−)
αβ (−ω) = h̄θ (ω)

[
1 + coth

(
h̄ωξ

2

)]
ℑ
[

Gαβ

(
�r′,�r; ω

)]
, (28)

We are interesting in only local field response because of point atom approximation used.
Substituting (28) in (11) we find

W = (1/2πh̄)

∞∫

0

dω ∑
αβ

f
(+)
αβ (ω)

[
1 + coth

(
h̄ωξ

2

)]
ℑ
[

Gαβ (�r0,�r0; ω)
]

, (29)

where �r0 is radius vector of the atom.

2.3 Transition rate of a degenerate two-level atom

The explicit form of the atomic CF f
(+)
αβ (ω) depends on the atomic model used. Here we

consider a degenerate two-level atom. Its energy levels are degenerate on the total angular
momentum projection on any axis. Suppose the excited upper energy level m and lower one n
have quantum numbers Jm Mm and Jn Mn respectively, where Jj and Mj label the total angular
momentum of the level j and its projection on the z-axis , respectively.

It is convenient describe vector or tensor values in terms of the circular components instead
of the Descartes’s one. The circular components vσ of a vector �v, where σ = 0,±1, are related
with the Descartes’s one vi as follows (Varshalovich et al., 1988):

v0 = vz,

v±1 = ∓
(
vx ± vy

)
/
√

2. (30)

The circular components of the atomic dipole operator can be expressed according to the
Wigner-Eckart theorem in terms of the so-called unit irreducible tensor operators T̂K

Q(Jm Jn) in

the following way (Biedenharn & Louck, 1981; Blum, 1996; Fano & Racah, 1959; Varshalovich
et al., 1988):

d̂
(+)
σ (t) =

dnm√
3

T̂1
σ(Jn Jm) exp(−iωmnt) ,

d̂
(−)

σ (t) =

{
(−1)σ d̂

(+)

−σ (t)

}†

, (31)

where dmn and ωmn are reduced matrix element of the atomic dipole moment and resonant
frequency of the atomic transition, respectively. The irreducible tensor operator T̂K

Q(Jm Jn),

where K and Q are its rank and component (−K � Q � K) correspondingly, is defined as
(Biedenharn & Louck, 1981; Blum, 1996; Fano & Racah, 1959; Varshalovich et al., 1988)

T̂K
Q(Jm Jn) = ∑

Mm ,Mn

(−1)Jn−Mn 〈Jm Mm Jn − Mn|KQ〉|Jm Mm〉〈Jn Mn|, (32)

where 〈Jm Mm Jn − Mn|KQ〉 is the vector coupling (Clebsch-Gordan) coefficient. Quantities Jm,
Jn, and K of the coefficient obey triangle unequality, so |Jm − Jn| � K � Jm + Jn.

1 Definition of the ordered correlation functions in this paper differs from ours one by sign of the
argument τ and, hence in sign of ω.
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2.3.1 Properties of irreducible tensor operators and density matrix multipole components

The operators T̂K
Q(J J′) are orthonormal in the following sense

tr
[

T̂K′
Q′ (J′ J)T̂K†

Q (J′ J)
]
≡ ∑

M′M

〈J′M′|T̂K′
Q′ (J′ J)|JM〉〈JM|T̂K†

Q (J′ J)|J′M′〉 = δK′KδQ′Q, (33)

where the Hermitian conjugate operator T̂K†
Q (J′ J) is expressed in terms of T̂K

Q(J J′) as follows

T̂K†
Q (J′ J) ≡ (−1)J′−J−Q T̂K

−Q(J J′). (34)

Set of the operators T̂K
Q(J′ J) is complete. So, density operator can be decomposed into

irreducible parts as follows

ρ̂ = ∑
J′ JKQ

ρKQ
(

J′ J
)

T̂K
Q(J′ J). (35)

In turn, coefficients ρKQ (J′ J) known as multipole components are expressed in terms of
T̂K

Q(J′ J) and density operator by using (33) and (32) in the following way

ρKQ
(

J′ J
)
= tr

[
ρ̂T̂K†

Q (J′ J)
]
= ∑

M′M
(−1)J−M 〈J′M′ J − M|KQ〉〈J′M′|ρ̂|JM〉. (36)

It is seen that multipole components ρKQ (J′ J) satisfy the following relations similar to
relations (34): [

ρKQ
(

J′ J
)]∗

= (−1)J−J′−Q ρK−Q
(

J J′
)

, (37)

so multipole components ρK0 (J J) is real. Note also that ρKQ (J′ J) transform under rotations
like T̂K†

Q (J′ J) , and hence, are contravariant to T̂K
Q(J′ J) because of property (34).

We are interesting only in states of the excited level m, so the relevant density operator ρ̂ (Jm)
is

ρ̂ (Jm) = ∑
KQ

ρKQ (Jm Jm) T̂K
Q(Jm Jm). (38)

In this decomposition the rank K is in the range 0 � K � 2Jm as was noted after definition
(32). All multipole components ρKQ (Jm Jm) have clear physical sense (see, for example,
(Biedenharn & Louck, 1981; Blum, 1996; Omont, 1977; Varshalovich et al., 1988)). In particular,√

2Jm + 1ρ00 (Jm Jm) is equal to the total population of the level m, the ρ1Q (Jm Jm)’s are the
three standard components of what is generally called “orientation” proportional to the mean
magnetic dipole of the state, and the ρ2Q (Jm Jm)’s are the five standard components of the
“alignment” proportional to the mean electric quadrupole moment of the state.

2.3.2 Transition rate and material body symmetry

Finally, after some manipulation using the relations (7), (31), and (38), and also properties of
irreducible tensor operators, one can represent relation (29) in the form

W =
1

2

[
1 + coth

(
h̄ωmnξ

2

)]
∑
KQ

γK
QρKQ (Jm Jm) , (39)
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Deexcitation Dynamics of a Degenerate Two-Level Atom Near (Inside) a Body 9

where

γK
Q ≡ 2

|dmn|2
h̄

(−1)Jm+Jn

{
1 1 K
Jm Jm Jn

} [
G

′′(�r0,�r0; ωmn)
]K

Q (40)

is irreducible relaxation tensor of the multipole ρKQ (Jm Jm),

{
1 1 K
Jm Jm Jn

}
is 6 − j coefficient,

and [G′′(�r0,�r0; ωmn)]
K
Q is irreducible spherical tensor of the imaginary part of the electric field

susceptibility in the ω−representation. Irreducible spherical tensor GK
Q(�r0,�r0; ωmn) is related

with circular components Gσσ′ (�r0,�r0; ωmn) as follows

GK
Q(�r0,�r0; ωmn) ≡ ∑

σσ′
〈1σ1σ′|KQ〉Gσσ′ (�r0,�r0; ωmn). (41)

It is follows from properties of the Clebsch-Gordan coefficient 〈1σ1σ′|KQ〉 that 0 � K � 2.
Furthermore, symmetry of the tensor Gσσ′ (�r0,�r0; ωmn) under the interchange σ ⇆ σ′ requires
that K have to be even, so K = 0, 2. In other words, deexcitation rate depends on the total
population of excited level (K = 0) and its alignment (K = 2). Their relative contribution
depends according to (39) and (40) on quantum numbers of combining levels m and n, on
the excitation type determining the value of ρKQ (Jm Jm), and on the atom surroundings by
GK

Q(�r0,�r0; ωmn). Let us consider these factors in more detail.

As was noted after (38), K is in the range of values defining by 0 � K � 2Jm. Consequently,
if the total momentum Jm of the the excited level is equal to 0, or 1/2, there is no alignment
of the level. So, deexcitation is governed only by γ0

0 and does not depend on excitation type.
In the case of Jm > 1/2, the ratio of two deexcitation rates corresponding to some two fixed
excitation types, differing in initial values of ρKQ (Jm Jm), is not universal but depends on Jm,
Jn.

One can diagonalize symmetrical tensor Gαβ(�r0,�r0; ωmn). Let us label its principal axes of
coordinate by X, Y, Z. In this proper basis only the following irreducible components of the
tensor G are not zero:

G0
0 = − 1√

3
tr (G) = − 1√

3
(GXX + GYY + GZZ) , (42)

G2
0 =

√
2

3

[
GZZ − 1

2
(GXX + GYY)

]
, (43)

G2
±2 =

1

2
(GXX − GYY) . (44)

As is seen from (44), components G2
±2 = 0 if surroundings of the atom is axial symmetric

(symmetry axis along Z). In particular, this case is realized when atom is near a half-space
boundary or near a spherical particle.

When surroundings of the atom is isotropic, the only nonzero component of the tensor G is
G0

0 one. It is just the case of an isotropic infinite medium (in particular, vacuum) or when

atom is in the center of spherical particle or cavity. In this case (−1)Jm+Jn

{
1 1 0
Jm Jm Jn

}
=

−1/
√

3 (2Jm + 1) in (40). So, using relations (42), (40) we obtain from (39)

Wis =
2

3

|dmn|2
h̄ (2Jm + 1)

ℑ
(

∑
i=X,Y,Z

Gii

)
Jm

∑
Mm=−Jm

〈Jm Mm|ρ̂|Jm Mm〉. (45)
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Since we are here interested primarily in atomic transition energies on the order of a Rydberg

that implies
h̄ωmnξ

2
≫ 1 at room temperature, we have replaced the expression in square

brackets in Eq. (39) by 2. The total population of the upper level

Jm

∑
Mm=−Jm

〈Jm Mm|ρ̂|Jm Mm〉 = 1

because we suppose that atom is excited on level m at the initial time. For free space (Barash,
1988; Lifshitz & Pitaevskii, 1980; Nikolaev, 2006), we have

ℑ
(

∑
i=X,Y,Z

Gii

)
= 2

(ωmn

c

)3
. (46)

Substituting these two expressions in Eq. (45) we immediately obtain the well-known
expression for the radiative decay rate of the excited state of an isolated atom (see, i.e.,
(Berestetskii et al., 2008; Sobelman, 1972)) :

W0 =
4

3

|dmn|2
h̄ (2Jm + 1)

(ωmn

c

)3
. (47)

It should be noted that Eq. (39) describes deexcitation rate at the initial time moment just
following the excitation. Density matrix multipole components ρKQ (Jm Jm) will be changed
with the passage of time. It is reasonable to suggest that the expression opposite in sign to
the right-hand side of Eq. (39) describes the decrease of the upper level population per unit
of time. To prove the suggestion let us consider more general problem of the dynamics of the
density matrix multipole components caused by interaction of the atom with quantized field.

3. Master equations for the excited density matrix multipole components

3.1 Integro-differential equation for total density matrix operator

Let us consider a large isolated system consisting of an atom, material body and interacting
with them quantum electromagnetic field. Atomic surrounding, electromagnetic field and
material body that interact among themselves, we will treat as a large subsystem referred to
as the thermostat. In the interaction picture representation, the density matrix R̂ of the total
isolated system obeys the Liouville equation:

ih̄
d ˆR (t)

dt
=
[
V̂ (t) , R̂ (t)

]
, (48)

where V̂ is the atom-field interaction operator that in the rotating-wave approximation is
given by Eq. (2). It is known that this equation can be rewritten in the integro-differential
form that is suitable for perturbation technique. Indeed, formal integrating this equation in
time, we obtain the integral equation:

R̂ (t) = R̂ (0)− (i/h̄)

t∫

0

dt′
[
V̂
(
t′
)

, R̂
(
t′
)]

. (49)
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Substituting this expression into Eq. (48), we get the equation for the total density matrix
operator in the following form:

dR̂(t)

dt
= (−i/h̄)

[
V̂ (t) , R̂ (0)

]
+ (−i/h̄)2

t∫

0

dt′
[
V̂ (t) ,

[
V̂
(
t′
)

, R̂
(
t′
)]]

. (50)

In Eqs. (49) and (50) the lower limit we took 0 since it is assumed that the thermostat and the
atom did not interact before this time moment because the atom was unexcited. Consequently,
until this moment the thermostat and the atom were uncorrelated, so the total density matrix
R̂ was equal to the direct product of the density matrices of the system:

R̂(0) = ρ̂(0)ρ̂th(0), (51)

where ρ̂ and ρ̂th are the density matrix operator of the atom and thermostat, respectively.

3.2 Large thermostat approximation

Following the paper (Fano & Racah, 1959) (see also (Blum, 1996)), we will suppose that
thermostat is always in the state of the thermal equilibrium because it has a large number of
degrees of freedom and, hence, atom almost do not changes its state. The supposition implies
that the total density matrix is always equal to the direct product of the density matrices of
the system:

ˆR (t) = ρ̂(t)ρ̂th(0) (52)

This relation is referred to as the main condition of the irreversibility.

Substituting (52) in (50) and taking trace over thermostat variables, we get the equation for
the reduced atomic density matrix operator, ρ̂(t) ≡ trthR̂ (t),

dρ̂(t)

dt
= −(i/h̄)trth

[
V̂ (t) , ρ̂(0)ρ̂th(0)

]
− (1/h̄)2

t∫

0

dt′trth

[
V̂ (t) ,

[
V̂
(
t′
)

, ρ̂(t′)ρ̂th(0)
]]

. (53)

3.3 Integro-differential equation for atomic multipole components

To obtain dynamics equation for atomic multipole components, we make use of relation (36).
Precisely, let us multiply both sides of (53) by T̂K†

Q (Jm Jm) and take trace over atomic variable.
So, we get

dρKQ (Jm Jm) (t)

dt
= −(i/h̄)trall

{
T̂K†

Q (Jm Jm)
[
V̂ (t) , ρ̂(0)ρ̂th(0)

]}

−(1/h̄)2

t∫

0

dt′trall

{
T̂K†

Q (Jm Jm)
[
V̂ (t) ,

[
V̂
(
t′
)

, ρ̂(t′)ρ̂th(0)
]]}

, (54)

where trall stands for the trace over all isolated system variables including atomic and
thermostat one.

We will now transform this equation in such a way that terms include the trace of the product
of ρ̂(t′)ρ̂th(0) by an operator.
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To do this, we make use of the identity (Il’inskii & Keldysh, 1994)

tr
{

Â
[
Â1,
[
Â2, · · ·

[
Âk, B̂

]
· · ·
]]}

= tr
{[

· · ·
[[

Â, Â1

]
, Â2

]
· · · Âk

]
B̂
}

(55)

which holds for arbitrary operators Â, Â1, Â2, · · · , B̂.

Using identity (55) and the atomic density matrix decomposition (35), we can rewrite (54) as

dρKQ (Jm Jm; t)

dt
= − i

h̄ ∑
J′ JK′Q′

ρK′Q′ (
J′ J; 0

)
trall

{[
T̂K†

Q (Jm Jm), V̂ (t)
]

T̂K′
Q′ (J′ J)ρ̂th(0)

}

− 1

h̄2 ∑
J′ JK′Q′

t∫

0

dt′ρK′Q′ (
J′ J; t′

)
trall

{[[
T̂K†

Q (Jm Jm), V̂ (t)
]

, V̂
(
t′
)]

T̂K′
Q′ (J′ J)ρ̂th(0)

}
. (56)

Substituting in (56) the interaction Hamiltonian (2), using (31), and also taking into account

that scalar product �dÊ in the circular basis (30) has the form ∑σ (−1)σ dσE−σ, we obtain

dρKQ (Jm Jm; t)

dt
= − dmndnm

3h̄2 ∑
J′ JK′Q′

t∫

0

dt′ρK′Q′ (
J′ J; t′

)
∑
αβ

{eiωmn(t−t′)
[

g
(−)
αβ

(
t′ − t

)
Aαβ

−g
(+)
αβ

(
t − t′

)
Bαβ

]
+ e−iωmn(t−t′)

[
g
(−)
αβ

(
t − t′

)
Cαβ − g

(+)
αβ

(
t′ − t

)
Bαβ

]
}, (57)

where g
(±)
αβ (τ) are the ordered correlation functions of the fluctuating electromagnetic field

(8),

Aαβ ≡ ∑
σσ′

(−1)σ+σ′ 〈α|1 − σ〉〈β|1 − σ′〉tr
{

T̂K†
Q (Jm Jm)T̂

1
σ(Jm Jn)T̂

1
σ′ (Jn Jm)T̂

K′
Q′ (J J′)

}
, (58)

Bαβ ≡ ∑
σσ′

(−1)σ+σ′ 〈α|1 − σ〉〈β|1 − σ′〉tr
{

T̂1
σ(Jn Jm)T̂

K†
Q (Jm Jm)T̂

1
σ′ (Jm Jn)T̂

K′
Q′ (J J′)

}
, (59)

Cαβ ≡ ∑
σσ′

(−1)σ+σ′ 〈α|1 − σ〉〈β|1 − σ′〉tr
{

T̂1
σ(Jm Jn)T̂

1
σ′ (Jn Jm)T̂

K†
Q (Jm Jm)T̂

K′
Q′ (J J′)

}
. (60)

In the definitions (58) – (60) symbols 〈α|1 − σ〉 and 〈β|1 − σ′〉 are transformation matrices
from the circular components to the Descartes’s one, that are inverse of that given by (30), and
symbol tr {· · · } from now on stands for trace over atomic variables. Note that the linear on
V̂ (t) term in (56) vanishes in our case because of the average fluctuated field is zero at the
thermal equilibrium: trth

{
Êα

}
≡ 〈Êα〉 = 0.

It should be noted that ratio of |g(+)
αβ (t − t′)| to |g

(−)
αβ (t − t′)| is proportional to the mean

number of photons in the thermal equilibrium, 〈nph〉 ∼ kT/h̄ωmn ≪ 1. Therefore terms that

proportional to g
(+)
αβ (t − t′) can be ignored in (57).

3.4 Master equation for multipole components in Markov-type approximation

Fluctuating field correlation functions g
(±)
αβ (t − t′) are nonzero only for the sufficiently small

time difference |τ| ≡ |t − t′| comparable with the typical field correlation time τc. We will
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assume following (Loisell, 1973) that this correlation time is much less then typical variation
times of the atomic multipole components. Thus, in the case of free space the lifetime of

the atomic excited state much more than τc ≈ 1/ωmn. So, we can replace ρK′Q′
(J′ J; t′) by

ρK′Q′
(J′ J; t) and to take it out of the integral in (57). It is so-called Markov-type approximation.

It is also important to note that T̂K′
Q′ (J J′) incoming in (58) and (60) are nonzero only if J = J′ =

Jm because of its definition (32) and invariance of the trace under a cyclic permutation of the
operators.

Taking into account assumptions mentioned above, property (8), and by making the change
of variable τ ≡ t − t′ in integration, we can represent (57) as

dρKQ (Jm Jm; t)

dt
= − dmndnm

3h̄2 ∑
K′Q′

∑
αβ

[
I∗βα (ωmn) Aαβ + Iαβ (ωmn)Cαβ

]
ρK′Q′

(Jm Jm; t) , (61)

where

Iαβ (ωmn) ≡
∞∫

0

dτg
(−)
αβ (τ)e−iωmnτ . (62)

In (62) we extended upper limit from t to ∞ because of g
(±)
αβ (τ) is in fact zero at τ ≫ τc. The

error of this replacement is negligible in Markov-type approximation.

Now we will show that integral (62) is expressed in terms of retarded Green function

Gαβ (�r,�r′; ωmn). To prove that, let as consider Fourier transform g
(−)
αβ (−ωmn) of the function

g
(−)
αβ (τ) defined by (12):

g
(−)
αβ (−ωmn) =

∞∫

−∞

dτg
(−)
αβ (τ) e−iωmnτ (63)

Let us split this integral into two parts

g
(−)
αβ (−ωmn) =

0∫

−∞

dτg
(−)
αβ (τ) e−iωmnτ +

∞∫

0

dτg
(−)
αβ (τ) e−iωmnτ . (64)

Making the change of variable in integration τ → −τ in the first integral and utilizing relation
(8), we can rewrite (64) as

g
(−)
αβ (−ωmn) =

∞∫

0

dτ
(

g
(−)
βα (τ)

)∗
eiωmnτ +

∞∫

0

dτg
(−)
αβ (τ) e−iωmnτ . (65)

The second integral in (65) is just equal to Iαβ (ωmn), and the first one to its complex
conjugation. So, (65) can be rewritten as follows

g
(−)
αβ (−ωmn) = Iαβ (ωmn) + I∗βα (ωmn) . (66)
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Now comparing right-hand sides of (66) and (27), we obtain desired relation

Iαβ (ωmn) = −ih̄
1

2

[
1 + coth

(
h̄ωmn

2kT

)]
Gαβ

(
�r,�r′; ωmn

)
(67)

It is yet mentioned after (37) that multipole components ρKQ (J′ J) transform under rotations
contravariant to T̂K

Q(J′ J). It is convenient to introduce co-variant multipole components

ρK
Q (J′ J) by convention

ρK
Q

(
J′ J
)
≡ (−1)J−J′−Q ρK−Q

(
J J′
)
=
[
ρKQ

(
J′ J
)]∗

. (68)

In these notations, making use of (67) and explicitly calculating traces in (58) and (60), one can
finally represent (61) as follows 2

dρK
Q (t)

dt
= −γ0 ∑

K′Q′
ΓKK′

QQ′ρK′
Q′ (t) , (69)

where

γ0 = W0 =
4

3

|dmn|2
h̄ (2Jm + 1)

(ωmn

c

)3
(70)

is radiation decay rate of the excited degenerate state of the atom in vacuum, dimensionless

relaxation tensor ΓKK′
QQ′ can be represented as follows:

ΓKK′
QQ′ = γKK′

QQ′ + i∆KK′
QQ′ , (71)

where γKK′
QQ′ and ∆KK′

QQ′ are in general complex.

Geometrical part of γKK′
QQ′ and ∆KK′

QQ′ is represented by Clebsch-Gordan coefficient and

dynamical one is proportional to retarded Green function:

γKK′
QQ′ = ∑

LM

〈K′Q′LM|KQ〉GL
M

(
KK′L

)
γ(KK′L, Jm Jn), (72)

∆KK′
QQ′ = ∑

LM

〈K′Q′LM|KQ〉G̃L
M

(
KK′L

)
γ(KK′L, Jm Jn), (73)

where scalar coefficient γ(KK′L, Jm Jn) and irreducible tensors G
L
M (KK′L) and G̃L

M (KK′L) are

γ(KK′L, Jm Jn) = (−1)K+Jn−Jm
3

2
(2Jm + 1)

√
(2K′ + 1) (2L + 1) (74)

×
{

K K′ L
Jm Jm Jm

}{
1 1 L
Jm Jm Jn

}
,

G
L
M

(
KK′L

)
= ∑

αβσσ′
〈1σ1σ′|LM〉〈1σ|α〉〈1σ′|β〉Gαβ

(
KK′L

)
, (75)

G̃L
M

(
KK′L

)
= ∑

αβσσ′
〈1σ1σ′|LM〉〈1σ|α〉〈1σ′|β〉G̃αβ

(
KK′L

)
, (76)

2 hereinafter for simplicity we omit the dependence of ρK
Q on Jm: ρK

Q (t) ≡ ρK
Q (Jm Jm; t)
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and

Gαβ

(
KK′L

)
=

1

2

[
G′′

βα(ωmn) + (−1)K+K′−L G′′
αβ(ωmn)

]
/
(ωmn

c

)3
, (77)

G̃αβ

(
KK′L

)
=

1

2

[
G′

βα(ωmn)− (−1)K+K′−L G′
αβ(ωmn)

]
/
(ωmn

c

)3
. (78)

Symbol G′ and G′′ in (77) and (78) denotes real and imaginary part of G, respectively, and
symbols 〈1σ|α〉 and 〈1σ′|β〉 are transformation matrices from the Descartes’s components to
the circu lar one, that given by (30).

3.4.1 Relaxation matrix symmetry

Note that Gαβ (KK′L) and G̃αβ (KK′L), and consequently, G
L
M (KK′L) and G̃L

M (KK′L), are

symmetrical with respect to K and K′. As for the scalar γ(KK′L, Jm Jn), it changes upon
permutation of K and K′ as follows

γ(KK′L, Jm Jn) = (−1)K−K′

√
2K′ + 1

2K + 1
γ(K′KL, Jm Jn) (79)

because of invariance of 6 − j symbol as regard to permutation of its columns.

Although tensor Gαβ in general has no symmetry with respect to permutation of subscripts,

tensors Gαβ (KK′L) and G̃αβ (KK′L) have one, as one can see from (77) and (78),

Gαβ

(
KK′L

)
= (−1)K+K′−L Gβα

(
KK′L

)
, (80)

G̃αβ

(
KK′L

)
= − (−1)K+K′−L G̃βα

(
KK′L

)
. (81)

Irreducible tensors G
L
M (KK′L) and G̃L

M (KK′L) in general are complex. Using relation
〈1σ|α〉∗ = (−1)σ〈1 − σ|α〉 and Clebsch-Gordan coefficients symmetry, one can show that

[
G

L
M

(
KK′L

)]∗
= (−1)L+M G

L
−M

(
KK′L

)
, (82)

[
G̃L

M

(
KK′L

)]∗
= (−1)L+M G̃L

−M

(
KK′L

)
. (83)

This relations allow to find the following symmetry of the relaxation matrix components
[
γKK′

QQ′

]∗
= (−1)K′−K+Q−Q′

γKK′
−Q−Q′ , (84)

[
∆KK′

QQ′

]∗
= (−1)K′−K+Q−Q′

∆KK′
−Q−Q′ . (85)

On the other hand, from hermiticity of density matrix and equation (69) it is easy to obtain
[
ΓKK′

QQ′

]∗
= (−1)Q−Q′

ΓKK′
−Q−Q′ , (86)

that can be rewrite in terms of γKK′
QQ′ and ∆KK′

QQ′ as follows

[
γKK′

QQ′

]∗
= (−1)Q−Q′

γKK′
−Q−Q′ , (87)

[
∆KK′

QQ′

]∗
= − (−1)Q−Q′

∆KK′
−Q−Q′ . (88)
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Comparing (84) and (87) shows that γKK′
QQ′ is different from zero only for even K+K′. Similarly,

comparing (85) and (88) shows that ∆KK′
QQ′ is different from zero only for odd K + K′.

These properties can be find more straightforward from symmetries (80) and (81) and
definitions (75) and (76) that yield

G
L
M

(
KK′L

)
= (−1)K+K′

G
L
M

(
KK′L

)
, (89)

G̃L
M

(
KK′L

)
= (−1)K+K′+1 G̃L

M

(
KK′L

)
. (90)

Taking into account these properties that we can reformulate as K + K′ is even for Gαβ (KK′L)
and odd for G̃αβ (KK′L), one can see from (80) and (81) that part of Gαβ which is symmetrical

with respect to permutation of subscripts makes a contribution to Gαβ (KK′L) and to

G̃αβ (KK′L), and hence to ΓKK′
QQ′ , only when L is even. As for antisymmetrical part of Gαβ,

it contributes to ΓKK′
QQ′ only when L is odd.

When tensor Gαβ is symmetrical (i.e., no external magnetic field), the form of tensor

Gαβ (KK′L) as well of tensor G̃αβ (KK′L) is simplified

Gαβ

(
KK′L

)
= δL,2lδK+K′ ,2n

(
c

ωmn

)3

G′′
αβ, (91)

G̃αβ

(
KK′L

)
= δL,2lδK+K′ ,2n+1

(
c

ωmn

)3

G′
αβ, (92)

where n and l are integer. As a consequence, G
L
M (KK′L) and G̃L

M (KK′L) are also simplified

G
L
M

(
KK′L

)
= δL,2lδK+K′ ,2n

(
c

ωmn

)3 [
G′′]L

M , (93)

G̃L
M

(
KK′L

)
= δL,2lδK+K′ ,2n+1

(
c

ωmn

)3 [
G′]L

M . (94)

As stated above (see Eqs. (42) -(44) ), in this case there are only four nonzero components of
GL

M in the proper coordinate system.

There is additional symmetry of the relaxation tensor ΓKK′
QQ′ in the case. Using the fact that

G
L
M (KK′L) and G̃L

M (KK′L) are symmetrical with respect to K and K′, evenness of L, relation

(79) and also Clebsch-Gordan coefficient symmetry 〈K′Q′LM|KQ〉 = (−1)L+M
√

2K+1
2K′+1 〈K −

QLM|K′ − Q′〉, one can obtain

ΓKK′
QQ′ = (−1)K−K′+Q−Q′

ΓK′K
−Q′−Q (95)

that we can rewrite using (86) as follows

ΓKK′
QQ′ = (−1)K−K′ [

ΓK′K
Q′Q

]∗
. (96)

This is just the symmetry of ΓKK′
QQ′ relative to time reversal (Omont, 1977) that is natural in the

absence of magnetic field.
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In case of the atomic surroundings is axial symmetrical in addition, there are only two nonzero
components of GL

M in the proper coordinate system, G0
0 and G2

0 . Therefor, only irreducible

tensors G
L
0 (KK′L) and G̃L

0 (KK′L) are nonzero and real in the system (see relations (82) and

(83), and (93) and (94)). Consequently, only γKK′
QQ and ∆KK′

QQ are also nonzero and real (see

relations (72 and (73)), hence,

ΓKK′
QQ′ = δQ,Q′ΓKK′

QQ . (97)

So, in this case ΓKK′
QQ is real for even K + K′, imaginary for odd K + K′ and

ΓKK′
00 = 0 (98)

for odd K + K′ because of the following Clebsch-Gordan coefficient symmetry

〈K′0L0|K0〉 = (−1)K′+L−K 〈K′0L0|K0〉. (99)

4. Deexcitation dynamics

Deexcitation of upper level is given by (69) with K = Q = 0

dρ0
0 (t)

dt
= −γ0 ∑

K′Q′
Γ0K′

0Q′ρ
K′
Q′ (t) . (100)

Hereinafter we suppose that there is no external magnetic field. In this case γ0Γ0K′
0Q′ =

(−1)Q′
γK′
−Q′/

√
2Jm + 1, where γK′

−Q′ is defined by (40), multiplier (−1)Q′
transforms covariant

component ρK′
Q′ into contravariant one ρK′−Q′

and denominator
√

2Jm + 1 reflect the fact that

the right-hand side of (100) is variation in time of ρ0
0, not of population that is

√
2Jm + 1ρ0

0
as in (39). To obtain temporal variation of the deexcitation, it is necessary to solve consistent

differential equations, involving along with Eq. (100) also differential equations for ρK′
Q′ (t),

incoming in its right-hand side.

Let us restrict themselves to the case of axial symmetrical atomic surroundings.

As it mentioned above, this case include half-space boundary and spherical particle. From
(97), (98), (100), and also (99), it is follows that consistent differential equations, describing
deexcitation dynamics in the proper coordinate system, include only multipole components
with even K and Q = 0. The number of such components is [Jm] + 1 because of 0 � K � 2Jm

as noted above (symbol [Jm] here and further denotes the integer part of Jm). As the relevant

ΓKK′
00 are real in our case, from (96) we obtain that they are symmetrical relative to K and K′

ΓKK′
00 = ΓK′K

00 . (101)

Hence, the number of different relevant components ΓKK′
00 is ([Jm] + 1)× ([Jm] + 2) /2.

As is known , the general solution of [Jm] + 1 consistent linear homogeneous differential
equations is given by a linear combination of [Jm] + 1 their eigen vectors, each of them varies
in time exponentially with its own rate. The rates are eigen values of the consistent equations.
The number of the eigen values is also in general equal to [Jm] + 1. So, the atomic deexcitation
is also usually expressed as a linear sum of [Jm] + 1 exponentials.

325Deexcitation Dynamics of a Degenerate Two-Level Atom near (Inside) a Body

www.intechopen.com



18 Will-be-set-by-IN-TECH

In fact, the eigenvalues are relaxation rates of populations of magnetic sublevels |Jm ± M〉
in the case under consideration. Indeed, relevant multipole components ρK

0 incoming in the
consistent differential equations, describing deexcitation dynamics, are linear combination
of the populations of the sublevels |Jm M〉 (see (36)). In addition, the sublevels |Jm M〉 and
|Jm − M〉 are transformed one into another (with the sign (−1)P, where P is parity of the
level m) under reflection in any plane through the symmetry axis (Landau & Lifshitz, 1977).
Consequently, the relaxation rates of these sublevels are equal. So, the number of different
relaxation rates is [Jm] + 1 as stated above with respect to the eigenvalues.

4.1 Deexcitation dynamics in the case of Jm = 1, Jn = 0

Let us consider in more detail the case when the angular momentums are Jm = 1 and Jn = 0.
In the case under study, deexcitation dynamics is described by only two equations

dρ0
0 (t)

dt
= −γ0

[
Γ00

00ρ0
0 (t) + Γ02

00ρ2
0 (t)

]
, (102)

dρ2
0 (t)

dt
= −γ0

[
Γ02

00ρ0
0 (t) + Γ22

00ρ2
0 (t)

]
. (103)

The eigen values γ± of the consistent equations are

γ± = γ0 [Γ+ ± Γ] , (104)

and fundamental solution matrix are

S(t) =
1

2

⎛
⎜⎜⎝

(
1 − Γ−

Γ

)
e−γ−t +

(
1 +

Γ−
Γ

)
e−γ+t Γ02

00

Γ

(
−e−γ−t + e−γ+t

)

Γ02
00

Γ

(
−e−γ−t + e−γ+t

) (
1 +

Γ−
Γ

)
e−γ−t +

(
1 − Γ−

Γ

)
e−γ+t

⎞
⎟⎟ ,

(105)
where dimensionless Γ± and Γ are defined as

Γ± =
1

2

(
Γ00

00 ± Γ22
00

)
, (106)

Γ =

√
(Γ−)

2 +
(
Γ02

00

)2
. (107)

Specific solution column of the consistent equations (102)-(103), corresponding to initial
conditions given by column c = col (ρ0

0 (0) , ρ2
0 (0)) , is obtained by multiplication of

fundamental solution matrix on the right by column c.

It is known that the excited atomic states that are produced by the absorption of anisotropic
resonance light are strongly polarized (Alexandrov et al., 1993; Happer, 1972; Omont, 1977).
This atomic polarization results from the directionality or polarization of the light beam. So,
immediately after excitation there are nonzero both ρ0

0 (0) and ρ2
0 (0).

However, let us consider the simplest case of isotropic excitation, when there is only
population ρ0

0 (0) on the upper level at the instant after excitation. So, the solution column
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in the case is given by

(
ρ0

0 (t) ,
ρ2

0 (t) ,

)
=

1

2

⎛
⎜⎜⎝

(
1 − Γ−

Γ

)
e−γ−t +

(
1 +

Γ−
Γ

)
e−γ+t

Γ02
00

Γ

(
−e−γ−t + e−γ+t

)

⎞
⎟⎟ ρ0

0 (0) . (108)

In the case under consideration that is Jm = 1, Jn = 0, dimensionless relaxation matrix
elements are following: Γ00

00 = (1/2)(c/ωmn)3tr(G′′), Γ02
00 = −(

√
2/2)(c/ωmn)3(G′′

ZZ − G′′
XX),

Γ22
00 = Γ00

00 − Γ02
00/

√
2. So, relevant dimensionless Γ± and Γ are

Γ+ =
3

4

(
c

ωmn

)3 (
G′′

ZZ + G′′
XX

)
, (109)

Γ− = −1

4

(
c

ωmn

)3 (
G′′

ZZ − G′′
XX

)
, (110)

Γ =
3

4

(
c

ωmn

)3 (
G′′

ZZ − G′′
XX

)
. (111)

Substituting (109)-(111) into (105), we obtain

S(t) =
1

3

( [
2e−γ−t + e−γ+t

] √
2
[
e−γ−t − e−γ+t

]
√

2
[
e−γ−t − e−γ+t

] [
e−γ−t + 2e−γ+t

]
)

. (112)

Eigen values γ± in the case are

γ+ =
3

2

(
c

ωmn

)3

G′′
ZZ, (113)

γ− =
3

2

(
c

ωmn

)3

G′′
XX . (114)

In the case under consideration (i.e., Jm = 1, Jn = 0) it is possible such excitation conditions
that upper level deexcitation is pure exponential. Such cases only three.

In the first case the atom is excited by light with linear polarization that is collinear to the
symmetry axis. Such light excites only one upper sublevel with angular momentum projection
on the symmetry axis JmZ = 0. In this case the initial conditions column is given by

c0 ≡
(

ρ0
0 (0)

ρ2
0 (0)

)
=

1√
3

(
1

−
√

2

)
ρ00(0),

where ρ00(0) is population of the sublevel mentioned above. If we multiply fundamental
solution matrix (112) on the right by column c0, we get the variation in the time of the
population and alignment of the upper level:

(
ρ0

0 (t)
ρ2

0 (t)

)
= c0e−γ+t

In the second case the atom is excited by circular polarized light that propagates along
symmetry axis. Now the only upper sublevel with angular momentum projection on the
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symmetry axis JmZ = +1 (or JmZ = −1 for the opposite circular polarization) is excited.
Initial conditions column in the case is given by

c1 ≡
(

ρ0
0 (0)

ρ2
0 (0)

)
=

1√
3

(
1

1/
√

2

)
ρ11(0), (115)

where ρ11(0) is population of the exited sublevel. The solution corresponding to this column
is (

ρ0
0 (t)

ρ2
0 (t)

)
= c1e−γ−t. (116)

Lastly, in the third case the atom is excited by light with linear polarization that is orthogonal
to the symmetry axis. It has been known that such polarization can be represented by the
sum of the opposite circular polarization with the same amplitude, rotating in the plane that
is orthogonal to the symmetry axis. This case is reduced to the previous one because of only
two upper sublevels with angular momentum projection on the symmetry axis JmZ = ±1
are excited independently with equal probability, and hence ρ11(0) = ρ−1−1(0). The rates of
decay of the both excited sublevels into the only low state are equal due to axial symmetry.
Deexcitation dynamics in the case also given by (116).

These three exceptional cases of simple exponetial deexcitation can be physically interpreted
as follows. In every case the excited state transforms to the only low state by means of one
channel. The decay itself is induced by the optical transition oscillating dipole that arises
due to interaction of the excited atom with the electric field quantum oscillations. Both the
direction of the dipole oscillation and the direction of the exciting light polarization are the
same due to the one and the same channel of excitation and deexcitation (see Fig. 1).

(a) Exciting light is linear polarized along (or
transversely to) the symmetry axis passing
through the atom and body; Z – axis is along
(or transversely to) this axis

(b) Exciting light is circular polarized and
propagates along the symmetry axis that is
Z – axis

Fig. 1. Exceptional polarizations of the exciting light that led to the pure exponential decay of
the excited atomic state (ω and ω f are frequencies of the exciting light and fluorescence
respectively)

Precisely owing to this fact, experimental results of the measurement of the decay of the
fluorescence signal (Amos & Barnes, 1997; Chance et al., 1978; Drexhage et al., 1968; Fort &
Grésillon, 2008; Kreiter et al., 2002; Snoeks et al., 1995; Vallée et al., 2001) are in good agreement
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with the simple model of the classic scattering dipole, in spite of the fact that fluorescence is
the two-step process, rather than scattering.

It should be noted that consistent equations (102)-(103) describe deexcitation dynamics also in
the case Jm = 1, Jn = 1, or Jm = 1, Jn = 2, and also in the case Jm = 3/2, Jn = 1/2, and either
Jm = 3/2, Jn = 3/2, or Jm = 3/2, Jn = 5/2. Of course, specific values of the dimensionless
Γ00

00, Γ02
00, and Γ22

00 in these cases differ from considered above.

It should be pointed out too that in the case Jm = 3/2 and Jn = 1/2 there is the only
exciting light polarization, namely linear polarization along symmetry axis, that leds to the
pure exponential decay of the excited state because of the relaxation rate equality of the excited
sublevels (JmZ = ±1/2) due to the axial symmetry.

5. Conclusions

In the chapter we have proposed a general approach to the problem of deexcitation of a
degenerate two-level atom near (inside) a body. On the basis of the approach the master
equation for density matrix in the polarization moments representation was obtained.

We have shown that relaxation dynamics of a polarization moment is described in general by
a consistent linear equations for all 2Jm + 1 polarization moments of the excited level, where
Jm is the total momentum of the level. We have expressed relaxation matrix elements of the
consistent linear equations in terms of the field response tensor that can be found as the electric
field of the classic oscillating unit dipole situated near the body.

We have found symmetry of the relaxation matrix.

An additional relaxation matrix symmetry is recognized in the case when there is no external
quasistatic magnetic field, and as a result, the field response tensor is symmetrical one.
Therefore, the tensor may be diagonalized. We have shown that relaxation matrix depends
only on the trace of the field response tensor, on the difference between the most principal
value of the diagonal response tensor and the half-sum of two others, and also on the
difference between these two.

Axial symmetric atomic surroundings gives rise to one more additional symmetry of the
relaxation matrix. In this case it depends only on the trace of the field response tensor and
on the difference between its two principal values.

We have shown that deexcitation dynamics of the degenerate two-level atom in the conditions
under consideration represents multiexponential decay. In the case of the axial symmetric
atomic surroundings, the number of the exponential is equal to [Jm] + 1, where [Jm] is the
integer part of Jm. So, the simple exponential decay of the atomic excitation is possible only in
two cases, namely, when Jm = 0 or Jm = 1/2. We have shown that simple exponential decay of
the atomic excitation is also possible in the case of Jm = 1, Jn = 0 and on special polarizations
of exciting light, namely on the linear polarization that is collinear or orthogonal to the axial
symmetry axis, and on the circular polarizations rotating in the plane that is orthogonal to the
symmetry axis. In this exceptional cases both the excitation and decay of the corresponding
upper states follow the one and the same respective channel. Simple exponential decay of
the atomic excitation is possible too in the case Jm = 3/2 and Jn = 1/2 when exciting light
polarization is linear oriented along symmetry axis.

Our analysis have carried out in the absence of hyperfine structure on the combine energy
levels. However, it can be easily expanded straightforward on general case by expanding
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quantum states irreducible basis of the total momentum, including both the total electronic
momentum and the nuclear spin, into the direct product of states irreducible bases of the
the nuclear spin and the electronic momentum. Just the late basis is involved into the
electromagnetic interaction in the course of the allowed optical transition.

We have considered situation when degenerate two-level atom is situated in the vicinity of a
body. Nevertheless, it is clear from the consideration that our treatment is more general and
results obtained are true for an atom embedded in any anisotropic medium.
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