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1. Introduction 

Motion estimation is a low-level vision task which manages a high number of applications 
as sport tracking, surveillance, security, industrial inspection, robotics, navigation, optics, 
medicine and so on. Unfortunately, many times it is unaffordable to implement a fully 
functional embedded system for real-time operation which works in a while with enough 
accuracy due the nature and complexity of the signal processing operations involved.  

In this chapter, we will introduce different motion estimation systems and their 
implementation when real-time is required. For the sake of clarity, it will be previously 
shown a general description of the motion estimation paradigm. Subsequently, three 
systems regarding low-level and mid-level vision domain will be explained.  

The present chapter is thus organized as follows, after an introductory part, the second 
section is regarding the motion estimation and optical flow paradigms, the similarities and 
differences to understand the real-time methods and algorithms. Later will be performed a 
classification of motion estimation systems according different families and enhancements 
for further approaches. This second section is finished with a plethora of real-time 
implementations of the systems explained previously.  

The third section focuses on three different case studies of real-time optical flow systems 
developed by the authors, where also are presented the throughput and resource consuming 
data from a reconfigurable platform (FPGA-based) used in the implementation.  

The fourth section analyses the performance and the resources consumed by each one of this 
three specific real-time implementations. The rest of the sections, fifth to seventh, 
approaches the conclusion, the acknowledgements and the bibliography, respectively. 

2. Motion estimation  

The term "optic flow" was named by James Gibson after the Second World War, when he 
was working on the development of tests for pilots in the U.S. Air Force (Gibson, 1947). His 
basic principles provided the basis for much of the work of computer vision 30 years later 
(Mar, 1982). In later publications, Gibson defines the deformation gradient image along the 
motion of the observer, a concept that was dubbed "flow". 
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When an object moves on, for example, a camera, the two-dimensional projection image 

moves with the project as shown in Figure 1. The projection of three-dimensional motion 

vectors on the two-dimensional detector is called the apparent field of flow velocities or 

image. The observer does not have access to the velocity field directly, since the optical 

sensors provide luminance distributions, not speed, and motion vectors may be decidedly 

different from this luminance distribution. 

 

Fig. 1. Projection from 3D world to 2D detector surface. 

The term "apparent" refers to one of the capital problems in computer vision, in the absence 

of speed never real, but a two dimensional field called motion field. However, it is possible 

calculate the movement of local regions of the luminance distribution, being known as the 

field of optical flow motion, providing only an approximation to the actual field of speeds 

(Verri & Poggio, 1989). 

As an example, it is easy to see that the optical flow is different from the velocity field. As 

shown in Figure 2, there is a sphere rotating with constant brightness, which produces no 

change in the luminance of the image. The optical flow is zero everywhere in contradiction 

with the velocity field. The reverse situation yields with a static scene with a moving light in 

which the velocity field is zero everywhere, even though the luminance contrast induces no 

zero optical flow. One additional example can be appreciated with the rotational poles 

announcing the barbershops of yesteryears, with the velocity field perpendicular to the 

flow. 

 

Fig. 2. Difference between velocity field and optical flow. 
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Among these atypical situations, under certain limits it is possible to recover motion 

estimation. Motion algorithms described in this chapter recover the flow as an 

approximation of the velocity field projected flow information. They deliver two 

dimensional array of vectors that may be subject to several high-level performances. In the 

literature appears several applications in this regard (Nakayama, 1985; Mitiche, 1996). 

Optical flow is an ill-conditioned problem since it is based on imaging three dimensions on 

a two-dimensional detector. The process removes information, and its recovery is not trivial. 

Therefore, the flow is a measure of the ill-posed problem, since there are infinite velocity 

fields that may cause the observed changes in the luminance distribution, in addition, there 

are infinite three-dimensional movements that can generate a given field of velocities. 

Thus, it is necessary to consider a number of clues or signals to restore the flow. The so-

called problem of aperture (Wallach, 1976; Horn & Schunck, 1981; Adelson & Bergen, 1985) 

appears when measuring the two-dimensional velocity components using only local 

measurements. It is possible recovering the component of the velocity gradient 

perpendicular to the edge, forcing adding external conditions that usually require obtaining 

information from a finite neighbourhood area, see Figure 3a. The region must be large 

enough to get a solution as the search for a corner to resolve this problem, for example. 

However, the collection of information across a region increases the probability of also 

taking on different motion contours and hence, to truncate the results, needing a trade-off 

solution, this last question is named as the aperture general problem (Ong & Spann, 1999).  

2.1 State of art estimating real-time motion  

There are many algorithms and architectures frequently used for real-time optical flow 

estimation, emanating from artificial intelligence, signal theory, robotics, psychology and 

biology. There is an extensive literature, and it is not the purpose of this section to explain 

all the algorithms. It will be reviewed the state of the art as descriptive as possible, for the 

sake of clarity, in order to justify the real-time implementations presented specifically at the 

end of this chapter.  

We can classify motion estimation models in three different categories: 

• Correlation based methods. They work comparing positions from image structure 
between adjacent frames and inferring the speed of the change in each location. They 
are probably the most intuitive methods (Oh, 2000). 

• Differential or gradient methods. They are derived from work using the image intensity 
in space and time. The speed is obtained as a ratio from the above measures (Baker and 
Matthews, 2004; Lucas & Kanade, 2001). 

• Energy methods. They are represented by filters constructed with a response oriented 
in space and time to work at certain speeds. The structures used in this processing are 
parallel filter banks that are activated for a range of values (Huang, 1995).  

The different approaches to motion estimation are appropriate under each application. 

According to the sampling theorem (Nyquist, 2006), a signal must be sampled at a sampling 

rate that is at least twice the highest frequency that has such this signal. Therefore, it ensures 

us the motion between two frames is small compared to the scale of the input pattern.  
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When this theorem is no longer fulfilled, it appears the phenomenon of sub-sampling or 

aliasing. In space-time images, this phenomenon produces incorrect inclinations or 

structures unrelated to each other, as an example of temporal aliasing, we can observe a 

rotation of the propeller of the planes in the opposite direction to true as shown in Figure 3b. 

In short, no long displacements can be estimated from input patterns with small scales. In 

addition to this problem, we have the problem of aperture, discussed previously. These two 

problems (aliasing and aperture) fulfill the general problem of correspondence as shown in 

Figure 3. 

 

Fig. 3. (3a. left). So-called “Aperture problem”. (3b. right) “Aliasing problem”. The two 
problems conform the “correspondence problem” for motion estimation.  

Therefore, the movement of the input patterns does not always corresponds to features of 

consecutive frames in an unambiguous manner. The physical correspondence may be 

undetectable due to the problem of aperture, the lack of texture (example of Figure 2), the 

long displacements which commute between frames, etc. Similarly, the apparent motion can 

lead to a false correspondence. For such situations, it is possible using matching algorithms 

(tracking and correlation), although currently there is much debate about the advantages 

and disadvantages of using these techniques rather than those based on gradient and energy 

of motion. 

The correlation methods are less sensitive to changes in lighting, they are able to estimate 

long displacements that do not meet the sampling theorem (Yacoob & Davis, 1999). 

However, they are extremely sensitive to cyclical structures providing various local minima 

and when the aperture problem arises, the responses obtained are unpredictable. 

Alternatively, the other methods are better in efficiency and accuracy; they are able to 

estimate the perpendicular optical flow (in the presence of the aperture problem).  

Typically in machine vision CCD cameras are used with a discrete ratio, where varying this 

modifies the displacement between frames, if these shifts are too large, so gradient methods 

fail (since it fractures the continuity of space-time volume). Although it is possible using an 

anti-aliasing spatial smoothing to avoid temporal aliasing (Christmas, 1998; Zhang & Wu, 

2001), this is the counterpart to degrade spatial information. Therefore, for a given spatial 

resolution, one has to sample at a high temporal frequency (Yacoob & Davis, 1999). 

On the other hand, it is quite common, for real-time optical flow algorithms remain a 

functional architecture, as shown in Figure 4, via a hierarchical process. 
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Fig. 4. Functional real-time architecture found in most optical flow algorithms 

Previously, it filters the sequence of images or the temporary buffer to obtain basic measures 

through convolutions, Fast Fourier Transform (FFT), extraction of patterns, arithmetic, and 

so on.  

The measures are then recombined by through various methods to reach a basic evaluation 

of speed (usually incomplete and deficient in these early stages). Subsequently, the final 

flow estimation is done by imposing a set of constraints on action and results. These are 

generated by assumptions about the nature of the flow or change (such as restrictions of a 

rigid body), but even with these restrictions, the retrieved information is often not robust 

enough to get a unique solution for optical flow field. 

At the beginning of this section, was explained that the optical flow motion is estimated 

from the observable changes in the pattern of luminance over time. In the case of a no 

detectable movement, situation such as a sphere rotating with the same brightness (Figure 

2), the estimated optical flow is zero everywhere, even if current speeds are not zero. 

Another attention is given by the non-existence of a unique movement of the image, in 

order to justify a change in the observed brightness, therefore, the visual motion 

measurement is often awkward and always have to be associated with a number of 

physical interpretations. 

2.2 Basic movement patterns 

Despite the difficulties in the recovery of flow, the biological systems work surprisingly well 

in real-time. In the same way that these systems have specialized mechanisms to detect color 

and stereopsis, are also devoted to visual motion mechanisms (Albright, 1993). As in other 

areas of research in computer vision, they are formed models of such natural systems to 

formalize bio-inspired solutions. 

Thanks to psychophysical and neurophysiological studies, it has been possible to build 

models that extract the motion from a sequence of images, usually characterized these 

biological models to be complex and designed to operate poorly at high speed in real-time. 

One of the first models based on real-time bio-inspired visual sensor was proposed by 

Reichardt (Reichardt, 1961). The detector consists of a couple of receptive fields as shown in 

Figure 5, where the first signal is delayed with respect to the second before nonlinearly 

combined by multiplication.  

Receptors 1 and 2 (shown as edge detectors) are spaced a distance ΔS, imposing a delay on 

each signal, after the signal C1 and C2 are operated via multiplication. In the final stage, the 

result of the first half of the detector is subtracted from the next, and then estimated what 

each contributes to increased directional selectivity. The sensors shown in Figure 5 are 

Laplacian detectors, although it is possible using any spatial filter or feature detector. 
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Fig. 5. Reichardt real-time correlation model. 

One of the main disadvantages of this detector, is that the correlation is dependent on the 
contrast, in addition, no speed can be retrieved directly. It requires banks of detectors 
calibrated at various speeds and directions, and its interpretation at least ambiguous. 
However, despite these drawbacks, the Reichardt detector can be easily applied by 
biological systems and is used successfully to explain the visual system of insects. The 
detector continues to be used as a starting point for more sophisticated models of vision 
(Beare & Bouzerdoum, 1999; Zanker, 1996), detectors can be implemented in real-time CCD 
sensor using VLSI technology (Arias-Estrada et al., 1996).  

2.2.1 Change detection and correlation methods 

Considering the basic case of a segmented region with motion in static regions, it comes up 
as result a binary image which shows regions of motion. The process may seem easy, so 
they are simply looking for changes in image intensity over a threshold, which is supposed 
to cause the movement of an object in the visual field. However, the number of false 
positives that stem from sources such as noise sensors, camera movement, shadows, 
environmental effects (rain, reflections, etc.), occlusions and lighting changes make 
extraordinarily difficult to detect robust movement.  

Biological systems again despite being highly sensitive to movement are also robust to noise 
and visual effects uninteresting. This technique is used in situations where motion detection 
is an event that should be taken into account for future use. Currently, the requirements of 
estimation for these algorithms are minimal reaching a satisfactory result with little more 
than an input buffer, arithmetic signs and some robust statistics, as the supervisory systems 
have to be particularly sensitive and not normally available in large computing power 
(Rosin, 1998; Pajares, 2007). 

When the differential approaches are subject to errors due to noncompliance with the 
sampling theorem (Nyquist, 2006) or inconvenience lighting changes, it is necessary to apply 
other strategies. The methods of correlation or pattern matching are the most intuitive to 
regain speed and direction of movement, work characteristics in selecting a frame in the 
sequence of images and then looking for these same characteristics in the next as shown in 
Figure 6. Changes in the position indicate movement in time, i.e speed. 

These algorithms are characterized by a poor performance due to its exhaustive search and 
iterative operations, usually requiring a prohibitive amount of resources. If the image is of 
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size M2, the search template is size N2, and the search window size is L2, then the whole 
estimate of computational complexity required would be around M2N2L2. By way of 
example, with an typical image of 640x480 points, a template window size 50x50 and 
search one of 100x100, would be required to compute 0.8 billion (long scale) operations. 
The current trend is to try to reduce the search domain (Oh & Lee, 2000; Anandan et al., 
1993; Accame et al., 1998), although still the need for resources is too high. One of the most 
common application models used is the encoding of video in real time (Accame et al., 
1998; Defaux & Moscheni, 1995) increasing the amount of effort devoted to research in 
these algorithms. 

 

Fig. 6. Block-Matching technique. 

A key in video compression is the similarity between adjacent images temporarily in a 

sequence. This technique, demand less bandwidth to transfer the differences between 

frames than to transfer the entire sequence. It is possible even further reduce the data 

amount transmitted if known a priori the movement and deformation needed to move from 

one frame to the next. 

This family of algorithms can be classified deeply, and there are two prominent approaches: 

• Correlation as a function of 4 variables, depending on the position of the window and 

displacement, with output normalized between 0 and 1, independent of changes in 

lighting. 

• Minimizing the distance, quantifying the dissimilarity between regions. Many 

optimizations have been on the line to reduce the search space (Oh & Lee, 2000) and 

increase their speed (Accame et al., 1998). 

Adelson and Bergen (Adelson & Bergen, 1985) advocate no biological evidence of such 

models, since they are not able to make predictions about complex stimuli (as example 

randomly positioned vertical bars), for which, experimental observers perceive different 

moves in different positions. These techniques are straightforward, have spent many years 

researching and dominate in industrial inspection and quality control. 

The ability to work in environments where the displacements between frames are longer 

than a few points is one of the main advantages. Though this requires extensive processing 

search spaces. 
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2.2.2 Space-time methods: Gradient and energy 

The movement can be considered as an orientation in the space-time diagram. For example, 
Figure 7a presents a vertical bar moving continuously from left to right, sampled four times 
over time. Examining the space-time volume, we can observe the progress of the bar about 
the time axis thus a stationary angle oriented which shows the extent of movement. 

The orientation of the space-time structure can be retrieved through low-level filters. There 
are currently two dominant strategies: the gradient model and the model of energy as 
shown in Figure 7b, where the ellipsis represents the negative and positive lobes.  

 

Fig. 7. (7a.left). Motion as orientation in the space-time (x-t plane) where the angle increases 
with the velocity. (7b.right). Space-time filtering models.  

The gradient model applies the ratio of a spatial and a temporal filter as a measure of speed, 

however, the energy model uses a set of filter banks oriented in space-time. Both models use 

a bio-inspired tightly filters (Adelson & Bergen, 1985; Young & Lesperance, 1993). The 

debate about which is the scheme adopted by the human visual system remains open, and 

there are even gateways to go from one model to another because it is possible to synthesize 

the filters oriented in the pattern of energy through space-time separable filters (Fleet & 

Jepson, 1989; Huang & Chen, 1995). It is also interesting to note that independent 

component analysis (ICA) notices these spatial filters are those that cover the majority of 

components of the structure of the image (Hateren & Ruderman, 1998). In the gradient 

model, the main working hypothesis is the conservation of intensity over time (Horn & 

Schunk, 1981). Assuming this, over short periods of time, the intensity variations are due 

only to translation and not to lighting change, reflectance, etc. The total derivative of image 

intensity with respect to time is zero at every point in space-time, therefore, defining the 

image intensity as I (x, y, t), we have: 

 dI (x, y, t) / dt = 0  (1) 

Differentiating by parts, we obtain the so-called motion constraint equation: 

 
dyI dx I I dt

0
x dt y dt t dt

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2) 
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u v 0
x y t

∂ ∂ ∂
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 (3) 

where u=dx/dt and v=dy/dt. The parameters (x, y, t) are omitted for the sake of clarity. 

Since there is only one equation with two unknowns, (two unknown velocity components), 

it is possible to recover only the velocity component vn, which lies in the direction of the 

gradient of luminance. 
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There are several problems associated with the motion constraint equation, because it is an 

equation with two unknowns, therefore, insufficient for estimating the optical flow. Using 

just only equation (3), is possible only to obtain a linear combination of velocity 

components, this effect, moreover, is fully consistent with the aperture problem mentioned 

before in the present section. A second problem arises if Ix or Iy spatial gradients become 

very small or zero, in which case, the equation becomes ill-conditioned and estimated speed 

tends asymptotically to infinity. Furthermore, the stable realization of the spatial derivatives 

is something problematic by itself, applying a differential filter convolution, as operators of 

Sobel, Prewitt or difference of Gaussians. 

As they are using numerical derivatives of a function sampled, they are best suited for 

space-time intervals small, the problem of aliasing will appear every time the sample in the 

space-time is not enough, especially in the time domain, as commented before. There are 

several filtering techniques to solve this problem, such as a spatiotemporal low-pass filtering 

as noted by Zhang (Zhang & Jonathan, 2003). 

Ideally, the sampling rate should be high enough to reduce all movements within one 

pixel/frame, so the temporal derivative is well-conditioned (Nyquist, 2006). Moreover, the 

differential space-time filters that are used to implement gradient algorithms seem 

reasonably to those found in the visual cortex, although there is no consensus on the optimal 

from the point of view of functionality (Young and Lesperance, 2001). One advantage of 

models on the energy gradient, is that they provide a speed from a combination of filters, 

however energy models provide a population of solutions. 

2.3 Improving optical flow measures  

We have seen that the equation of motion constraint (MCE) has some anomalies have to be 

addressed properly to estimate optical flow. There is a wide range of methods to improve it. 

Many restrictions apply to resolve the two velocity components u and v, collecting more 

information (through the acquisition of more images or getting more information for each 

image) otherwise, applying physical restraints to generate additional MCEs: 

• Applying multiple filters (Mitiche, 1987; Sobey & Srinivasan, 1991; Arnspang, 1993; 
Ghosal & Mehrotra, 1997).  

• Using a neighborhood integration (Lucas & Kanade, 1981; Uras et al., 1988; Simoncelli & 
Heeger, 1991). 
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• Using multispectral images (Golland & Bruckstein, 1997).  

There are different general methods for restricting MCE and improve optical flow measures: 

• Conducting global optimizations, such as smoothing (Horn & Schunck, 1981; Nagel, 

1983; Heitz & Bouthemy, 1993). 

• Restricting the optical flow to a model known, for example, the affine model (Liu et al., 

1997; Ong & Span, 1997; Fleet & Jepson, 2000).  

• Using multi-scale methods in a space and time domain (Anandan, 1989; Webber, 1994; 

Yacoob & Davis, 1999). 

• Exploiting temporal consistency (Giaccone & Jones, 1997, 1998). 

2.3.1 Applying physical restraints to generate additional MCEs 

A motion constraint equation alone is not sufficient to determine the optical flow, as 

indicated previously. It is proposed an refinement of the same given that its partial 

derivatives provide additional solutions to the flow working as multiple filters. Nagel 

(Nagel, 1983) was the pioneer in applying this method uses second-order differentiates, in 

fact, the differential operator is one of many that could be used to generate multiple MCES. 

Usually these operators are used numerically by convolutions as linear operators. 

This process works because the convolution does not change the orientation of the space-

time structure. On the other hand, it is important to use filters that are linearly independent 

otherwise the produced MCES will degenerate and will not have won anything. The filters 

and their differentials can be estimated previously to achieve efficiency and, due to the 

locality of the operators, a massively parallel implementation of these structures. 

It is possible also using neighborhood information from local regions to generate motion 

constraint equations extras (Lucas & Kanade, 1981; Simoncelli & Heeger, 1991). It is 

assumed, therefore, that the movement is a pure translation in a local region, where these 

constraints are modeled using a weight matrix so that the results are placed centered within 

a local region as for example, following a Gaussian distribution. It is rewritten then, the 

MCE as a minimization problem. The error term is minimized, or solved the set of equations 

generated by numerical methods. 

Working with multicolored images, can be generated different functions of brightness. For 

example, the planes of red, green and blue of a standard camera can be treated as three 

separate images, producing three MCES to solve. As a counterpart to this multispectral 

method, it should be noted that the color planes are usually correlated, a fact, moreover, that 

is exploited by most compression algorithms. In these situations, the linear system of 

equations can be degenerate, so that ultimately there is no guarantee that the extra cost in 

computing lead to an improvement in the quality of flow.  

A variation of this method is using additional invariance with respect small displacements 

and lighting changes, basing these measures in the proportion of different planes of color 

(spectral sensitivity functions) such as RGB or HSV commonly used. Using this last variant 

is obtained significant improvements over the use of a single plane RGB (Golland & 

Bruckstein, 1997). 
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2.3.2 Different general methods for restricting MCE and improve optical flow 
measures 

Due to the lack of information and spatial structure of the image, is not easy to estimate a 

sufficiently dense velocity field.  

To correct this problem, several restrictions are applied, as for example, that the points move 

closer together in a similar way. The general philosophy is that the original flow field, once 

estimated, is iteratively regularized with respect to the smoothing restriction. 

The first constraint was proposed by Horn and Schunk (Horn & Schunk, 1981). Optic flow 

resulting from the global constraints, is quite robust due to the combination of results, and is 

also flattering to the human eye. Two of the biggest drawbacks are its iterative nature, 

requiring large amounts of time and computing resources, and motion discontinuities are 

not handled properly, so that erroneous results are produced in the regions surrounding the 

motion edges. To address these latter gaps are proposed other techniques that use global 

statistics such as random Markov chains (Heitz & Bouthemy, 1993). 

In all MCE estimation techniques, appear significant restrictions on a neighborhood where it 

is assumed constant flux. To meet this requirement when there are movement patterns, this 

neighborhood has to be as small as possible, but at the same time it must be large enough to 

obtain information and to avoid the aperture problem. Therefore, we need a trade-off 

compromise. 

A variety of models uses estimations related to this neighborhood, such as least squares. If 

using a quadratic objective function, is assumed a Gaussian residual error rate, but if having 

multiple movements in the neighborhood, these errors can no longer be considered 

Gaussian. Even if these errors were independent (very usual situation) the error distribution 

can be modeled as a bimodal. 

There are approximate models can be incorporated into the flow range of techniques that 

are being exposed. These approaches also model spatial variations of multiple movements. 

The neighborhood integration techniques, as mentioned, assume that the image motion is 

purely translational in local regions. Thus, more elaborate models (such as the affine model) 

can extend the range of motion, and provides additional restrictions. These methods recast 

the MCE with an error function that will resolve or minimize least squares (Campani & 

Verri, 1992; Bergen & Bart, 1992; Gupta & Kanal, 1995, 1997; Giaccone & Jones, 1997, 1998). 

Large displacements between frames that originate gradient methods, behave 

inappropriately, since the image sequences are insufficient or that the time derivative 

measures are inaccurate. As a workaround it is possible using larger spatial filters than early 

model (Christmas, 1998).  

The use of multi-scale Gaussian pyramid can handle high movements between frames and 

fill the gaps in large regions where the texture is uniform, so that estimates of coarse-scale 

motion are used as sources for a finer scale (Zhang, 2001). 

The use of temporal multi-scale (Yacoob & Davis, 1999) also allows the accurate estimation 

of a range of different movements, but this method requires using a high enough sampling 

rate to reduce movements about a pixel/frame.  
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The schemes discussed so far, consider the calculation of optical flow as a separate problem 

for each frame, without any feedback (the results of motion of a frame does not cover the 

analysis of the following). Giaccone and Jones (Giaccone & Jones; 1998, 1999) have designed 

an architecture capable of dealing with multiple motions (keeping the temporal consistency) 

which segments moving regions by using a method of least squares.  

This algorithm has proven to be robust for a given speed limits, also works well when 

compared to similar models. The cost calculation is overwhelmed by the generation of a 

projected image, PAL sizes needed for about 40 seconds/image, with SPARC 4/670MP. 

However, this time consistency constraint is only used sporadically today. The objects in the 

real world must obey physical laws of motion and the inertia and gravity, so that there is 

predictability in their behavior, and at least surprising, that most real-time algorithms do 

not implement a flow based feedback.  

For this purpose, it is used the fact that it is possible to create an additional constraint 

equation from the velocity field for use in the next iteration, managing the problem as an 

evolutionary phenomenon. The use of probabilistic models or Bayesian (Simoncelli & 

Heeger, 1991) may be an alternative to using real world information and update results of 

previous estimates integrating temporal information. 

We have seen that the perception of motion can be modeled as an orientation in space-time, 

where the methods of extracting this orientation gradient across the filter ratio oriented. The 

so-called motion energy models are often based or similar in many respects to models of 

gradient, since both systems use filter banks to obtain this time-space orientation, and 

therefore the motion. The main difference is that the filters used in energy models, are 

designed to meet time-space directions, rather than a ratio of filters. The design of space-

time oriented filters is usually performed in the frequency domain. 

The methods of energy of motion are biologically plausible, but the implementations have 

an extra computer associated high due to the large number of filtering required being 

difficult its implementation in real-time. The resultant velocity of energy methods is not 

obtained explicitly, unlike gradient methods, only using a solution population, being these 

last Bayesian models. 

One advantage, is that the bimodal velocity measurements as invisible movements, can be 

treated by these structures (Simoncelli & Heeger, 1991). The correct interpretation of the 

processed results is not an easy task when dealing with models of probabilistic nature. 

Interesting optimizations have been developed to increase the speed of these methods, 

combined with Reichardt detectors (Franceschini et al, 1992) as support. 

2.4 Configurable hardware algorithms implemented for optical flow 

There are several real-time hardware systems founded on the algorithms mentioned herein, 

proceeding to do a quick review. 

• Some algorithms used are of matching or gradient, such as Horn and Schunck 

algorithm (Horn & Schunk, 1981) that has been carried out using a FPGA (Zuloaga et 

al., 1998; Martin et al., 2005). The model used is straightforward, is not robust and does 
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not provide optimal overall results in software, but the implementation is efficient and 

the model is capable of operating in real time. The design uses a recursive 

implementation of the constriction of applying a smoothing iteration in each frame. 

• There is also an implementation of Horn and Schunck algorithm (Horn & Schunk, 1981) 

by Cobos (Cobos et al., 1998) on a FPGA platform, but with the same counterparty 

recorded earlier on the reliability of the model used and grazing real time. 

• ASSET-2 algorithm is based on features and has been implemented to run in real time 

using custom hardware (Smith, 1995). The algorithm is easy and determines the 

position of the axes and corners trying to solve the problem of the correspondence 

between neighboring frames in time. The system was implemented using a PowerPC 

with custom hardware to extract features in real time. This system does not provide 

continuous outcomes, these being scarce, but cluster groups of similar speeds to 

segment objects according to their movement. 

• Niitsuma et al. (Niitsuma & Maruyama, 2004) apply a model-based optical flow 

correlation, with a joint operation of a stereoscopic system also measures the distance of 

moving objects. This system is based on a Virtex 2 XC2V6000 scheduled at 68 MHz and 

delivers results in real time resolution of 640x480 points. 

• Tomasi & Diaz (Díaz et al., 2006) implemented a real-time system based on Lucas and 

Kanade algorithm (Lucas & Kanade, 1981; Díaz et al., 2006) with satisfactory results in 

terms of performance. This is an algorithm within the so-called gradient that is used as 

a didactic introduction to optical flow in most colleges. It has shown a significant 

relationship between performance and implementation effort. The problem with this 

implementation is given by abrupt changes in light and heavy dependence on the 

aperture problem. Its advantage is the extensive documentation and the experience 

gathered with this algorithm (more than 25 years) from the scientific community. After 

that, Tomasi has implemented in 2010 and 2011 a fully real-time multimodal system 

mixing motion estimation and binocular disparity (Tomassi et al., 2010, 2011) combining 

low-level and mid-level vision primitives. 

• Botella et al. implemented a robust gradient based optical flow real-time system and its 

extension to mid-level vision combining orthogonal variant moments (Botella et al., 

2009, 2010, 2011). Also the block matching acceleration motion estimation has been 

implemented in real-time by Gonzalez and Botella (González et al., 2011). All these 

models will be analyzed thoroughly in this chapter. 

3. Case studies of real-time implementation performed  

They are presented several case studies of the real-time implementation performed in these 

last years by the author of the present chapter and other authors. 

3.1 Multichannel gradient Model  

Multichannel gradient Model (McGM), developed by Johnston (Johnston et al., 1995, 1996), 

has been recently implemented and selected due its robustness and bio-inspiration. This 

model deals with many goals, such as illumination, static patterns, contrast invariance, 

noisy environments. Additionally it is robust against fails, justifies some optical illusions 

(Anderson et al., 2003), and detects second order motion (Johnston, 1994) that is particularly 
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useful in camouflage tasks, etc. At the same time, it avoids operations such as matrix 

inversion or iterative methods that are not biologically justified (Baker & Matthews, 2004; 

Lucas & Kanade, 1981). The main drawback of this system is its huge computational 

complexity. It is able to handle complex situations in real environments better than others 

algorithms (Johnston et al., 1994), with its physical architecture and design principles being 

based on the biological neural systems of mammalians (Bruce et al., 1996). Experimental 

results are provided using a Celoxica RC1000 platform (Alphadata, 2007). 

This approach is based on the gradient one commented previously, the starting point is the 

motion constraint equation (MCE)  shown in the expression 2. The luminance variation is 

assumed negligible over time. In this approach, velocity is calculated dividing the temporal 

derivative by the spatial derivative of image brightness, thus a gradient model can be 

obtained applying couples of filters, one of them being the spatial derivative and the other 

one a temporal derivative. If for the sake of clarity we only consider x variable in expression 

2 and we get the velocity taking the quotient of the output filters: 

 dx I I
v

t xdt

∂ ∂
= = −

∂ ∂
 (5) 

Since velocity is given directly via the ratio of luminance derivatives, one potential problem 

appears when the output of the spatial filter is null, being the velocity undefined. This can 

be solved applying a threshold to the calculation or restricting the evaluation value (Baker & 

Matthews, 2004). Our approach is based on the fact that the human visual system measures 

at least three orders of the spatial derivative (Johnston et al., 1999; Koenderick & Van Doorn, 

1988) and three orders of temporal differentiation (Baker & Matthews, 2004; Hess & 

Snowden, 1992). Therefore, it is possible to build low level filters for calculating the speed 

with additional derivatives, although it may be still ill-conditioned: 

 
n n

n 1 n

I I
v

x t x−

∂ ∂
= −

∂ ∂
 (6) 

Two vectors X and T, containing the results of applying the derivative operators to the 

image brightness, can be built: 

 
2 n 2 n

2 n n 1

I I I I I I
X , ,...,  T , ,...,

x x x t x t x t−

   ∂ ∂ ∂ ∂ ∂ ∂
= =   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (7) 

For extracting the best approximation to the speed from each of the measurements, a Least 

Squares Formulation is applied, thus recovering a value v’. The denominator is a sum of 

squares and therefore it is never null, so a spatial structure is provided: 

 

n n

n n 1n

n n

n nn

I I

x x tv'
I I

x x

−

∂ ∂

∂ ∂ ∂=
∂ ∂

∂ ∂




  (8) 

In this framework, we represent the local image structure in the primary visual cortex as a 

spatial-temporal truncated Taylor expansion (Johnston et al., 1996, 1999; Koenderick & Van 
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Doorn, 1988), in order to represent a local region by the weighted outputs of a set of filters 

applied at a location in the image as shown in the next expression (9). The weights attached 

depend on the direction and length of the vector joining the point where the measurements 

are taken and the point where we wish to estimate image brightness: 

 

x y t

2
2x xy xt yt

I(x p,y q,t r) [I(x,y, t)] [I (x,y, t) I (x,y, t) I (x, y, t)]

1
[I (x,y, t)p I (x,y, t)2pq I (x,y, t)2pr I (x,y, t)2qr] ...

2

+ + + = + + +

+ + + + +
 (9) 

These filters are generated by progressively increasing the order of the spatial and temporal 

differential operators applied to the following kernel filter: 
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1 1
( , )

4
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r

r
K r t e e

e

α

τσ

πσ πτα

 
− −  
 =  (10) 

with σ=1.5, α=10 and τ=0.2. This expression is originally scaled so that the integral over its 

spatial-temporal scope is equal to 1.0. Also, it is tuned assuming a spatial frequency limit of 

60 cycles/deg and a critical flicker fusion limit of 60 Hz, following evidences from the 

human visual system (Johnston et al., 1994). 

The Taylor representation requires a bank of linear filters, taking derivatives in time, t, and 

two spatial directions, x and y, with the derivatives lobes in theirs receptive fields tuned to 

different frequencies. There are neurophysiological and psychophysical evidences that 

support this (Johnston et al., 1994; Bruce et al., 1996). This algorithm can be built by neural 

systems in the visual cortex since all operations involved in the model can be achieved by 

combining the output of linear space-temporal orientated filters through addition, 

multiplication and division. 

A truncated Taylor expansion is built eliminating terms above first order in time and 

orthogonal direction for ensuring that there are no more than three temporal filters and no 

greater spatial complexity in filters (Hess & Snowden, 1992).  

The reference frame is rotated through a number of orientations with respect to the input 

image. Several orientations (24 in the original model spaced over 360º) are employed. For 

each orientation, three vectors of filters are created by differentiating the vector of filter 

kernels with respect to x, y and t. From these last measurements, speed, orthogonal speed, 

inverse speed and orthogonal inverse speed are calculated with the local speed by rotating 

the reference frame: 

 

12

2
II

X T X T X Y
s speed cos 1

X X X X X X
θ

−
 ⋅ ⋅ ⋅ 

= = = +   ⋅ ⋅ ⋅  


 (11) 

 

12

2Y T Y T X Y
s orthog. speed sin 1

Y Y Y Y Y Y
θ

−

⊥

 ⋅ ⋅ ⋅ 
= = = +   ⋅ ⋅ ⋅  


 (12) 
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 II

X T
s inverse speed

T T

⋅
= =

⋅


 (13) 

 
Y T

s inverse orthog. speed
T T

⊥

⋅
= =

⋅


  (14) 

Where X, Y, T are the vector of outputs from the x, y, t differentiated filters. Raw speed (X·T 

/ X·X) and orthogonal speed (Y·T / Y·Y) measurements are ill-conditioned if there is no 

change over x and y, respectively.  

To avoid degrading the final velocity estimation, they are conditioned by measurements of 

the angle of image structure relative to the reference frame (θ). If the speed is large, (and 

inverse speed is small) direction is led by the speed measurements. However, if the speed is 

small (and inverse speed is large) the measurement is led by inverse speed.  

The use of these antagonistic and complementary measurements provides advantages in 

any system susceptible of having small signals affected by noise (Anderson et al., 2003). 

There is evidence of the neurons that built inverse speed (Lagae et al., 1983), also it provides 

an explanation to sensitivity to static noise for motion blind patients.  

The calculus of additional image measurements in order to increase robustness is one of the 

core design criteria that enhances the model. Finally, the motion modulus is calculated 

through a quotient of determinants: 

 

II II

2

II II II II

s cos s sin

s cos s sin
Modulus

s s s s

s s s s

θ θ

θ θ⊥ ⊥

⊥ ⊥ ⊥ ⊥

 
 
 =
 
 
 

 
 

   
   

  (15) 

Speed and orthogonal speed vary with the angle of reference frame. The numerator of (12) 

takes a measure of the amplitude of the distribution of speed measurements that are 

combined across both speed and orthogonal speed. The denominator is included to stabilize 

the final speed estimation. Direction of motion is extracted by calculating a measurement of 

phase that is combined across all speed related measures, since they are in phase: 

 
1 II II

II II

(s s )sin (s s )cos
Phase tan

(s s )cos (s s )sin

θ θ

θ θ
− ⊥ ⊥

⊥ ⊥

 + + +
=  

+ − + 

   
      (16) 

The model can be degraded to an ordinary Gradient (Baker & Matthews, 2004; Lucas & 

Kanade, 1981) by suppressing the number of orientations of the reference frame, taking only 

one temporal derivative and two spatial derivatives, not considering the inverse velocity 

measures, etc. The computations of speed and direction are based directly on the output of 

filters applied to the input image, providing a dense final map of information. 

The general structure of the implementation is summarized in Figure 8, where operations 

are divided in conceptual stages with several variations to improve the viability of the 

hardware implementation.  
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Fig. 8. General structure of the model implemented. 

Stage I contains temporal differentiation through IIR filtering, being the output of this stage 

the three first derivatives of the input. Stage II performs the spatial differentiation building a 

pyramidal structure of each temporal derivative. Figure 9 represents what the authors 

(Botella et al., 2010) call as “Convolutive Unit Cell” which implements the separable 

convolution organized in rows and columns. Each part of this cell will be replicated 

sufficiently to perform a pyramidal structure.  

Stage III steers each one of space-time functions calculated previously. Stage IV performs a 

Taylor expansion and its derivatives over x, y and t delivering at the output a sextet which 

contains the product of those. Stage V forms a quotient of this sextet. Stage VI forms four 

different measurements corresponding to the direct and inverse speeds (8-11), which act as 

primitives for the final velocity estimation. Finally, Stage VII computes the modulus and 

phase values (12-13) on software. 

Stage VI does not calculate the final velocity estimation due to the bioinspired nature of the 

model (combining multiple speed measurements, so if direct speed does not provide an 

accurate value, inverse speed will do that, and vice versa). However, every measurement of 

the speed has entity of velocity, so it could be used as final velocity estimation, even though 

it would degrade the robustness of the mode 
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Fig. 9. Unit cell to perform the convolution operation. 

3.2 Low and mid-level vision platform. Orthogonal variant models  

One of the most well established approaches in computer-vision and image analysis is the 
use of Moment invariants. Moment invariants, surveyed extensively by Prokop and Reeves 
(Prokop & Reeves, 1992) and more recently by Flusser (Flusser, 2006), were first introduced 
to the pattern recognition community by Hu (Hu, 1961), who employed the results of the 
theory of algebraic invariants and derived a set of seven moment invariants (the well-known 
Hu invariant set). The Hu invariant set is now a classical reference in any work that makes 
use of moments. Since the introduction of the Hu invariant set, numerous works have been 
devoted to various improvements, generalizations and their application in different areas, 
e.g., various types of moments such as Zernike moments, pseudo-Zernike moments, 
rotational moments, and complex moments have been used to recognize image patterns in a 
number of applications (The & Chin, 1986).  

The problem of the influence of discretization and noise on moment accuracy as object 
descriptors has been previously addressed. There are proposed several techniques to 
increase the accuracy and efficiency of moment descriptors. (Zhang, 2000), (Papakostas et al., 
2007, 2009). (Sookhanaphibarn & Lursinsap, 2006).  

In short, moment invariants are measures of an image or signal that remain constant under 
some transformations, e.g., rotation, scaling, translation or illumination. Moments are 
applicable to different aspects of image processing, ranging from invariant pattern 
recognition and image encoding to pose estimation. Such Moments can produce image 
descriptors invariant under rotation, scale, translation, orientation, etc. 
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The implementation of these systems combines the low-level vision optical flow model 

(Botella et al., 20010) with the orthogonal variant moments (Martín.H et al., 2010) as Area, 

Length and Phase for the two cartesian components (A, LX, LY, PX, PY) to built a real-time 

mid-level vision platform which is able to deliver output task as tracking, segmentation and 

so on (Botella et al., 2011).  

The architecture of the system can be seen in the Figure 10. Several external banks have been 

used for different implementations, accessing to them from both the FPGA and the PCI bus. 

Low-level optical flow vision is designed and built through an asynchronous pipeline 

(micropipeline), where a token is passed to the next core each time one core finish its 

processing. The high level description tool Handel-C is chosen to implement this core with 

the DK environment. The board used is the well-known AlphaData RC1000 (Alphadata, 

2007) which includes a Virtex 2000E-BG560 chip and 4 SRAM banks of 2MBytes each one as 

shown in the Figures 11a and 12a. Nevertheless Low-level moment vision platform is 

implemented in a parallel way, being independent the wielding of single one. Each 

orthogonal variant moment and the optical flow scheme advances the final Mid-Level 

Vision estimation. The Multimodal sensor core integrates information from different 

abstraction layers (six modules for optical flow, five modules for the orthogonal moments 

and one module for the Mid-Level vision tasks). Mid-Level vision core is arranged in this 

work for segmentation and tracking estimation with also an efficient implementation of the 

clustering algorithm, although additional functionality to this last module can be added 

using this general architecture.  

 

Fig. 10. Scheme of the real-time architecture of low-level and mid-level vision. 

 

Fig. 11. (11a.left)Xilinx Virtex 2000E. (11b.right) Altera Cyclone II.  
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Fig. 12. (12a.left) ALPHADATA RC1000 branded by Celoxica. (12b.right) DE2 branded by 
Altera. 

3.3 Block Matching models 

The full search technique (FST) is the most straightforward Block Matching Method (BMM) 

and also the most accurate one. FST (Figure 13a) matches all possible blocks within a search 

window in the reference frame to find the block with the minimum Summation of absolute 

differences (SAD), which is defined as:  

 
31 31

t t 1
x 0 y 0

SAD(x,y;u,v) I (x,y) I (x u,y v) ,−

= =

= − + +  (17) 

Where It(x, y) represents the pixel value at the coordinate (x, y) in the frame t and the (u, v) 

is the displacement of the possible Macro Block (MB). For example, for a block with size 

32×32, the FST algorithm requires 1024 subtractions and 1023 additions to calculate a SAD. 

The required number of checking blocks is (1+2d)2 while the search window is limited 

within ± d pixels, currently is used for it a power of two. Three Steps Search Technique 

(TSST) is not an exhaustive search.  

The step size of the search window is chosen to be half of the search area (Figure 13b). Nine 

candidate points, including the centre point and eight checking points on the boundary of 

the search are selected in each step. Second step, will move the search centre forwarding to 

the matching point with the minimum SAD of the previous step, and the step size of the 

second step is reduced by half. Last step stops the search process with the step size of one 

pixel; and the optimal MV with the minimum SAD can be obtained. 

The hierarchical methods as Multi-scale Search Technique are based on building a 

pyramidal representation for each frame. This representation calculates an image where 

each pixel’s value is a mean of itself with its neighbourhood; after that, the image is under 

sampled to the half, as shown in Figure 13c. This model is implemented using the Altera 

DE2 board and the Cyclone II FPGA as shown in the Figures 11b and 12b (González et al., 

2011), balancing the code between the microprocessor implemented and the acceleration 

system which uses Avalon Bus thanks to so-called “C to hardware compiler” from Altera 

(Altera, 2011). 
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Fig. 13. (13a. Upper row) Full Search Technique. (13b. medium row) Three Steps Search 
Technique. (13c. lower row) Multiscale Search Technique. 

4. Computational resources and throughput of the real-time systems 

In this section, we analyse each of these real-time motion estimation systems regarding the 

computational resources needed and the throughput obtained. The resources used in the 

implementations described in 3.1 and 3.2 are shown in the Tables 1-3 as Slices and Block 

Ram percentage accounting. MC is the maximum delay in terms of the number of clock 

cycles needed for each modulus implemented. Finally, the Throughput provides the Kilo 

pixels per second (Kpps) of the implementations.  

Table 1 shows a set of these parameters just for the McGM optical flow implementation, (see 

case 3.1) but Table 2 manages the multimodal sensor treated in 3.2. For this last case, has 

been separated the implementation of each one of the orthogonal variant moments (Table 2) 

and just the whole implementation (all modules working together as shown in Table 3).  

Tables 4 is regarding the implementation explained in 3.3. The FPGA used is Altera Cyclone 

II EP2C35F672C6 with a core NIOS II processor embedded in a DE2 platform. 

www.intechopen.com



 
Real-Time Systems, Architecture, Scheduling, and Application 

 

286 

 

Low-level Vision Stage 

(Optical flow) 

FIR 

Temporal 

Filtering(I)

FIR Spatial 

Filtering(II)

Steering 

(III) 

Product & 

Taylor 

(IV) 

Quotient 

(V) 

Primitives 

(VI) 

Slices (%) 190 (1%) 1307 (7%) 1206(6%) 3139(19%) 3646(20%) 2354(12%) 

Block RAM (%) 1% 31% 2% 13% 16% 19% 

MC 13 17 19 23 21 19 

Throughput 

(Kpixels/s)/Freq.(Mhz)
4846/ 63 3235/55 2526/48 1782/41 1695/39 2000/38 

Table 1. Slices, memory, number of cycles and performance for Low-level Optical flow 
scheme. 

 

Low-level Vision Stage 

(Orthogonal Variant Moments) 

Area 

(MI) 

LX 

(MII) 

LY 

(MIII) 

PX 

(MIV) 

PY 

(MV) 

Slices (%) 321(2%) 1245(7%) 1245(7%) 658(4%) 658(4%) 

Block RAM (%) 1% 4% 4% 3% 3% 

MC 7 11 11 5 5 

Throughput (Kpixels/sec)/ 

Frecuency (MHz) 
4546/49 

Table 2. Slices, memory, number of cycles and performance for Orthogonal Moment scheme. 

 

COMPLETE Mid-level 

and Low level Vision 

Motion 

Estimation 

(Low-

Level) 

Orthogonal 

Variant 

Moments 

(Low-Level)l

Tracking & 

Segmentation 

Unit (Mid-

Level) 

Multimodal 

Bioinspired 

Sensor. (Mid 

& Low Level) 

Slices (%) 4127 (24%) 11842 (65%) 1304 (6%) 17710 (97%) 

Block RAM (%) 15% 80% 4% (99%) 

MC (limiting) 29 11 18 29 

Throughput 

(Kpixels/s)/Freq.(Mhz) 
4546/49 2000/38 2000/38 2000/38 

Table 3. Resources needed and performance for Low and Mid-Level vision. Multimodal 
system. 
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Method, Processor / 

Quality 
Logic Cells Embedded DSPs (9 × 9) 

Total memory 

bits 

FST, e / Quality I 4925 (15%) 0 (0%) 

62720 

(13%) 
FST, e / Quality II 7708 (23%) 28 (40%) 

FST, e / Quality III 14267 (43%) 39 (56%) 

FST, s / Quality I 5808 (18% 0 (0%) 

99200 

(20%) 
FST, s/ Quality II 8501 (26%) 20 (28%) 

FST, s / Quality III 15627 (47%) 32 (48%) 

FST, f / Quality I 6488 (20%) 0 (0%) 

134656 

(28%) 
FST, f / Quality II 9225 (30%) 32 (48%) 

FST, f / Quality III 16396 (50%) 43 (61%) 

Table 4. Resources needed and performance for Low level vision Block matching system. 

The parameters for measuring the resources for this technology are Logic Cell and 

Embedded DSPs. For this implementation, we have used different embedded NIOS II 

microprocessors (E, S, F from “economic”, “standard”, and “full” with different 

characteristics (González et al., 2011) and for each one of these microprocessors we have 

applied different parts of the code, distinguishing between “Quality I, II or III” depending of 

the piece of the code running just into the microprocessor and the part that is accelerated 

using C2H compiler. (Altera, 2011). 

For the multimodal system, it is possible reach up a real-time performance (see Section 3.2 

and Table 5). This throughput is between 12 Mega pixels per seconds (Mpps) with basic 

quality (most of the source code running in Nios II microprocessor) and 30 Mpps (most of 

the source code being accelerated with C to hardware compiler) which means between 40 

and 98 fps at 640x480 resolution.  

 

COMPLETE Mid-

level and Low-level 

Vision 

Orthogonal Variant 

Moments (Low-

Level) 

Motion 

Estimation 

(Low-Level) 

Multimodal 

Bioinspired Sensor. 

(Mid & Low-Level) 

resolution 120x96 395 frames/sec 174 frames/sec 174 frames/sec 

resolution 320x240 59 frames/sec 26 frames/sec 26 frames/sec 

resolution 640x480 28 frames/sec 14 frames/sec 14 frames/sec 

Throughput 4546 Kpixels/sec 2000 Kpixels/sec 2000 Kpixels/sec 

Table 5. Throughput in terms of Kpps and fps for the embedded sensor. 
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COMPLETE Mid-level and Low-

level Vision 

Quality I Quality II Quality III 

Throughput 12 Mpixels/sec 20 Mpixels/sec 30 Mpixels/sec 

Table 6. Throughput in terms of Kpps and fps for the block matching technique. 

5. Conclusion  

This chapter has approached the problem of the real-time implementation of motion 

estimation in embedded systems. It has been descripted representative techniques and 

systems belonging to different families that contribute with solutions and approximations to 

a question that remains still open, due the ill-posed nature of the motion constraint 

equation. 

It has been also proposed an overview of different implementations capable of computing 

real-time motion estimation in embedded systems delivering just low primitives: (gradient 

model and block matching respectively) and delivering the mid-level vision primitives 

(combination optical flow with orthogonal variant moments). In the Table 7 are shown the 

different methods implemented regarding the machine vision domain, the final 

performance obtained, the robustness implementation and the complexity of the final 

system.  

These systems designed are scalable and modular, also being possible choice the visual 

primitives involved -number of moments- as well as the bit-width of the filters and 

computations in the low-level vision -optical flow-. This architecture can process 

concurrently different visual processing channels, so the system described opens the door to 

the implementation of complex bioinspired algorithms on-chip.  

The implementation of these systems shown offers robustness and real-time performance to 

applications in which the luminance varies significantly and noisy environments, as 

industrial environments, sport complex, animal and robotic tracking among others.  

Method Implemented 

Vision 

Domain 

Throughput

FPS 

(320x200) 

Robustness Complexity of the 

Implementation 

(FPGA board) 

Orthogonal Variant 

Moments 
Low&Mid 59 fps Low Easy 

Motion Estimation 

(McGM) 
Low 26 fps Very High High 

Multimodal Bioinspired 

Sensor. 
Low&Mid 26 fps Very High Very High 

Block Matching (Full 

Search Tecnique) 
Low 120 fps Medium Easy 

Table 7. Comparison of the different methods implemented. 
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