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1. Introduction 

UML (OMG, 2011) is considered as a contemporary standard in information systems 
development. Being a graphical modeling language it offers a family of diagrams that may 
be used for specification and designing of information systems. Sequence diagrams, being a 
part of the family, are very often used to specify functional requirements of the developed 
systems and are typically associated with the use case realizations in the logical view of the 
system under development. They show how actors involved in the scenario representing a 
use case realization cooperate with system’s objects. Therefore, the meaning of a sequence 
diagram is a set of scenarios, each describing interaction between objects of the designed 
system and its environment. Semantics of sequence diagrams is defined informally in plain 
language, and, additionally, the definition is limited to the interpretation of single diagrams. 
But in nontrivial cases a set of sequence diagrams is necessary to give a complete specifica-
tion of the system’s behavior, and therefore the interpretation of the set of such diagrams is 
needed. Since UML has informal semantics, a set of sequence diagrams brings some inter-
pretation problems. The problem becomes even more difficult when the real-time systems 
are designed when numerous time constraints are associated with the diagrams. 

Hence, the primary aim of the chapter is to give a precise interpretation of a set of sequence 
diagrams with time constraints. The formal interpretation is necessary to construct program-
ming tools supporting validation of the systems’ behavior specification, and possibly proto-
typing of the systems. The chapter demonstrates how the set of scenarios specifying 
system’s behavior may be derived from the set of sequence diagrams, and how this set may 
be analyzed against its consistency and completeness. 

Another aim of the chapter is to propose an approach to real-time systems specification. 

Real-time systems have some peculiarities. For example, a typical task for a real-time system 

is to track the events from its environment and then responding to them, within imposed 

time constraints, through the generation of new events targeted to the environment. To 

follow such schemata, we propose to extend the UML sequence diagrams with new kinds of 

stereotyped combined fragments.  

A specific methodological aspect of real-time system specification is also considered. 

Namely, very often, in addition to an explicit description of the behavior of the system, 

additional properties such as safety and liveness, are taken into account. Usually, the 
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properties are expressed in modal logics. We propose to use sequence diagrams to express 

them, to obtain in this way uniformity of means for a system specification. For this purpose, 

the notion of monitoring scenarios is introduced. Monitoring scenarios are specified by 

sequence diagrams, and are used to define liveness and safety properties of the system’s 

behavior.  

In the chapter, the proposed semantics of extended sequence diagrams is explained, and an 

example of a simple system specification and its analysis are presented. The analysis is done 

by means of the prototype of a programming tool that enables analysis of system’s behavior 

against consistency and completeness as well as checking its liveness and safety properties. 

The chapter is organized as follows. 

Section 2 presents how UML sequence diagrams are defined, and also introduces new kinds 

of combined fragments that are used to define extended sequence diagrams. A set of exten-

ded sequence diagrams is used to represent the behavior of a real-time system.  

Section 3 outlines our approach to specification of the real-time systems. The approach uses 

class diagrams to represent the structural aspect, and a set of sequence diagrams to repre-

sent the behavioral aspect of the specified system. A specific feature of the approach is a 

possibility to extend the behavior specification with additional monitoring diagrams – 

sequence diagrams – representing forbidden and expected behaviors. In this way we 

introduce some redundancy to the behavior specification, which enables checking safety 

and liveness of system’s behavior. The approach is illustrated by a simple example.  

In Section 4, an informal semantics of real-time system specification is explained; a notion of 

the graph of possible scenarios is defined. The graph is derived from the set of extended 

sequence diagrams, and defines a set of possible scenarios representing system’s behavior.  

System’s specification requires validation with respect to consistency, definiteness and com-

pleteness. These properties are defined and discussed in Section 5.  

Section 6 is the main section of the chapter. It formalizes semantics of a set of extended 

sequence diagrams. First, it defines a set of basic notions, and next it formally presents 

construction of the graph of possible scenarios which are semantics of a set of sequence 

diagrams.  

Section 7 ends the chapter with concluding remarks. 

2. Sequence diagrams in UML 

Features of real-time systems define some requirements put on the system development 
process, and in consequence, on specification language used in this process. The language, 
in which the specification is expressed, should be characterized by the right power of 
expression (allowing a description of real-time systems, and development of system models 
for the assumed point of view), and should be abstract (allowing an appropriate level of 
detail description). Additionally, the language should be supported by programming tools 
enabling validation (confirmation that the informal user's needs are met) and verification 
(checking the specification against a set of properties: consistency, completeness, determi-
nism) of specifications. 
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There are several languages that enable real-time systems specification, but we focus on 
UML, especially on UML sequence diagrams that are drawn from Message Sequence Charts 
(ITU-T, 2004; Cleaveland & Sengupta, 2006). UML 2.4 sequence diagrams provide 
mechanisms for specification of time properties (OMG, 2011).  

A sequence diagram represents an interaction – a set of communications among objects 
arranged visually in time order. The diagram shows the objects with their lifelines parti-
cipating in an interaction, and the sequences of exchanged messages, but it does not show 
object relationships. So, the diagram forms an interaction that consists of objects’ lifelines 
and messages exchanged between the lifelines. For each message there are two events: 
sending and receiving. 

The newest version of UML 2.4.1 enables explicit handling of real-time events on sequence 
diagrams. The basic mechanisms are: observation of current time, especially observation of 
time of an event occurrence, and observation of duration of message transmission. As in the 
previous versions of UML, time constraints may be specified – see Fig.1. The constraints 
may take into account times of sending and receiving a message, duration of a message 
transmission, times of occurring of selected events etc. 

 

Fig. 1. Sequence diagram with time constraints 

Sequence diagrams can exist in a descriptor form (describing all possible scenarios) and in 
an instance form (describing one actual scenario). The descriptor form uses combined 
fragments that are shown as nested regions within a sequence diagram. A combined 
fragment defines an expression of interaction fragments. A combined fragment is defined by 
an interaction operator and corresponding interaction operands. There are a number of 
combined fragments for representing contingent behavior, such as conditionals, loops, and 
so on. A combined fragment has a keyword, e.g., alt, break, par, loop, seq, strict, that specifies 
its type. Depending on the keyword, there are one or more embedded operands, each of 
which is a structured subfragment of the overall interaction. A combined fragment may also 
have zero or more gates, which specify the interface between the combined fragment and 
other parts of the interaction. 
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Following specific features of real-time systems, a new combined fragment is introduced. It 

is a composition of two new stereotypes «action» and «reaction» applied to arguments of the 

combined fragment with operator strict (Fig. 2a). This combined fragment expresses a 

typical cooperation schema between a computer system and its environment: the system 

should respond to signals received from the environment. The argument with the stereotype 

«action» specifies a message or a sequence of messages that represent a stimulus from the 

environment, and the argument with the stereotype «reaction» specifies a message or a 

sequence of messages that represent the system response. Both arguments are linked via 

strict sequencing operator which means that if the scenario represented by the argument 

«action» is executed then the scenario represented by the argument «reaction» must occur. 

The other two combined fragments presented in Fig. 2b and 2c are new stereotypes of assert 

and neg combined fragments. The fragments are used to define liveness and safety 

properties, respectively, of the specified system. The first one means that if the execution 

reaches the beginning of the construct, then the behavior of the fragment, as an expected 

behavior of the specified system, must occur. The second one defines the behavior of the 

fragment, as a forbidden behavior of the system, may not occur.  

 

Fig. 2. Examples of sequence diagram with specific combined fragments 

3. Real-time system specification 

In the presented approach to system specification we define the system as a pair of two 
elements: the system structure that expresses the static aspect, and its behavior that presents 
the dynamic aspect of the system. Specification of the static aspect sSpec is expressed by 
UML class and objects diagrams while specification of the behavioral aspect bSpec – by a set 
of extended UML sequence diagrams. So, the system specification is defined as: 

SpecUML= <sSpec, bSpec > 

In a typical approach, one would expect that the set of sequence diagrams bSpec will specify 

only the desired behavior of the developed system. Usually, such a set of sequence diagrams 
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reflects a family of user stories; each describing a scenario or scenarios represented by a 

sequence diagram.  

The peculiarity of the proposed approach lies in that the set of diagrams may contain also 

additional diagrams called monitoring diagrams. The idea to use the monitoring diagrams 

comes from the postulate, that we expect high level of credibility of specification of each 

system, and especially specification of the real-time system. The monitoring diagrams 

introduce some redundancy to the specification and, in this way, increase its credibility. So, 

the behavioral aspect bSpec consists of two sets of sequence diagrams:  ܾܵܿ݁݌ = 	 ܵ݀௦௣௘௖ ∪ ܵ݀௠௢௡௜௧ 

where the set ܵ݀௦௣௘௖ specifies the desired behavior of the system, and the set Sdmonit defines 

monitored behaviors. The monitored behaviors may in turn be split into forbidden and 

expected behaviors, namely:  ܵ݀௠௢௡௜௧ = 	 ܵ݀௙௢௥௕௜ௗௗ௘௡ ∪ ܵ݀௘௫௣௘௖௧௘ௗ. 

The forbidden behaviors represent the safety property of the developed system, i.e., they 

express the fact that the undesirable situation will not appear during system execution (the 

system does not reach unacceptable states). 

The expected behaviors represent the liveness property of the system, i.e., express the fact 

that if some situation is required it will happen eventually during the system execution (the 

system reaches desirable states).  

The liveness and safety properties (Nissanke, 1997) are usually expressed in a language of 

modal logics (Manna & Pnueli, 1992; Manna & Pnueli, 1995). Having a model or a system’s 

prototype, one examines whether the model or prototype complies with specified properties 

(model checking). Peculiarity of the presented approach is to use sequence diagrams to ex-

press these both properties. In this way we obtain the possibility of specifying the system’s 

behavior and its properties using a uniform mechanism of sequence diagrams.  

An example of a system specification is presented below. The example specifies a simple 

real-time system which controls and monitors a bakery. Fig. 3 presents a class diagram 

representing components of the system.  

The behavior of the system is described by three user stories represented in Figs. 4, 5 and 6.  

The first user story is presented on three sequence diagrams – Fig. 4. They describe reaction 

of the system when the main switch of the control panel is clicked to on or to off. When the 

main switch of the control panel is clicked to on, the main light should be turned on and the 

console background color should be changed to green. When the switch is clicked to off, the 

light should be turned off, and the console background color should be changed to white. 

The second user story is presented on two sequence diagrams – Fig. 5. The story relates to 

an alarm situation when the current temperature of the bakery exceeds the permissible 

temperature for some period of time. In reaction to the situation the main light on the 

console is changed to red, and next, alternatively, the controller switches off the system, or 

the user decides about switching off or setting a new permissible temperature. 
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Fig. 3. Class diagram for the example 

 

Fig. 4. Sequence diagrams – representation of the first user story  

www.intechopen.com



 
Specification and Validation of Real-Time Systems Using UML Sequence Diagrams 

 

103 

 

Fig. 5. Sequence diagrams – representation of the second user story 

The last, a very simple user story – Fig. 6 – describes reaction of the system on setting a new 

permissible temperature by the user.  

 

Fig. 6. Sequence diagrams – representation of the third user story  

Two sequence diagrams in Fig. 7 represent the expected and forbidden behaviors of the 

specified system. The scenario from Fig. 7b should belong to the set of expected scenarios of 

the system, while the scenario from Fig. 7a should not belong to this set of scenarios. 
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Fig. 7. Sequence diagrams – representation of expected and forbidden behaviors  

4. Informal semantics of a set of sequence diagrams 

The definition of UML presented in the standard (OMG, 2011) is informal. Lack of formal 

semantics brings ambiguity problems (Harel & Maoz, 2008; Störrle, 2004), especially in the 

case of automation of system development process and design of tools supporting the 

process. Furthermore, the possibility of UML model-checking is limited to syntax verifica-

tion. To allow analysis of the properties of the spetcification formulated in UML, we 

propose a transformation of the specification – a set of sequence diagrams – to the abstract 

model which describes the behavior of the modeled system as a graph of possible scenarios 

(Fig. 8).  

The graph of possible scenarios consists of nodes and arcs. Nodes represent system’s confi-

gurations, meaning its states. Arcs represent events that cause transitions between confi-

gurations. Events may represent message sending or message receiving, time events and 

synchronization events. The latter are related to entering into or exiting from the combined 

fragments or their arguments. 

The structure of the graph is similar to a tree. The root of the tree represents an initial confi-
guration, in general, while leafs represent final configurations. It is possible however for 
some leafs to return to the initial configuration what is formally represented by an arc 

labeled with an artificial event δ. It is also possible to have loops for some configurations. 
The loops are labeled by synchronization events that do not change system configurations. 
A sequence of transitions starting from the initial configuration (a scenario) may be finite or 
infinite. The set of all sequences of transitions defines the set of possible scenarios of 
interactions between the system and its environment. 

Fig. 8 presents only a fragment of the graph of possible scenarios for our exemplary 
specification. The graph contains only selected scenarios that are derived from the 
specification. The labels on arcs are symbols of messages taken from the sequence diagrams. 

Now, semantics of the set of sequence diagrams may be defined as the set of all scenarios – 

sequences of events – generated by this graph. The scenarios are derived from fragments of 

interactions represented by single diagrams. On the basis of the set of sequence diagrams 

the graph expressing all derived scenarios is constructed. 
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Fig. 8. Fragments of the graph of possible scenarios  

The algorithm constructs the graph while walking from one location to another location 
along the lifelines on the sequence diagrams. A location is a time point on an object’s lifeline 
with attached event, e.g. sending or receiving message. A set which for each lifeline of a 
given single diagram contains its location constitutes a snapshot of the diagram. 

The snapshot represents current progress of the behavior modeled by the sequence diagram. 
The diagram together with its snapshot and the values of currently exchanged messages 
constitute a live copy of the diagram. The set of live copies of all diagrams which are 
involved into common scenario, i.e. operate on the same messages, determines a configu-
ration. A configuration is changing when an event appears. 

Of course, construction of the graph has to take into account all possible relationships 
between scenarios presented by individual sequence diagrams. In particular, in the first 
place, a consistency between scenarios has to be checked. The algorithm of the graph 
construction is presented in details in Section 6. 

5. Specification properties 

Each specification should be unambiguous and a complete formulation of the user’s re-
quirements. We check the specification against the following three properties: definiteness, 
consistency and completeness. Definiteness and consistency may be checked automatically 
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whereas it is not possible for completeness. Completeness refers to the domain of applica-
tion and therefore it requires domain expertise; it can also be validated experimentally. 

As our specifications are executable, the experiments are possible and the user observing 
system’s behavior may decide on completeness of the specification. Nevertheless, some 
aspects of completeness may be checked automatically. For example, if a sequence diagram 
contains a message being the system response, a stimulating action is expected. 

The notions of definiteness and consistency as defined below may be automatically checked. 
Consistency is essential and indispensable property of the specification. General definition of 
consistency is given in (Huzar & Walkowiak, 2010). Here, we concentrate on partial orders of 
exchanged messages defined by different sequence diagrams. Two orders are consistent, if the 
sequences determined by matching messages are the same. Consistency of specification means 
that partial message orders, determined by different sequence diagrams defining one scenario 
of interactions between the system and its environment, are consistent. 

The specification is undefined if there is at least one undefined transition in a scenario 
derived from the set of sequence diagrams. A transition may be undefined due to an 
undefined value of exchanged messages. 

The algorithm constructing the graph of possible scenarios is extended by the analysis of 
consistency, definiteness and completeness of the specification. 

The analysis of the specification is carried out during the configuration transformations. 
Particular configurations are processed until the following appears: 

- the end of interaction being a reaction to a stimulus from the environment is reached 
(the set of live copies of the reached configuration is empty), 

- inconsistency in the message orders, 
- identification of the events, which refer to indefinite values of messages (indefiniteness),  
- identification of the messages exchanged between the system elements or the messages 

sent from the system to its environment such that they appear in activation part of a 
sequence diagram and there is not another sequence diagram which contains the same 
messages in reaction part (incompleteness).  

Now we consider consistency, definiteness and completeness of the exemplary specification.  

The sequence diagrams in Figs. 4c and 5b represent fragments of the same scenario of the 
interaction between the system and its environment. The scenario specifies the system 
response to the situation when the bakery temperature exceeds the desired temperature by 
500 C by 10 seconds from the time of its detection. 

Observe that there is a contradiction in ordering of the matching messages 
setBackgound(WHITE) and setText(-) on these diagrams. According to the diagram in Fig. 5b 
when the alarm is detected, the display’s background is change to white and next its content 
is reset. According to the diagram in Fig. 4c, in this situation the controller changes its state 
to OFF, and the display’s content is reset, and next its background is changed to white. 

Using of the variable in the message C, Fig. 4b, changing display’s background, results in 
specification indefiniteness – lack of an event, which allows defining the value of the 
considered variable during the execution. The variable is not symbolic (its value isn’t 
assigned by the environment), and none of diagrams activated during the transformation 
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(which forms the considered interaction scenario) contains any matched message which 
value would be assigned to the considered variable. 

The message in the activation part of the combined fragment in Fig. 6 informing about a 
change of the temperature requested by the user (message Z), entails incompleteness of the 
specification. The message specifies system’s reaction to the action from its environment and 
therefore links two different fragments of the same scenario. However, there is no another 
diagram containing this message in its reaction part. 

The complete graph of all possible scenarios with the results of its analysis is given in Fig. 9. 

 

Fig. 9. Complete (interpreted) graph of possible scenarios  
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6. Graph of possible scenarios 

The Section gives formal definitions (subsection 6.1) that are necessary to present formally 
construction of the graph of possible scenarios (subsection 6.2). In this way formal semantics 
of a set of extended sequence diagram is defined.  

6.1 Basic definitions 

In the definitions given below we introduce basic meta-classes from the meta-model of the 
extended sequence diagram. For the sake of simplicity we will treat the meta-classes as sets 
of specific elements. Therefore the notation e : M, where e is a name of an element, and M is 
a name of a meta-class, will be read: e is an instance of the meta-class M, or e is an element of 
the set M.  

We will use dotted notation: if e is some element and p is its property then the expression e.p 
means the value of the property p of the element e. 

Notation and meta-elements of the system specification ⊥  An undefined value ݁݌ݕܶܽݐܽܦ  A family of data types, each defined as a set of values and set of 

operations over the set of values; ݀:  denotes the data type d ݁݌ݕܶܽݐܽܦ

from this family 
ௗ  A set of values of the data type ݀:  ݁݌ݕܶܽݐܽܦ
  A set of values of all data types: ⋃ ௗௗ:஽௔௧௔்௬௣௘ :݁݉ܽ݊ۃ :A set of attributes, each defined as  ݁ݐݑܾ݅ݎݐݐܣ  ,݃݊݅ݎݐܵ ݀: :݁݉ܽ݊ۃ  :A set of formal parameters; each defined as  ݎ݁ݐ݁݉ܽݎܽܲ ۄ݁݌ݕܶܽݐܽܦ ,݃݊݅ݎݐܵ ݀: :݁݉ܽ݊ۃ :A set of operations, each defined as  ݊݋݅ݐܽݎ݁݌ܱۄ݁݌ݕܶܽݐܽܦ ,݃݊݅ݎݐܵ :݉ݎܽ݌ ,ݎ݋ݐThe enumeration type of classifiers: ሼܽܿ  ݁݌ݕܶݎ݂݁݅݅ݏݏ݈ܽܥ ۄݎ݁ݐ݁݉ܽݎܽܲ ,݈ܽ݊ݎ݁ݐݔ݁ ,݅ݑ :݁݉ܽ݊ۃ :A set of classifiers, each defined as  ݎ݂݁݅݅ݏݏ݈ܽܥ ሽ݈ܽ݊ݎ݁ݐ݊݅ ,݃݊݅ݎݐܵ :ܣ ,[כ]݁ݐݑܾ݅ݎݐݐܣ ܱ: ,[כ]݊݋݅ݐܽݎ݁݌ܱ :݁݌ݕݐ :ܦۃ  :A set of classifier models, each defined as  ݈݁݀݋ܯݎ݂݁݅݅ݏݏ݈ܽܥ ۄ	݁݌ݕܶݎ݂݁݅݅ݏݏ݈ܽܥ ,[כ]݁݌ݕܶܽݐܽܦ :ܥ :݁݉ܽ݊ۃ :A set of instances, each defined as  ݁ܿ݊ܽݐݏ݊ܫۄ[כ]ݎ݂݁݅݅ݏݏ݈ܽܥ ,݃݊݅ݎݐܵ ܿ: :ܫۃ :A set of instances’ models, each defined as  ݈݁݀݋ܯ݁ܿ݊ܽݐݏ݊ܫ ۄݎ݂݁݅݅ݏݏ݈ܽܥ ݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵ݁ݎݑݐܿݑݎݐܵ ۄ[כ]݁ܿ݊ܽݐݏ݊ܫ A set of system structure specifications, each defined as:  ܯܿۃ: ,݈݁݀݋ܯݎ݂݁݅݅ݏݏ݈ܽܥ :ܯ݅ :݅ۃ :A set of life lines, each defined as  ݁݊݅ܮ݂݁݅ܮ A set of instances in the system’s environment ܶ݅݉݁  A set of time points  ݐ݊݁݉݊݋ݎ݅ݒ݊ܧۄ݈݁݀݋ܯ݁ܿ݊ܽݐݏ݊ܫ ,݁ܿ݊ܽݐݏ݊ܫ ܶ: ,[כ]݁݉݅ܶ :଴ݐ :݁݉ܽ݊ۃ :A set of variables at a sequence diagram, each defined as  ݈ܾ݁ܽ݅ݎܸܽ ۄ݁݉݅ܶ ,݃݊݅ݎݐܵ ݀: ,݁݌ݕܶܽݐܽܦ ߱, Φۄ, 

where:  

ω=& means symbolic (dynamically defined) variable, ω=⊥ means 

undefined variable, and Φ ⊆ Ωௗ ∪  defines the set of values that – ܫ

cannot be assigned to the variable; initially Φ = ≠ if Φ ;׎ ߱	then	׎ ,⊥ሼא &ሽ. ݁݃ܽݏݏ݁ܯ  A set of messages, each defined as:  ۦ ݈௦௥௖: ,݁݊݅ܮ݂݁݅ܮ ݈ௗ௦௧: ,݁݊݅ܮ݂݁݅ܮ :݋ ,݊݋݅ݐܽݎ݁݌ܱ :݃ݎܽ :ݐ݊݁ݒܧ݀݊݁ݏ,݈ܾ݁ܽ݅ݎܸܽ ,ݐ݊݁ݒܧ݉݋ܥ :ݐ݊݁ݒܧݒܿ݁ݎ ۧݐ݊݁ݒܧ݉݋ܥ ,ݐA set of operators of combined fragments: ሼ݈ܽ  ݎ݋ݐܽݎ݁݌ܱ   ,ݎܽ݌ ,ݐܿ݅ݎݐݏ ,ݐݎ݁ݏݏܽ ݊݁݃ሽ 
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ݐ݊݁݉ݑ݃ݎܣݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ 109 A set of arguments of a combined fragment ݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ A set of combined fragments, each defined as: ۦ :ݎ݁݌݋ ,ݎ݋ݐܽݎ݁݌ܱ :ܮ݂ܥ ,[כ]݁݊݅ܮ݂݁݅ܮ :ܣ݂ܥ :݀ݎܽݑ݃כ]ݐ݊݁݉ݑ݃ݎܣݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ :݁݉݅ܶݐ݊݁ݒ݁ۃ :A set of events at a sequence diagram, each defined as  ݐ݊݁ݒܧۧ݃݊݅ݎݐܵ ,݀݊݁ݏA set of types of communication events: ሼ  ݁݌ݕܶݐ݊݁ݒܧ݉݋ܥۄ[כ]݁݉݅ܶ  A set of communication events associated with message sending or  ݐ݊݁ݒܧ݉݋ܥ ሽݒܿ݁ݎ

receiving, each defined as: ݃ݏ݉ۃ: ,݁݃ܽݏݏ݁ܯ :݁݌ݕݐ ,ݕݎݐA set of types of synchronization events: ሼ݁݊  ݁݌ݕܶݐ݊݁ݒܧܿ݊ݕܵ ۄ݁݌ݕܶݐ݊݁ݒܧ݉݋ܥ  A set of synchronization events associated with an entry into or exit  ݐ݊݁ݒܧܿ݊ݕܵ ሽݐ݅ݔ݁

from a combined fragment or its argument, each defined as: ݂ۃ: ݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ ∪ :݁݌ݕݐ,ݐ݊݁݉ݑ݃ݎܣݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ ݁݌ݕܶݐ݊݁ݒܧܿ݊ݕܵ ݉ܽݎ݃ܽ݅ܦ݁ܿ݊݁ݑݍ݁ܵ  ۄ A set of sequence diagrams, each defined as: ۦ ݊ܽ݉݁: ,݃݊݅ݎݐܵ :ܮ ,[כ]݁݊݅ܮ݂݁݅ܮ :ݎܸܽ ,[כ]݈ܾ݁ܽ݅ݎܸܽ :݃ݏܯ :݂ܥ,[כ]݁݃ܽݏݏ݁ܯ ,[כ]ݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ ܿ ଴݂: :௖௢௠ܧ,ݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ ,[כ]ݐ݊݁ݒܧ݉݋ܥ :௦௬௡௖ܧ ൿ[כ]ݐ݊݁ݒܧܿ݊ݕܵ ݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵݎݑ݋݅ݒℎܽ݁ܤ   A set of system behavior specifications, each defined as: ݀ܵۃ௦௣௘௖: ,[כ]݉ܽݎ݃ܽ݅ܦ݁ܿ݊݁ݑݍ݁ܵ ܵ݀௠௢௡௜௧: [כ]݉ܽݎ݃ܽ݅ܦ݁ܿ݊݁ݑݍ݁ܵ =ܵ݀௙௢௥௕௜ௗௗ௘௡ ∪ ܵ݀௘௫௣௘௖௧௘ௗܿݎݏ  ۄ  The function ܿݎݏ: ݁݃ܽݏݏ݁ܯ ื ݁ܿ݊ܽݐݏ݊ܫ yields the instance which 

sends a message: ܿݎݏሺ݉݃ݏ) = .݃ݏ݉ ݈௦௥௖ . :ݐݏ݀ The function  ݐݏ݀ ݅ ݁݃ܽݏݏ݁ܯ ื ݁ܿ݊ܽݐݏ݊ܫ yields the instance which 

receives a message: ݀ݐݏሺ݉݃ݏ) = .݃ݏ݉ ݈ௗ௦௧ . :݊݋݅ݐܿܽ The function  ݊݋݅ݐܿܽ ݅ ݉ܽݎ݃ܽ݅ܦ݁ܿ݊݁ݑݍ݁ܵ ื   ݐ݊݁݉ݑ݃ݎܣݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ
for a given sequence diagram, yields the argument of a combined 

fragment stereotyped by «ܽܿ݊݋݅ݐܿܽ݁ݎ «݊݋݅ݐ  The function ݊݋݅ݐܿܽ݁ݎ: ݉ܽݎ݃ܽ݅ܦ݁ܿ݊݁ݑݍ݁ܵ ื  ݐ݊݁݉ݑ݃ݎܣݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ
for a given sequence diagram, yields the argument of a combined 

fragment stereotyped by «݃݊݅ݏ݋݈ܿ݊݁ «݊݋݅ݐܿܽ݁ݎ  The function ݈݁݊ܿ݃݊݅ݏ݋: ݁݃ܽݏݏ݁ܯ ∪ ݐ݊݁ݒܧ ∪ ݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ ݐ݊݁݉ݑ݃ݎܣݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥื ∪ ሼ⊥ሽ  
for a given specification element, yields an argument of the combined 

fragment in which the element is nested directly; if there is no such an 

argument the function returns ⊥ ݈݈ܽ݃݊݅ݏ݋݈ܿ݊ܧ  The function :݃݊݅ݏ݋݈ܿ݊ܧ݈݈ܽ  ݁݃ܽݏݏ݁ܯ ∪ ݐ݊݁ݒܧ ∪ ݐ݊݁݉݃ܽݎܨܾ݀݁݊݅݉݋ܥ ืʹ஼௢௠௕௜௡௘ௗி௥௔௚௠௘௡௧஺௥௚௨௠௘௡௧  
for a given specification element, yields a list of arguments of all 

combined fragment in which the element is nested: ≼௦ௗ⊆ ܶ݅݉݁ଶ  A partial ordering relations defined on the set of time points at 

lifelines of a given extended sequence diagram ≼௦ௗ⊆  ଶ  A partial ordering relations defined on the set of events of a givenݐ݊݁ݒܧ

extended sequence diagram  

The series of the following definitions refines some notions, e.g. snapshot, configuration, 

which were informally introduced in Section 4.  
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Definition 6.1.1 

A snapshot of a sequence diagram ݀ݏ, noted ݏ௦ௗ:  :is defined as the set ,ݐ݋ℎݏ݌ܽ݊ܵ

௦ௗݏ  = ሼ݈ۃ, ݈	|ۄݐ א .݀ݏ ,ܮ ݐ א ݈. ܶሽ  (6.1.1) 

where:  

- ݈ – is a lifeline of an object from the diagram sd, and 
 is a time instance at the lifeline ݈ representing time of a communication event or a – ݐ -

synchronization event on entry to or exit from a combined fragment. 

The function ݈݅݊݅ܽ݅ݐ: ݉ܽݎ݃ܽ݅ܦ݁ܿ݊݁ݑݍ݁ܵ ื  yields an initial snapshot of a sequence ݐ݋ℎݏ݌ܽ݊ܵ
diagram. 

An example of a snapshot of a sequence diagram is presented in Fig. 10. 

 

Fig. 10. An example of a snapshot 

Let ݈. ௜ݐ 	means the i-th time point at the life line ݈ of the sequence diagram.  

Definition 6.1.2 

A set of time points ܶ ⊆ ⋃ ݈. ܶ௟א௦ௗ.௅ 	is said to be closed when: 

 ∀௟א௦ௗ.௅: ∀௟.௧ೣ:்א	ݕ ≤ 	ݔ ฻ 	݈. ௬ݐ א ܶ (6.1.2) 

Definition 6.1.3 

A lower closure ⇃ ௦ௗݏ ௦ௗ of a snapshotݏ 	is defined as the minimal closed set of time points of 
the diagram sd which contains all points of the snapshot. 

A snapshot ݏ௦ௗ is correct if: 

:௦ೞ೏אۄ௟,௧ۃ∀  ∀௧ᇲא௟.்:	ݐᇱ ≼௦ௗ 	ݐ ฻ 	 ᇱݐ ⇃א  ௦ௗ   (6.1.3)ݏ
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Definition 6.1.4 

An active copy of the sequence diagram sd, noted ݈ܿ௦ௗ:  :is defined as the triple ,ݕ݌݋ܥ݁ݒ݅ܮ

 ݈ܿ௦ௗ = ,݀ݏۃ ௦ௗݏ ,  (6.1.4)     ۄ݁݀݋݉

where: 

 ,is a copy of the sequence diagram with the valuation of its variables – ݀ݏ -
 ௦ௗ – a snapshot of the sequence diagram showing the progress of the behaviorݏ -

described by the diagram, and 
݁݀݋݉ - א ሼܽܿ݊݋݅ݐ, ,݊݋݅ݐܿܽ݁ݎ ܿℎ݁ܿ݇ሽ – a state of the active copy. The active copy is in the 

aܿ݊݋݅ݐ state if realizes behavior specified in the activation part of the diagram, in the ݊݋݅ݐܿܽ݁ݎ state if realizes behavior specified in the reactive part of the sequence diagram, 
and in the ܿℎ݁ܿ݇ state if realizes behavior specified by the monitoring diagram. 

Let an active copy and a variable with the valuation established for the active copy be given 
(see example in Fig. 11). Then, the function ݈ܽݒ: ݕ݌݋ܥ݁ݒ݅ܮ × ݈ܾ݁ܽ݅ݎܸܽ ื Ω ∪ ሼ⊥, &ሽ yields a 

value of a given variable, the function ݂݈ܸܾܽ݊݁݀݀݅ݎ݋: ݕ݌݋ܥ݁ݒ݅ܮ × ݈ܾ݁ܽ݅ݎܸܽ ื ʹஐ∪ሼୄ,&ሽ, 
yields a set of forbidden values for a given variable, and the function ݂݁݁ݎ: ݕ݌݋ܥ݁ݒ݅ܮ ݈ܾ݁ܽ݅ݎܸܽ× ื ሼ݁ݑݎݐ,  or false whether valuation of the variable is ݁ݑݎݐ ሽ indicates by݁ݏ݈݂ܽ
undefined. 

 

Fig. 11. An example of an active copy 

If an active copy is known and a given event happens then by applying the function ܽ݀݁ܿ݊ܽݒ: ݕ݌݋ܥ݁ݒ݅ܮ × ݐ݊݁ݒܧ	 ื  .a new active copy is defined ݕ݌݋ܥ݁ݒ݅ܮ

Definition 6.1.5 

A configuration of a set of sequence diagrams, noted ݂ܿ݊݋: Configuration, is defined as the 
tuple: ݂ܿ݊݋ = ,݁ۃ ௦௣௘௖ܿܮ , ܮ ௙ܿ௢௥௕௜ௗௗ௘௡, ௘௫௣௘௖௧௘ௗܿܮ , ,ݐݔ݁ݐ݊݋ܿ ௖௢௡௧௘௫௧݁݉݅ݐ ,	

,ݏ݀ݎܽݑ݃  ,ܾ݊݁݀݀݅ݎ݋ܨ ,݀݁ݐܿ݁݌ݔܧ  (6.1.5)      		ۄ݁݌ݕݐ
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where: 

- ݁ – is a communication event which causes a transition to a new state represented by 
the configuration, ݁ =⊥ for the initial configuration, 

  ,௦௣௘௖ – a subset of active copies of the sequence diagrams specifying required behaviorܿܮ -

ܮ - ௙ܿ௢௥௕௜ௗௗ௘௡ – a subset of active copies of the sequence diagrams specifying forbidden 

behavior,  
 ௘௫௣௘௖௧௘ௗ – a subset of active copies of the sequence diagrams specifying expectedܿܮ -

behavior, 
 a set of bound variables, which values are agreed during a transition to the – ݐݔ݁ݐ݊݋ܿ -

configuration, 
 ,a set of time instants of the event e and other events associated with e – ݐݔ݁ݐ݊݋ܿ_݁݉݅ݐ -
 ,a condition for realization of the communication event e – ݏ݀ݎܽݑ݃ -
  ,a set of sequence diagrams specifying forbidden behavior – ܾ݊݁݀݀݅ݎ݋ܨ -
 ,a set of sequence diagrams specifying expected behavior – ݀݁ݐܿ݁݌ݔܧ -
݁݌ݕݐ - א ሼܿ݁ݐ݈݁݌݉݋, ,݃݊݅ݐ݈ܽ݋݅ݒ ,݂݀݁݊݅݁݀݊ݑ ,݁ݐ݈݁݌݉݋ܿ݊݅ ⊥ሽ – type of the final configuration; ܿ݁ݐ݈݁݌݉݋ – indicates that the configuration is the result of a completely executed 

reaction to the event incoming from system’s environment; ݃݊݅ݐ݈ܽ݋݅ݒ	– indicates 
whether the configuration leads to the violation of event order; ݂݀݁݊݅݁݀݊ݑ	– indicates 
whether the configuration represents an undefined state of a system; ݅݊ܿ݁ݐ݈݁݌݉݋	–
indicates whether the configuration represents an incomplete state of system; ⊥ 
indicates the leaf-configuration. 

An example of a configuration of a set of sequence diagrams is presented in Fig. 12.  

 

Fig. 12. An example of a configuration 
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The function ܽݐܿ݁݊݊݋ܥ݁ݎ: ݊݋݅ݐܽݎݑ݂݃݅݊݋ܥ × ݈ܾ݁ܽ݅ݎܸܽ × ݈ܾ݁ܽ݅ݎܸܽ ื ሼ݁ݑݎݐ,  .otherwise ݁ݏ݈݂ܽ if the variables are bound, and ݁ݑݎݐ ሽ returns݁ݏ݈݂ܽ

Definition 6.1.6 

An event e is a first event in the diagram sd if it belongs to the set of communication events 
of the diagram, and it is a message sending event, and there are no other events that precede 
e in the sense of the relation	≼௦ௗ: 

 ݁ א .݀ݏ ௙௜௥௦௧ܧ 	 ฻ 	 ൫݁ א .݀ݏ ௖௢௠ܧ ר ݁. ݁݌ݕݐ = ݀݊݁ݏ ר ௦ௗ.ா೎೚೘א௘ᇲ׍	 :	݁ᇱ ≼௦ௗ ݁൯   (6.1.6) 

Examples of first events for sequence diagrams are presented in Fig. 13.  

 

Fig. 13. Examples of first events for the sequence diagrams 

Definition 6.1.7 

An event e is an initial event of the sequence diagram sd if it belongs to the set of first events 
of the diagram and it is message event which is sent by the environment of the system: 

 ݁ א .݀ݏ ௜௡௜௧ܧ 	 ฻ 	 ൫݁ א .݀ݏ ௙௜௥௦௧ܧ ר .ሺ݁ܿݎݏ (݃ݏ݉ א  ൯  (6.1.7)ݐ݊݁݉݊݋ݎ݅ݒ݊ܧ

An example of an initial event for a sequence diagram is presented in Fig. 14. 

 

Fig. 14. An example of the initial event for the sequence diagram 
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Definition 6.1.8 

An event e is enabled in the active copy ݈ܿ if it belongs to the set of events of the diagram ݈ܿ.  and the time points of the snapshot for all lifelines representing instances ,݀ݏ
participating in realization of the event e directly precede e, and there is no a such event e’ 
that proceeds e (does not belong to the lower closure of the snapshot ⇃ ݈ܿ.  .(௦ௗݏ

If e is a communication event sending a message and e’’ is a communication event receiving 
the message then e’’ is enabled in the snapshot representing realization of the event e: 

 ݁ א ݈ܿ. ௘௡௔௕௟௘ௗܧ ฻     (6.1.8) ቀ݁ א ݈ܿ. .݀ݏ ௖௢௠ܧ ∪ ݈ܿ. .݀ݏ ௦௬௡௖ܧ ר	 	 ௟௖.௦ௗ.ா೎೚೘∪௟௖.௦ௗ.ாೞ೤೙೎א௘ᇲ׍ : ሺ݁ᇱ ≺௦ௗ ݁ ר ݁ᇱ ⇃ב ݈ܿ. (௦ௗݏ .ሺ݁ר	 ݁݌ݕݐ = ݀݊݁ݏ ฺ ݁. .݃ݏ݉ ݐ݊݁ݒܧݒܿ݁ݎ א .ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ ௦ௗݏ , ݁). ௘௡௔௕௟௘ௗ)൯ܧ  

An example of time point associated with an enabled event for an active copy of a sequence 
diagram is presented in Fig. 15.  

 

Fig. 15. An example of time point associated with an enabled event for an active copy 

Definition 6.1.9 

An event e causes a transition of the active copy ݈ܿ if:  

• it belongs to the set of enabled events for the active copy, and  

• if it is associated with the message sending by the system then it also belongs to the 

scenario representing system’s reaction (part «݊݋݅ݐܿܽ݁ݎ») and the variable to which it 

refers has defined value:  

 ݁ א ݈ܿ. ௔ௗ௩௔௡௖௘ௗܧ 	 ฻	    (6.1.9) 	݁ א ݈ܿ. ௘௡௔௕௟௘ௗܧ 	ቀ݁ א ݈ܿ. .݀ݏ .ሺ݁ܿݎݏ		௖௢௠ܧ (݃ݏ݉ ב 	ݐ݊݁݉݊݋ݎ݅ݒ݊ܧ ฺ 	 ቀ݊݋݅ݐܿܽ݁ݎሺ݈ܿ. (݀ݏ א (ሺ݁݃݊݅ݏ݋݈ܿ݊ܧ݈݈ܽ ר 													ሺ݁. .݃ݏ݉ ݃ݎܽ ≠⊥	ฺ ,ሺ݈݈ܿܽݒ ݁. .݃ݏ݉ .݃ݎܽ ߱) ≠⊥)൯)  
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An example of time point associated with an event causing transition for an active copy of a 

sequence diagram is presented in Fig. 16. 

 

Fig. 16. An example of a time point associated with the event causing transition for an 
exemplary active copy  

Definition 6.1.10 

An event e is reachable for the active copy ݈ܿ if it is the enabled communication event for the 

copy or if there exists a synchronization event e’ such that e is reachable for the active copy 

representing realization of the event e’: 

 ݁ א ݈ܿ. ௥௘௔௖௛௔௕௟௘ܧ 	 ฻   (6.1.10) ൬݁ א ݈ܿ. .݀ݏ 	௖௢௠ܧ ቀ݁ א ݈ܿ. ௘௡௔௕௟௘ௗܧ ש ௟௖.௦ௗ.ாೞ೤೙೎א௘ᇲ׌ :	݁ א ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ ݁ᇱ).  ௥௘௔௖௛௔௕௟௘ቁ൰ܧ

An example of a time point associated with the reachable event for an active copy is presen-

ted in Fig. 17. 

 

Fig. 17. An example of a time point associated with the reachable event for an exemplary 
active copy  
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Definition 6.1.11 

An event e violates events’ ordering of the active copy ݈ܿ if it belongs to the set of obligatory 
communication events of the diagram ݈ܿ.  :but it is not reachable for the copy ,݀ݏ

 ݁ א ݈ܿ. ௩௜௢௟௔௧௜௡௚ܧ 	 ฻     (6.1.11) ቀ݁ א ݈ܿ. .݀ݏ ௖௢௠ܧ ר	 ݁ ב ݈ܿ. ௥௘௔௖௛௔௕௟௘ܧ 	 ר ݂ܽܿ	:.஼௙஺	௟௖.௦ௗ.஼௙ೌ೗೟א௖௙௔׍	 א  ሺ݁)ቁ݃݊݅ݏ݋݈ܿ݊ܧ݈݈ܽ

An example of time points associated with violating events for an exemplary active copy is 
presented in Fig. 18. 

 

Fig. 18. An example of time points associated with the violating events for an exemplary 
active copy  

Definition 6.1.12 

A variable ݎܽݒᇱ is weak-unifiable with a variable ݎܽݒ in a given configuration if: 

- its value is not defined, 
- has the same value as the variable ݎܽݒ, for symbolic variable the variables are bound, 
- the value of the variable ݎܽݒᇱ is defined dynamically, the value of the variable ݎܽݒ is 

defined statically and does not belong to the set of forbidden values of the variable ݎܽݒᇱ: 
,ᇱݎܽݒℎ௪ି௨௡௜௙ሺܿݐܽ݉  (ݎܽݒ ؝ ሺݎܽݒᇱ. ߱ =⊥ .ᇱݎܽݒቀש ߱ = .ݎܽݒ ߱ ר ൫ݎܽݒᇱ. ߱ = & ฺ ,ᇱݎܽݒሺݐܿ݁݊݊݋ܥ݁ݎܽ ൯ቁ(ݎܽݒ 	 .ᇱݎܽݒሺש ߱ = & ר .ݎܽݒ ߱ ב ሼ⊥, &ሽ ר .ݎܽݒ ߱ ב .ᇱݎܽݒ ൯(ߔ

 

(6.1.12) 

Definition 6.1.13 

A variable ݎܽݒᇱ is strict-unifiable with a variable ݎܽݒ if has the same value, for symbolic 
variable the variables are bound: 	݉ܽܿݐℎ௦ି௨௡௜௙ሺݎܽݒᇱ, (ݎܽݒ  ؝

 ቀݎܽݒᇱ. ߱ = .ݎܽݒ ߱	 ר 	 ൫ݎܽݒᇱ. ߱ = & ฺ ,ᇱݎܽݒሺݐܿ݁݊݊݋ܥ݁ݎܽ  ൯ቁ   (6.1.13)(ݎܽݒ
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.′࢘ࢇ࢜ 117 .࢘ࢇ࢜ ࣓ ࣓ ,′࢘ࢇ࢜ሺࢌ࢏࢔࢛ି࢝ࢎࢉ࢚ࢇ࢓ ,′࢘ࢇ࢜ሺࢌ࢏࢔࢛ି࢙ࢎࢉ࢚ࢇ࢓ (࢘ࢇ࢜ ݔ if ,݁ݑݎݐ ݔ & ݁ݑݎݐ ݁ݑݎݐ ݔ ݔ (࢘ࢇ࢜ ב .ᇱݎܽݒ ,ᇱݎܽݒሺݐܿ݁݊݊݋ܥ݁ݎܽ if ,݁ݑݎݐ ′& & ݁ݏ݈݂ܽ ݁ݏ݈݂ܽ & ݔ ݁ݏ݈݂ܽ ݁ݑݎݐ ݔ ⊥ ݁ݏ݈݂ܽ ߔ ,ᇱݎܽݒሺݐܿ݁݊݊݋ܥ݁ݎܽ if ,݁ݑݎݐ (ݎܽݒ  ݁ݑݎݐ ݁ݑݎݐ ⊥ ⊥ ݁ݏ݈݂ܽ ݁ݏ݈݂ܽ ⊥ & ݁ݏ݈݂ܽ ݁ݏ݈݂ܽ ⊥ ݔ ݁ݏ݈݂ܽ ݁ݑݎݐ & ⊥ (ݎܽݒ

Table 1. Definition of the strict-unifiable and weak-unifiable variables, where ݔ is a concrete 
value. 

Definition 6.1.14 

A message ݉݃ݏᇱ is weak-unifiable (strict-unifiable) with a message ݉݃ݏ when both 
messages are sent between the same objects, and relate to a call of the same operation and 
have weak-unifiable (strict-unifiable) arguments: 

,ᇱ݃ݏℎ௤ି௨௡௜௙ሺ݉ܿݐܽ݉ (݃ݏ݉ ؝ ሺܿݎݏሺ݉݃ݏᇱ) = (݃ݏሺ݉ܿݎݏ ר (ᇱ݃ݏሺ݉ݐݏ݀ = (݃ݏሺ݉ݐݏ݀ .ᇱ݃ݏ݉	ר ݋ = .݃ݏ݉ ݋ ר .ᇱ݃ݏℎ௤ି௨௡௜௙ሺ݉ܿݐܽ݉ ,݃ݎܽ .݃ݏ݉  ቁ (6.1.14)(݃ݎܽ

where q means ‘weak’ or ‘strict’. 

Definition 6.1.15 

A communication event ݁ᇱ is weak-unifiable (strict-unifiable) with a communication event ݁ when both events are of the same type (sending or receiving), and relate to a weak-unifiable 
(strict-unifiable) message: 

,ℎ௤ି௨௡௜௙ሺ݁ᇱܿݐܽ݉  ݁) 	 ؝ 	 ቀ݁ᇱ. ݁݌ݕݐ = ݁. 	݁݌ݕݐ ר 	 .ℎ௤ି௨௡௜௙ሺ݁ᇱܿݐܽ݉ ,݃ݏ݉ ݁.  ቁ   (6.1.15)(݃ݏ݉

where q means ‘weak’ or ‘strict’. 

Let ܾܵܿ݁݌:  means the specification of the system behavior expressed	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵݎݑ݋݅ݒℎܽ݁ܤ

by a set of extended UML sequence diagrams. 

Definition 6.1.16 

A graph of possible scenarios representing system’s interaction with its environment is 

defined as: 

௕ௌ௣௘௖ܩ  = ۃ ௕ܸௌ௣௘௖ , ௕ௌ௣௘௖ܣ ,  (6.1.16)   ۄ݀ݎܽݑ݃

where: 
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- ௕ܸௌ௣௘௖ – a set of graph vertices; each vertex is labeled by a configuration which is 

reachable from the initial configuration, 
,ݑۃ ௕ௌ௣௘௖ – a set of graph arcs; each arc is labeled by an event; each arc has the formܣ - ,ݒ ۄ݁ א ,ݑ ௕ௌ௣௘௖, whereܣ ݒ א ௕ܸௌ௣௘௖ are vertices labeled by ܿଵ, ܿଶ: :݁ and ,݊݋݅ݐܽݎݑ݂݃݅݊݋ܥ is the event which causes a transition from ܿଵto c2, noted by ܿଵ ݐ݊݁ݒܧ 		೐		→ ܿଶ, 
:݀ݎܽݑ݃ - ௕ௌ௣௘௖ܣ ื ݌ݔܧ ∪ ሼ⊥ሽ – a partial function that assigns a Boolean expression to an 

arc. 

Further, we will use the function, ݂ܿ݊݋: ௕ܸௌ௣௘௖ ื  which for a given vertex of ,݊݋݅ݐܽݎݑ݂݃݅݊݋ܥ

the graph of possible scenarios returns a configuration labeling the vertex. 

6.2 Construction of the graph of possible scenarios 

The algorithm of construction of the graph of possible scenarios is presented below. To 

facilitate presentation of the algorithm a state machine diagram presenting an active copy – 

a component of a transformed configuration – is shown in Fig. 19. A detailed description of 

the algorithm is summarized in the form of an activity diagram in Fig. 20, after its textual 

description. 

 

Fig. 19. State machine for an active copy, where:  

TRIGGERS: 

CREATE - One of the first events of the diagram occurs 

- e1 – The SyncEvent - exit from the argument with the stereotype «action» of the 
diagram occurs 

- e2 – The SyncEvent - exit from a combined fragment with the stereotype 
«action»/«reaction» of the diagram occurs 
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- e3 – The SyncEvent - exit from a combined fragment with the stereotype «forbidden» or 
«expected» of the diagram occurs 

- e4 – One of the violates events’ ordering events of the diagram occurs 
- e5 - when(condition), where the condition is defined as: 'The set of events causing 

transitions for active copies within the configuration is empty'. 

GUARDS: 

- Q1 - The specification diagram 
- Q2 - The monitoring diagram 
- Q3 - Active Copy is the last element of the set of active copies of the configuration  
- Q4 - The set of events that are accessible at the given configuration contains the event 

which refers to a variable whose value is not specified 
- Q5 - The set of events that are accessible at the given configuration contains the system 

event which belongs to the scenario representing system activation 

ACTIVITIES: 

- A1 - Label the configuration as complete final configuration 
- A2 - Label the configuration as inconsistent final configuration 
- A3 - Label the configuration as unspecified final configuration which represents 

system’s deadlock 
- A4 - Label the configuration as incomplete final configuration which represents 

system’s deadlock 

The vertices and arcs of graph ܩ௕ௌ௣௘௖ = ۃ ௕ܸௌ௣௘௖ , ௕ௌ௣௘௖ܣ ,  are constructed iteratively ۄ݀ݎܽݑ݃

starting from: 

- ௕ܸௌ௣௘௖ = ሼݒ଴ሽ, where ݒ଴ is labeled by the initial configuration: ܿ଴ = ,⊥ۃ ,׎ ,׎ ,׎ ,׎ ,׎ ,׎ ,׎ ,׎  ,ۄ⊥
௕ௌ௣௘௖ܣ - =  ,׎

:݀ݎܽݑ݃ - ௕ௌ௣௘௖ܣ ื ݌ݔܧ ∪ ሼ⊥ሽ – a partial function that assigns a Boolean expression to an 

arc. 
1. The set of events that initiate system’s behavior is defined: ܧ௜௡௜௧ = ቄ݁|݁ א ⋃ .݀ݏ ௕ௌ௣௘௖.ௌௗೞ೛೐೎א௜௡௜௧௦ௗܧ ቅ. 

2. The set ܧ௜௡௜௧ is factorized (elimination of repetitions, marking symbolic variables, setting 
forbidden values for symbolic variables):  

,ሺܿ଴݁ݎ݋ݐ݂ܿܽ   ௜௡௜௧) /* definition 6.2.1ܧ

3. For each initiate event ݁ א  :௜௡௜௧ܧ

a. The transition is computed ܿ଴ e
→ ௖௢௠ ܿ,         /* definition 6.2.3 

b. let ݒ be a vertex labeled by the configuration c: 

௕ܸௌ௣௘௖ ← ௕ܸௌ௣௘௖ ∪ ሼݒሽ, 

c. let ܽ be an arc of the form ݒۃ଴, ,ݒ ௕ௌ௣௘௖ܣ :ۄ݁ ← ௕ௌ௣௘௖ܣ ∪ ሼܽሽ. 
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4. For each leaf-vertex ݒ א ௕ܸௌ௣௘௖, which is not labeled by a final configuration c such that ܿ = .ܿ) (ݒሺ݂݊݋ܿ ݁݌ݕݐ =⊥): 

a. If the set of active copies of the configuration is empty ൫ܿ. ௦௣௘௖ܿܮ =  ൯ return to the׎

initial configuration in which the system awaits for events from its environment: 
i. the configuration is considered as complete final configuration: ܿ. ݁݌ݕݐ ←  ,݁ݐ݈݁݌݉݋ܿ

ii. let ܽ be an arc of the form ݒۃ, ,଴ݒ ௕ௌ௣௘௖ܣ :ۄߜ ← ௕ௌ௣௘௖ܣ ∪ ሼܽሽ, 

iii. go to step 4. 

b. The set of events which enable transitions for active copies within the configuration 
c is defined: ܧ௔ௗ௩௔௡௖௘ௗ = ቄ݁|݁ א ⋃ ݈ܿ. ௖.௅௖ೞ೛೐೎א௔ௗ௩௔௡௖௘ௗ௟௖ܧ ቅ. 

c. If the set ܧ௔ௗ௩௔௡௖௘ௗ contains synchronization events, i.e.  ൫׌௘אாೌ೏ೡೌ೙೎೐೏: ݁ א ⋃ .݀ݏ ௕ௌ௣௘௖א௦௬௡௖௦ௗܧ ൯: 

i. then for each synchronization event: 

a. define transition ܿ e
→ ௦௬௡௖ ܿᇱ,   

b. let ܽ be an arc of the form ݒۃ, ,ݒ ௕ௌ௣௘௖ܣ definition 6.2.2 */                        :ۄ݁ ← ௕ௌ௣௘௖ܣ ∪ ሼܽሽ, 

ii. go to step 4. 

d. If the set ܧ௔ௗ௩௔௡௖௘ௗ contains communication events, i.e.  ൫׌௘אாೌ೏ೡೌ೙೎೐೏: ݁ א ⋃ .݀ݏ ௕ௌ௣௘௖א௖௢௠௦ௗܧ ൯: 

i. factorization of the set (elimination of copies, marking the symbolic variables, 

determining forbidden values of the symbolic variables): 

,ሺܿ݁ݎ݋ݐ݂ܿܽ   ௔ௗ௩௔௡௖௘ௗ). /* definition 6.2.1ܧ

ii. for each communication event: 

a.    the transition is calculated ܿ e
→ ௖௢௠ ܿᇱ, /* definition 6.2.3 

b.    let ݒ′ be a vertex labeled by the configuration ܿ′: 
௕ܸௌ௣௘௖ ← ௕ܸௌ௣௘௖ ∪ ሼݒ′ሽ, 

c.    let ܽ be an arc of the form ݒۃ, ,′ݒ ௕ௌ௣௘௖ܣ :ۄ݁ ← ௕ௌ௣௘௖ܣ ∪ ሼܽሽ. 

iii. go to step 4. 
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e. If the set is empty ሺܧ௔ௗ௩௔௡௖௘ௗ =  :then (׎
i. If the set of events that are accessible at the given configuration contains the 

event which refers to a variable whose value is not specified, i.e. ቀ׌௘א⋃ ௟௖.ா೐೙ೌ್೗೐೏೗೎א೎.ಽ೎ೞ೛೐೎ :	  ቀ݁ א ⋃ .݀ݏ ௕ௌ௣௘௖א௖௢௠௦ௗܧ 	 ר 	݁. ݁݌ݕݐ = 	݀݊݁ݏ ר 	݁. .݃ݏ݉ ݃ݎܽ ר	⊥≠ ݁. .݃ݏ݉ .݃ݎܽ ߱ =⊥൯ቁ  

the configuration is considered as unspecified final configuration which 

represents system’s deadlock: ܿ. ݁݌ݕݐ ←  ,݂݀݁݊݅݁݀݊ݑ

ii. If the set of events that are accessible at the given configuration contains the 

system event which belongs to the scenario representing system activation, i.e. 		ቀ׌௘א⋃ ௟௖.ா೐೙ೌ್೗೐೏೗೎א೎.ಽ೎ೞ೛೐೎ :  ቀ݁ א ⋃ .݀ݏ ௕ௌ௣௘௖א௖௢௠௦ௗܧ ܿݎݏሺ݁. (݃ݏ݉ ב (݀ݏሺ݊݋݅ݐܽܿ	ݐ݊݁݉݊݋ݎ݅ݒ݊ܧ א   ሺ݁)ቁ൰݃݊݅ݏ݋݈ܿ݊ܧ݈݈ܽ

the configuration is considered as incomplete final configuration which 

represents system’s deadlock: ܿ. ݁݌ݕݐ ←  ,݁ݐ݈݁݌݉݋ܿ݊݅

iii. go to step 4. 

Definition 6.2.1 

Factorization of the set of the activating events which cause transitions (elimination of 
copies, marking the symbolic variables, determining forbidden values of the symbolic 
variables) – ݂ܽܿ݁ݎ݋ݐሺ݂ܿ݊݋: ,݊݋݅ݐܽݎݑ݂݃݅݊݋ܥ :ܧ  :is defined as follows ([כ]	ݐ݊݁ݒܧ݉݋ܥ

Let the set of events with a fixed valuation of variables is empty, i.e. ܧ௢௨௧ =  :׎

1. Create a copy of the events: 

௘ா: ܧ௢௨௧ܧ௢௨௧ሼ	ܿݕ݌݋ሺ݁)	ሽ. 

2. Remove repetition of the strict-unifiable events: 

௘,௘ᇲா೚ೠ೟ ∶ ݁ ≠ ݁ᇱ ר .݂݊݋ܿ ,ℎ௦ି௨௡௜௙ሺ݁ܿݐܽ݉ ݁’) ฺ ௢௨௧ܧ		௢௨௧ܧ ך ሼ݁ᇱሽ. 

3. For each event ݁ܧ௢௨௧, which has a statically undefined variable, extend the set of 

forbidden values about the statically defined values of variables of the events ݁′ܧ௢௨௧, 

which are weak-unifiable with e: 

௘,௘ᇲா೚ೠ೟ ∶ ݁ ≠ ݁ᇱ ר .݂݊݋ܿ ,ℎ௪ି௨௡௜௙ሺ݁ܿݐܽ݉ ݁’) ר ݎܽݒ ≠⊥ 	ݎܽݒ.	ሼ,ሽ		ݎܽݒ’.	ሼ,ሽ .ݎܽݒ	ฺ Φ		ݎܽݒ. Φ		ሼݎܽݒᇱ. ߱ሽ 

where: 
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4. Each event sending by system’s environment, which refers to a variable with statically 

undefined value, declare/label its variable as symbolic:  

݁ܧ௢௨௧: ݁. .݃ݏ݉ ݃ݎܽ ≠⊥ 	݁. .݃ݏ݉ .݃ݎܽ = 		ܿݎݏሺ݁. ฺݐ݊݁݉݊݋ݎ݅ݒ݊ܧ(݃ݏ݉ ݁. .݃ݏ݉ .݃ݎܽ ߱		& 

 ௢௨௧ܧ௜௡ܧ .5

Definition 6.2.2 

The transition relations ܿ 		೐		→௦௬௡௖ ܿ′ is defined by the following rules: 

For each active copy of the configuration c ൫݈ܿ א ܿ. ௦௣௘௖ܿܮ ∪ ܿ. ܮ ௙ܿ௢௥௕௜ௗௗ௘௡ ∪ ܿ.  ௘௫௣௘௖௧௘ௗ൯ forܿܮ

which the event e is reachable ሺ݁ א ݈ܿ. ௥௘௔௖௛௔௕௟௘ܧ 	): 

1. modify the snapshot of the active copy: ݈ܿ ึ ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ ݁). 

2. if the event e represents an entry to a combined fragment ሺ݁ = ,݂ܿۃ  :(ۄݕݎݐ݊݁

a. which is a strict sequence, negation or assertion combined fragment ሺ݂ܿ. ,ݐܿ݅ݎݐݏሼ	ݎ݁݌݋ ,ݐݎ݁ݏݏܽ ݊݁݃ሽ) then: ݈ܿ ึ ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ .݂ܿۃ ݂ܿܽଵ,  ,(ۄݕݎݐ݊݁

b. which is a parallel or alternative combined fragment ሺ݂ܿ. ,ݎܽ݌ሼ	ݎ݁݌݋ ∶௖௙.஼௙஺אthen: ∀௖௙௔	ሽ)ݐ݈ܽ ݈ܿ ึ ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ ,݂ܽܿۃ  .(ۄݕݎݐ݊݁

3. if the event e represents an exit from an argument of a combined fragment ሺ݁ .݂ܿۃ= ݂ܿܽ௜ ,  :(ۄݐ݅ݔ݁

a. which is a strict sequence ሺ݂ܿ. ݁ݎ݁݌݋ =  :(ݐܿ݅ݎݐݏ

i. if there exists a subsequent argument of the combined fragment then 

entry to the argument: ݈ܿ ึ ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ .݂ܿۃ ݂ܿܽ௜ାଵ,  ,(ۄݕݎݐ݊݁

ii. if the event e is an exit from the argument with the stereotype «action» ൫݂ܿ. ݂ܿܽ௜ = .ሺ݈ܿ݊݋݅ݐܿܽ .݈ܿ :൯ then(݀ݏ ݁݀݋݉ ึ  ,݊݋݅ݐܿܽ݁ݎ

b. which is a parallel ሺ݂ܿ. ݁ݎ݁݌݋ =  and all other arguments of this combined ,(ݎܽ݌

fragment reached their end ቀ∀௖௙௔ೕא௖௙.஼௙஺,௝ஷ௜ ௝݂ܽܿۃ	 , ۄݐ݅ݔ݁ א 	⇃ ݈ܿ. s௦ௗቁ, then exit the 

entire combined fragment: 
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123 ݈ܿ ึ ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ ,݂ܿۃ  ,(ۄݐ݅ݔ݁

c. which is alternative ሺ݂ܿ. ݁ݎ݁݌݋ = ݈ܿ :then exit the combined fragment (ݐ݈ܽ ึ ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ ,݂ܿۃ  .(ۄݐ݅ݔ݁

4. if the event e represents an exit from a combined fragment ሺ݁ = ,݂ܿۃ  :(ۄݐ݅ݔ݁

a. which is a strict sequence with «ܽܿ݊݋݅ݐܿܽ݁ݎ»/«݊݋݅ݐ» stereotype then remove the 

active copy from the set of configuration copies. ܿܮ௦௣௘௖ ึ ௦௣௘௖ܿܮ ך ሼ݈ܿሽ, 

b. which is negation with «݂ܾ݊݁݀݀݅ݎ݋» stereotype then remove the active copy from 

the set of diagram copies representing forbidden behaviors and recording the 

realized scenario: ܮ ௙ܿ௢௥௕௜ௗௗ௘௡ ึ ܮ ௙ܿ௢௥௕௜ௗௗ௘௡ ך ሼ݈ܿሽ, ܾ݊݁݀݀݅ݎ݋ܨ ึ ܾ݊݁݀݀݅ݎ݋ܨ ∪ ሼ݈ܿ.  ,ሽ݀ݏ

c. which is assertion with «݁݀݁ݐܿ݁݌ݔ» stereotype then remove the active copy from 

the set of diagram copies representing expected behaviors and recording the 

realized scenario: ܿܮ௘௫௣௘௖௧௘ௗ ึ ௘௫௣௘௖௧௘ௗܿܮ ך ሼ݈ܿሽ, ݀݁ݐܿ݁݌ݔܧ ึ ݀݁ݐܿ݁݌ݔܧ ∪ ሼ݈ܿ.  .ሽ݀ݏ

Definition 6.2.3 

The transition relations ܿ 		೐		→௖௢௠ ܿ′ is defined recursively by the following rules: 

ݐݔ݁ݐ݊݋ܿ_݁݉݅ݐ .1 ึ  ,׎

ݏ݀ݎܽݑ݃ .2 ึ⊥, 

3. For each active copy of the configuration c ൫݈ܿ א ܿ. ௦௣௘௖ܿܮ ∪ 	ܿ. ܮ ௙ܿ௢௥௕௜ௗௗ௘௡ ∪ ܿ.  ,௘௫௣௘௖௧௘ௗ൯ܿܮ

for which there exists an event e’ strict-unifiable with an event e violating ordering of 

events 

 ൬׌௘ᇲא௟௖.ாೡ೔೚೗ೌ೟೔೙೒:	ܿ. ,ℎ௦ି௨௡௜௙ሺ݁ᇱܿݐܽ݉ ݁)൰: 

a. if ݈ܿ. ݁݀݋݉ א ሼܽܿ݊݋݅ݐ, ܿℎ݁ܿ݇ሽ then remove the active copy form the set of 

configuration copies: ܿܮ௤ 	 ึ ,ܿ݁݌ݏ means ݍ :௤\ሼ݈ܿሽ, whereܿܮ  .݀݁ݐܿ݁݌ݔ݁ or ܾ݊݁݀݀݅ݎ݋݂

b. if ݈ܿ. ݁݀݋݉ =  then label the configuration as inconsistent final ݊݋݅ݐܿܽ݁ݎ

configuration: ܿ. 	݁݌ݕݐ ึ  .݃݊݅ݐ݈ܽ݋݅ݒ
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4. For each sequence diagram ݀ݏ א  for which its set of first events contains an event ,ܿ݁݌ܾܵ

e’ weak-unifiable with the event e ቀ݁ᇱ א .݀ݏ ௙௜௥௦௧ܧ ר	 	ܿ. ,ℎ௪ି௨௡௜௙ሺ݁ᇱܿݐܽ݉ ݁)ቁ, create active 

copy of the diagram and attach it to a respective set of active configurations:  
a. for ݀ݏ א ܵ݀௦௣௘௖ ௦௣௘௖ܿܮ : ึ ௦௣௘௖ܿܮ ∪ ሼ݈ܿ = ,݀ݏۃ ,(݀ݏሺ݈ܽ݅ݐ݅݊݅  ,ሽۄ݊݋݅ݐܿܽ

b. for ݀ݏ א ܵ݀௙௢௥௕௜ௗௗ௘௡: ܮ ௙ܿ௢௥௕௜ௗௗ௘௡ ึ ܮ ௙ܿ௢௥௕௜ௗௗ௘௡ ∪ ሼ݈ܿ = ,݀ݏۃ ,(݀ݏሺ݈ܽ݅ݐ݅݊݅ ܿℎ݁ܿ݇ۄሽ, 

c. for ݀ݏ א ܵ݀௘௫௣௘௖௧௘ௗ: ܿܮ௘௫௣௘௖௧௘ௗ ึ ௘௫௣௘௖௧௘ௗܿܮ ∪ ሼ݈ܿ = ,݀ݏۃ ,(݀ݏሺ݈ܽ݅ݐ݅݊݅ ܿℎ݁ܿ݇ۄሽ. 

5. For each active copy of the configuration c ൫݈ܿ א ܿ. ௦௣௘௖ܿܮ ∪ 	 ܿ. ܮ ௙ܿ௢௥௕௜ௗௗ௘௡ ∪ ܿ.  ,௘௫௣௘௖௧௘ௗ൯ܿܮ

for which the set of reachable events contains an event e’ weak-unifiable with the event 

e ሺ݁ᇱ א ݈ܿ. ௥௘௔௖௛௔௕௟௘ܧ 	 	ר ܿ. ,ℎ௪ି௨௡௜௙ሺ݁ᇱܿݐܽ݉ ݁)ቁ do the following: 

a. for each synchronization event e’’ at the diagram which proceeds the event e’ and 

which has not been considered yet ൫݁ᇱᇱ א ݈ܿ. .݀ݏ ௦௬௡௖ܧ ר ݁′′ ≼௦ௗ ݁′ ר 	݁′′ ⇃ב ݈ܿ. s௦ௗ൯, 

determine the transition: ܿ 		೐ᇲᇲ		ሱۛሮ௦௬௡௖ ܿ′, 
b. if the event ݁′ is the first event within argument of an alternative combined 

fragment ሺ݂ܿ א ݈ܿ. .݀ݏ ݂ܥ ר ݂ܿ. ݎ݁݌݋ = :௖௙.஼௙஺א௖௙௔೜׌i.e. ൬ ,(ݐ݈ܽ ݂ܿܽ௤ א (ሺ݁ᇱ݃݊݅ݏ݋݈ܿ݊ܧ݈݈ܽ ר ൫݂ܿܽ௤	௟௖.௦ௗ.ா೎೚೘:א௘ᇲᇲ׍ א (ሺ݁ᇱᇱ݃݊݅ݏ݋݈ܿ݊ܧ݈݈ܽ ר ݁ᇱᇱ ≼௦ௗ ݁′൯൰  

 then exit the second argument of the combined fragment ൫݂ܿܽ௣ א ݂ܿ. ܣ݂ܥ ר ݂ܿܽ௣ ≠݂ܿܽ௤൯: ݈ܿ		ܽ݀݁ܿ݊ܽݒ൫݈ܿ, ݏ݀ݎܽݑ݃ ,൯ۄݐ݅ݔ݁	௣݂ܽܿۃ ึ ݏ݀ݎܽݑ݃ ר ݂ܿ.   ݀ݎܽݑ݃

c. modify the active copy of the configuration by including the considered event: ݈ܿ ึ ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ ݁′), 

d. determine unification of the events ݁ and ݁′: 
,ሺ݁ᇱݕ݂݅݊ݑ  ݁),  /* definition 6.2.4 

e. attach time points to lifelines associated with realization of the event ݁′: ݐݔ݁ݐ݊݋ܿ_݁݉݅ݐ ึ ݐݔ݁ݐ݊݋ܿ_݁݉݅ݐ ∪ ݁′.  ,݁݉݅ܶݐ݊݁ݒ݁

f. if the event e’ represents sending of a message and e’’ is the event represents 
receiving of the message, then modify the lifelines associated with realization of the 
event e’’: 
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125 ݈ܿ ึ ,ሺ݈ܿ݁ܿ݊ܽݒ݀ܽ ݐݔ݁ݐ݊݋ܿ_݁݉݅ݐ ,(′′݁ ึ ݐݔ݁ݐ݊݋ܿ_݁݉݅ݐ ∪ ݁′′.  ,݁݉݅ܶݐ݊݁ݒ݁

g. for each enabled synchronization event e’’ of the monitoring diagram ൫݈ܿ .ܿא ܮ ௙ܿ௢௥௕௜ௗௗ௘௡ ∪ ܿ. ௘௫௣௘௖௧௘ௗܿܮ ר ݁ᇱᇱ א ݈ܿ. .݀ݏ ௦௬௡௖ܧ 	 ר 	 ݁ᇱᇱ א ݈ܿ.  ௘௡௔௕௟௘ௗ൯ determine theܧ

transition: ܿ 		೐ᇲᇲ		ሱۛሮ௦௬௡௖ ܿ′. 
Definition 6.2.4 

The procedure of event unification is defined as follows: 

,′ሺ݁ݕ݂݅݊ݑ ݁) ؜ .′ሺ݁ݕ݂݅݊ݑ ,݃ݏ݉ ݁. ,′݃ݏሺ݉ݕ݂݅݊ݑ(݃ݏ݉ (݃ݏ݉ ؜ .′݃ݏሺ݉ݕ݂݅݊ݑ ,݃ݎܽ .݃ݏ݉ ,′ݎܽݒሺݕ݂݅݊ݑ,(݃ݎܽ (ݎܽݒ ؜ ͳ. ,.ݎܽݒ		.′ݎܽݒ .ʹ,.ݎܽݒ		.′ݎܽݒ ,′ݎܽݒሺݐܿ݁݊݊݋ܿ (ݎܽݒ   

/* definition 6.2.5 

Definition 6.2.5 

The binding variables procedure is defined as follows: ܿݐܿ݁݊݊݋ሺݔ, (ݕ  ؜

1. ܵ ึ ሼݔ,   ,ሽݕ

2. If the variable x or ݕ were bounded already then merge the sets: 

a. ׌ௌೣא௖௢௡௧௘௫௧∶ ݔ א ܵ௫ ฺ ܵ ึ ܵ ∪ ܵ௫ܿݐݔ݁ݐ݊݋ ึ ݐݔ݁ݐ݊݋ܿ ך ܵ௫ 

b. ׌ௌ೤א௖௢௡௧௘௫௧∶ ݕ א ܵ௬ ฺ ܵ ึ ܵ ∪ ܵ௬ܿݐݔ݁ݐ݊݋ ึ ݐݔ݁ݐ݊݋ܿ ך ܵ௬ 

ݐݔ݁ݐ݊݋ܿ .3 ึ ݐݔ݁ݐ݊݋ܿ ∪ ܵ.  

7. Conclusions 

UML sequence diagrams allow capturing requirements in a convenient way. Due to their 

simple, intuitive syntax and semantics, they are a suitable communication medium between 

analysts, developers, customers and end-users. Due to their focus on inter-object commu-

nication they are useful for specification of reactive systems, in particular real-time systems. 

Of course, they are not the only UML diagrams that may be used for real-time systems spe-

cification. For example, in (Roubtsova et al., 2000), system’s specification consists of a class 

and object diagrams representing static, and state diagrams representing behavior aspect of 

the specification. 
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Fig. 20. The activity diagram presenting the construction of the graph of possible scenarios  

www.intechopen.com



 
Specification and Validation of Real-Time Systems Using UML Sequence Diagrams 

 

127 

In the chapter we present a way of effective application of UML sequence diagrams to real-
time system specification. Assumption that specification of a system is represented by a set 
of sequence diagrams is close to the agile software development methodologies: each 
sequence diagram represents a single user story, and the set of sequence diagrams should 
represent complete description of the designed system.  

In general, the proposed approach to a construction of system specification may be consi-
dered as a bottom-up approach – on the base of a set of user stories a complete specification 
and its semantics is derived. A consequence of the approach is the need to check consistency 
of the set of user stories. Another bottom-up approach basing on Live Sequence Charts is 
presented in (Harel & Marelly, 2003). The approach was also inspiration for our works. It is 
worth to note that application of Live Sequence Charts is further developed in (Maoz & 
Harel, 2011). 

Opposite approaches to system specification are classified as top-down ones. Within these 
approaches, specification is constructed as a set of hierarchically ordered sequence 
diagrams. The diagrams at higher level of the hierarchy are composed from diagrams at 
lower level of the hierarchy, by means of some composition operators. An example of such 
approach, adopting Message Sequence Charts, is presented in (Cleaveland & Sengupta, 
2006). 

Lack of precise, formal semantics for UML sequence diagrams brings many interpretation 
problems. An illustration of this statement is more than a dozen proposals for the semantics 
of sequence diagrams, which are surveyed in (Micskei & Waeselynck, 2011). However, in 
contrast to our approach, it should be emphasized that these proposals concern only 
individual sequence diagrams, but not the set of diagrams.  

The proposed approach to semantic definition of a set of UML sequence diagrams is based 
on transformation of the set into a graph of all possible scenarios. The graph enables system 
analyst to give answer to practical questions about consistency and completeness of 
scenarios, and thus about consistency and completeness of specification. Additionally, both 
consistency and definiteness may be checked automatically on the-fly. The checking algori-
thm was implemented as a programming tool supporting edition and analysis of specifi-
cations (Walkowiak, 2011). This tool has a form of plug-in to Visual Paradigm modeling 
tool. 
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