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1. Introduction  

In the past decades, natural gas processing has increasingly encompassed low temperatures 
with the view to recover ethane and heavy components from natural gas. Liquefied natural 
gas (LNG) is a useful method for storing the gas in a small space at peak-shaving facilities of 
natural gas distribution companies. The increased density of LNG facilities allows 
transportation of natural gas via large ocean vessels from gas fields situated far from their 
potential markets. Also, in the past, natural gas has been an important source of chemical 
feed stocks like ethane, propane, butane, etc. In order to increase the recovery of these 
stocks, the gas processes have been shifting to lower temperatures where the recoveries are 
improved. In all of the above processes and applications of natural gas, knowledge of the 
LNG systems phase behavior and thermodynamic properties is required for the successful 
design and operation of LNG plants.  

The question of how to predict and model phase equilibria behavior for natural gas systems 
is far from new and liquid-vapor equilibria problems have been successfully solved for 
many years now. At present, interest has shifted to systems containing not only species in 
the simple paraffinic homologous series, but also water, carbon dioxide, hydrogen sulfide, 
hydrogen, nitrogen to mention a few.  

Not unrelated to this growing variety of species in cryogenic process streams is the 
occurrence of multiphase phenomena. The situation of interest in natural gas processing is 
often a methane-rich stream for which there is the question whether a second solvent can 
alter dramatically the pattern of the phase behavior of the customarily liquid-vapor mixture 
and cause problems. 
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The active interest in the use of nitrogen gas to pressurize oil reservoirs to enhance recovery 
has resulted in natural gas process streams, rich in nitrogen, which are likely to display 
complex phase behavior. Investigators have studied experimentally ternary prototype LNG 
systems, containing nitrogen as a second solvent, and a lot of excellent data have been 
published. However, in order to help further understanding the possible occurrence of 
multiphase equilibria in LNG process systems, it is necessary to acquire knowledge of their 
phase behavior and of the variety of critical end point boundaries through an ability to 
predict, model and calculate them.  

There are several aspects of separation/refinement of natural and synthetic gases where 
multiphase equilibria play a role. The occurrence of liquid-liquid-vapor (LLV) behavior 
during the recovery of natural gas by low temperature distillation, especially from nitrogen-
rich gas mixtures, is just one such example. LLV behavior can also occur in the processing of 
gases containing high quantities of carbon monoxide that result from coal gasification, as 
well as in high pressure absorption processes for the removal of either desirable or 
undesirable components from natural and synthetic gas mixtures. In these latter processes, 
methanol can be used as the absorber to separate out feed stocks (ethane, ethylene, propane, 
propylene, etc.), harmful components such as hydrogen sulfide, carbon disulfide, and 
carbonyl sulfide, or simply unwanted species such as carbon dioxide. Obviously, the 
formation of a second liquid phase can upset the expected performance of these processes.  

In the cryogenic processing of natural gas mixtures, species such as CO2 and the heavier 
hydrocarbons can form solids and foul the gas processing equipment. For example, the 
formation of a solid phase can coat heat exchangers and foul expansion devices, leading to 
process shutdown and/or costly repairs. Knowledge of the precipitation conditions for gas 
streams is essential in minimizing downtime for cleanup and repairs. However, the 
appearance of a solid phase in a process is not always a liability. Off-gas (primary nitrogen) 
from power plants with light water reactors or from fuel processing plants can contain 
radioactive isotopes of krypton and xenon, which may be removed by solid precipitation. 
The phenomenological aspects of LLV/solid-liquid-vapor (SLV) behavior are also 
interesting because there is a need for a better understanding of the physical nature of the 
thermodynamic phase space, especially the non-analyticities of critical point region.  

The success of the design and operation of separation processes in the oil and gas industry at 
low temperatures is critically dependent on accurate descriptions of the thermodynamic 
properties and phase behavior of the concerned multicomponent hydrocarbon mixtures with 
inorganic gases. Consequently, it is important to apply appropriate models within a 
thermodynamic modeling framework to predict, describe and validate the complex phase 
behavior of LNG mixtures. In this case, equations of state (EoS) are usually the primary choice.  

The aim in this chapter is to examine and analyze the challenges and difficulties 
encountered when modeling the complex phase behavior of LNG systems, and to compare 
the capabilities of two numerical techniques advocated for phase behavior predictions and 
calculations of complex multicomponent systems. The chapter is organized as follows. In 
Section 2 the thermodynamics and topography of the phase behavior of LNG systems are 
presented. Section 3 describes two computational techniques, advocated by us, to predict 
and model complex phase behavior of nonideal mixtures, and their application to LNG 
systems. Section 4 is focused to the description of two numerical methods to directly 
calculate critical end points (K- and L-points). In Section 5 two representatives of the 
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equations of state (EoSs) type thermodynamic models, namely SRK EoS (Soave, 1972) and 
PC-SAFT EoS (Gross and Sadowski, 2001) are used to represent the equilibrium fluid 
phases. Results and discussion of the multiphase behavior modeling for selected ternary 
systems studied are presented in Section 6. Finally, conclusions derived from the work are 
given in Section 7. 

2. Thermodynamics and topography of the phase behavior of LNG systems 

Though only a limited number of immiscible binary systems (methane–n-hexane, methane–
n-heptane, to name the most prominent ones) are relevant to natural gas processing, LLV 
behavior can and does occur under certain conditions in ternary and higher LNG systems 
even when none of the constituent binaries themselves exhibit such behavior. It is also 
known that the addition of nitrogen to miscible LNG systems can induce immiscibility and 
this necessarily affects the process design for these systems.  

The qualitative classification of natural gas systems and the topography of the multiphase 
equilibrium behavior of the systems in the thermodynamic phase space and the nature of 
the phase boundaries will be addressed in this section.  

Kohn and Luks (1976, 1977, 1978), who carried out extensive experimental studies on the 
solubility of hydrocarbons in LNG and NGL (natural gas liquids) mixtures, qualitatively 
classify natural gas systems (or any system) as one of four types (Kohn and Luks, 1976). 
These types of binary systems show, for instance, that a first type system, methane-n-octane 
(Kohn and Bradish, 1964), has a solid-liquid-vapor (S-L-V) locus which starts at the triple 
point of the solute and terminates at a Q-point (S1-S2-L-V) near the triple point of the solvent 
with an S-V gap in the locus. The S-L-V branches terminate with a K-point where the liquid 
becomes critical with vapor in the presence of a solid. On the contrary, methane-n-heptane 
(Kohn, 1961), a second type system, has a Q-point (S-L1-L2-V) in the central portion of the 
SLV locus, at which point one loses the L1 phase and gains the L2 phase (solvent lean phase). 
These systems also have a L1-L2-V locus running from the Q-point to a K-point where the 
liquid L2 becomes critical with vapor in the presence of L1. The other two types of systems 
have no discontinuities between the triple points of the solvents; however, one of these 
types, methane-n-hexane (Shim and Kohn, 1962), a typical third type system, has a L1-L2-V 
locus which is terminated by critical points, points where the two liquid phases, or a liquid 
and vapor, become critically identical. A typical system of the fourth type is ethane-n-octane 
(Kohn et al., 1976). The topographical evolution of multiphase equilibria behavior is 
discussed in detail by Luks and Kohn (1978). Ternary ( 3N  ) or more complex systems 
exhibit similar types of phenomena, but the loci and exact points of a binary become 1N   
and 2N   dimensional spaces in the more complex systems. 

It is known that systems rich in methane can exhibit L1-L2-V behavior of the second and 
third type variety (e.g., methane-n-heptane and methane-n-hexane, respectively). However, 
investigations into ternary S-L-V and more complex systems revealed that L1-L2-V behavior 
can occur in systems whose binary pairs exhibit no immiscibility (Green et al., 1976; Orozco 
et al., 1977). Hottovy et al. (1981, 1982) observed that systems of the first type (methane-n-
octane) could be modified to behave like a second type system by adding a second solvent 
(e.g., methane-ethane-n-octane, methane-propane-n-octane, methane-n-butane-n-octane, and 
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methane-carbon dioxide-n-octane). Merrill et al. (1983) reported the phase behavior of the 
ternary systems methane-n-pentane-n-octane and methane-n-hexane-n-octane, which also 
exhibit L1-L2-V immiscibility. Additionally, these authors studied the systems methane-n-
hexane-carbon dioxide, in which the carbon dioxide is added to the pair methane-n-hexane 
(third type) to induce L1-L2-V immiscibility. 

In five of these seven ternary systems, methane-n-octane-(ethane, propane, n-butane, n-
pentane, and carbon dioxide), the immiscibility region is bounded by loci of type K, type Q 
and LCST (lower critical solution temperature) points, whereas for the system methane-n-
hexane-n-octane the region of L1-L2-V immiscibility is bounded, apart from the K, Q, and 
LCST points, by the L1-L2-V locus of the methane-n-hexane binary system. In the case of the 
system methane-n-hexane-carbon dioxide, the immiscibility region is bounded by a locus of 
K and LCST points and by the L1-L2-V locus of the methane-n-hexane binary system.  

It should be pointed out that the onset and evolution of LLV  behavior in mixtures is related 
to the evolution of SLV  behavior in those same systems. Thus, in natural gas it is often of 
interest to predict whether a methane-rich stream with one of the solutes (such as an n-
paraffin of carbon number four or higher; or benzene, or carbon dioxide) will form a solid 
phase. The reason behind that is that the presence of a second solvent can considerably 
change the solubility of the solid solute, if the solute is a hydrocarbon; this also occurs to a 
lesser extent if the solute is carbon dioxide.  

On the other hand, the presence of nitrogen as a second solvent reduces the solubility of 
solids in methane, ethane, and mixtures thereof. Furthermore, the addition of nitrogen to 
miscible LNG systems can induce immiscibility. The number of nitrogen binary systems 
relevant to LNG that exhibit LLV immiscibility is few  nitrogen-ethane and nitrogen-
propane, being among the most prominent ones. However, LLV phenomenon has been 
observed at certain conditions in many ternary and higher realistic nitrogen-rich LNG 
systems since LLV behavior can and does occur in multicomponent systems even when for 
none of the constituent binaries themselves an LLV locus is reported. 

Another interesting example is the ternary mixture methane + ethane + n-octane; the species 
in the constituent binary pairs (methane + ethane) and (ethane + n-octane) are too similar in 
molecular nature to be LLV immiscible, while the pair methane + n-octane is too dissimilar 
to be immiscible. If a multicomponent mixture is considered to be solute plus solvent in the 
pseudo-component sense, it can be readily seen why the ternary mixture has a region of 
LLV behavior. The methane + ethane form a solvent background in which n-octane is 
immiscible.  

The type of the LLV region displayed by a system depends on whether it contains an 
immiscible binary or not. For a ternary system with no constituent binary LLV behavior 
present the three-phase region is a "triangular" surface in the thermodynamic phase space 
with two degrees of freedom, while its boundaries have one. It is bounded from above by a 
K-point locus; from below by a LCST locus and at low temperatures by a Q-point locus. The 
systems methane + n-butane + nitrogen (Merrill et al., 1984a) and methane + n-pentane + 
nitrogen (Merrill et al., 1984b) belong to this class. 

A K-point occurs when a liquid phase and a vapor phase become critical in the presence of a 
heavier noncritical equilibrium liquid phase, whereas an L-point occurs when two liquid 
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phases becomes critical in the presence of a noncritical equilibrium vapor phase. These points, 
also called upper critical end points (UCEPs) and lower critical end points (LCEPs), are 
different depending on their location in the pressure-temperature space. That is, an UCEP is 
always located at a higher temperature and pressure than the LCEP, and when there exists 
only one critical end point, so that a K-point is always an UCEP point. On the contrary, an L-
point can be an UCEP or an LCEP, depending on the global phase behavior of the system.  

The system methane + ethane + n-octane does not exhibit immiscibility in any of its binary 
pairs. Although immiscibility has been reported in binary systems of methane + n-hexane 
and methane + n-heptane, solutes such as n-octane and higher normal paraffins crystallize 
as temperature decreases before any immiscibility occurs. On the other hand, with ethane as 
solvent, solutes beginning with n-C19 and higher paraffins demonstrate LLV behavior. 
Apparently, the addition of modest amounts of ethane to methane creates a solvent mixture 
exhibiting immiscibility with n-octane. 

3. Modeling of the phase behavior of LNG systems 

The success of the design and operation of separation processes in the oil and gas industry 
at low temperatures is critically dependent on the accurate descriptions of the 
thermodynamic properties and phase behavior of the concerned multicomponent 
hydrocarbon mixtures with inorganic gases. Phase-split calculations and phase stability 
analysis in natural gas systems simulation can take up as much as 50 % of the CPU time. In 
complicated problems it may take even more. Thus, it is important to develop a reliable 
thermodynamic modeling framework (TMF) that will be able to predict, describe and 
validate robustly and efficiently the complex phase behavior of LNG mixtures.  

The TMF has three main elements: a library of thermodynamic parameters pertaining to 
pure-substances and binary interactions, thermodynamic models for mixture properties, 
and algorithms for solving the equilibrium relations. Reliable pure-component data for the 
main constituents of LNG systems are available experimentally; an equation of state is 
usually the primary choice for the thermodynamic model. Thus, the focal point of a TMF for 
phase behavior calculations of LNG systems is the availability of robust methods for 
thermodynamic stability analysis, and of reliable efficient and effective flash routines for 
three phase split calculations.  

3.1 Computational technique 1 

This first technique uses an efficient computational procedure for solving the isothermal 
multiphase problem by assuming that the system is initially monophasic. A stability test 
allows verifying whether the system is stable or not. In the latter case, it provides an 
estimation of the composition of an additional phase; the number of phases is then increased 
by one, and equilibrium is achieved by minimizing the Gibbs energy. This approach, 
advocated as a stagewise procedure (Michelsen, 1982b; Nghiem and Li, 1984), is continued 
until a stable solution is found.  

In this technique, the stability analysis of a homogeneous system of composition z , based 
on the minimization of the distance separating the Gibbs energy from the tangent plane at 
z , is considered (Baker et al., 1982; Michelsen, 1982a). In terms of fugacity coefficients, i , 
this criterion for stability can be written as (Michelsen, 1982a)  
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Equation 1 requires that the tangent plane, at no point, lies above the Gibbs energy surface 
and this is achieved when  F ξ  is positive in all its minima. Consequently, a minimum of 

 F ξ  should be considered in the interior of the permissible region 
1

1N
ii

y


 , 0 y . To 

test condition 1 for all trial compositions is not physically possible; it is thus sufficient to test 
the stability at all stationary points of  F ξ  since this function is not negative at all 

stationary points. Here, the quasi-Newton BFGS minimization method (Fletcher, 1980) was 
applied to eq 1 for determining the stability of a given system of composition z  at specified 
temperature and pressure.  

Once instability is detected with the solution at 1p   phases, the equilibrium calculation is 
solved by minimization of the following function  
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subject to the inequality constraints given by 
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( )

1
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


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and  

 ( ) 0 1,..., ; 1,..., 1in i N p      (5) 

where iz  is the mole fraction of the component i  in the system, ( )
in   ( 1,..., ;i N  

1,..., 1p   ) is the mole number of component i  in phase   per mole of feed, ( )
ix   is the 

mole fraction of component i  in phase  , T  is the temperature, P  is the pressure, and P  
is the pressure at the standard state of 1 atm (101.325 kPa). In eq 3 the variables ( )p

in , ( )p
ix , 

and ( )p
i  are considered functions of ( )

in  .  

Equation 3 is solved using an unconstrained minimization algorithm by keeping the 
variables ( )

in   inside the convex constraint domain given by eqs 4 and 5 during the search 
for the solution. In this case, a hybrid approach to minimize eq 3 is used starting with the 
steepest-descent method in conjunction with a robust initialization supplied from the 
stability test to ensure a certain progress from initializations, and ending with the quasi-
Newton BFGS method which ensures the property of strict descent of the Gibbs energy 
surface. A detailed description of this approach for solving the isothermal multiphase 
problem can be found elsewhere (Justo-García et al., 2008a).  
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3.2 Computational technique 2 

The second approach to calculate multiphase equilibria used here applies a rigorous 
thermodynamic stability analysis and a simple and effective method for identifying the 
phase configuration at equilibrium with the minimum Gibbs energy. The rigorous stability 
analysis is exercised once and on the initial system only. It is based on the well-known 
tangent plane criterion (Baker et al., 1982; Michelsen, 1982a) but uses a different objective 
function (Stateva and Tsvetkov, 1994; Wakeham and Stateva, 2004). The key point is to 
locate all zeros ( 

y ) of a function   y  given as 

    


 
N

i

ii kk
1

2
1 (( y)y)y  (6) 

where 

    ln ln 1,...,i i i ik y h i N   y y  (7) 

with   

  ln ln 1,...,i i ih z i N  z  (8) 

and assuming 1 1( (Nk k y) y) . Therefore, from eqs 68, it follows that min ( 0 y)  when 

1 2( ( ... (Nk k k  * * *
y ) y ) y ) . The zeros of ( y)  conform to points on the Gibbs energy 

hypersurface, where the local tangent hyperplane is parallel to that at z . To each zero *
y , a 

number *k  (equal for each *
iy , 1,...,i N  of a zero of the function) corresponds, such that 

 * *ln ln ( 1,...,i i ik y h i N   *
y )  (9) 

Furthermore, the number *k , which geometrically is the distance between two such 
hyperplanes, can be either positive or negative. A positive *k  corresponds to a zero, which 
represents a more stable state of the system, in comparison to the initial one; a negative *k , a 
more unstable one. When all calculated *k  are positive, the initial system is stable; 
otherwise, it is unstable. 

It is widely acknowledged that the task to locate all zeros of the tangent-plane distance 
function (TPDF), ( y)  in this particular case, is extremely challenging because a search over 
the entire composition space is required. The search is further complicated by the existence of 
a number of trivial solutions, corresponding with the number of equilibrium phases present 
(Zhang et al., 2011). The specific form of ( y)  (its zeros are its minima) and the fact that it is 
easily differentiated analytically, allows the application of a non-linear minimisation technique 
for locating its stationary points, and in their works Stateva and Tsvetkov (1994) and 
Wakeham and Stateva (2004) used the BFGS method with a line-search (Fletcher, 1980). The 
implementation of any non-linear minimization technique requires a set of “good” initial 
estimates, and the BFGS method is no exception. All details of the organization and 
implementation of the initialization strategy employed by the stability analysis procedure are 
given elsewhere (Stateva and Tsvetkov 1994) and will not be discussed here.  
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Thus, as discussed by Wakeham and Stateva (2004), a method has been created which leads, 
in practice, to an "extensive" search in the multidimensional composition space. It has 
proved to be extremely reliable in locating almost all zeros of ( y)  at a reasonable 
computational cost. The term “almost all” zeros is used because there is no theoretically-
based guarantee that the scheme will always find them all. If, however, a zero is missed, the 
method is self-recovering. Furthermore, the TPDF is minimized once only, which is a distinct 
difference from the approach that stage-wise methods generally adopt. Since stability 
analysis on its own cannot determine unequivocally which is the stable phase configuration 
of a system (identified as unstable at the given temperature and pressure), it is suggested to 
run a sequence of two-phase flash calculations to determine the correct number of the 
phases at equilibrium, and the distribution of the components among the phases.  

4. Calculation of K- and L-points 

Ternary systems which exhibit 1 2L L V   behavior but don’t exhibit such behavior in their 
constituent binaries have the immiscibility region bounded by a K ( 1 2L L V  )-point locus, 
a LCST ( 1 2L L V  ) locus, and a Q ( 1 2S L L V   )-point locus. Ternary systems which 
have immiscibility in a constituent binary can have boundaries similar to those mentioned 
above, besides the intrusion of the binary 1 2L L V   locus on the ternary 1 2L L V   
region. The K-point and LCST loci can intersect at a tricritical point where the three phases 
become critical; i.e., 1 2L L V  .  

Needless to say that it is costly and time-consuming to determine the K and LCST loci in 
ternary systems experimentally; thus, the availability of appropriate algorithms and 
numerical routines in the third element of the TMF that will allow the prediction and 
reliable location in the thermodynamic phase space of such points, is indispensable in the 
study of the complex phase behavior of LNG model systems. Among the several such 
algorithms published in the open literature we have chosen to outline briefly and implement 
those of Gregorowics and de Loos (1996) and Mushrif and Phoenix (2006). In our choice we 
have been guided by the fact that the above algorithms can successfully predict the K- and 
L-points of binary and ternary systems. We will thus test their robustness and efficiency in 
the locating critical end points in LNG model systems.  

4.1 Gregorowicz and de Loos’ algorithm 

In a study on the modeling of the three-phase LLV region for ternary hydrocarbon mixtures 
with the SRK EoS, Gregorowicz and de Loos (1996) proposed a procedure for finding K- and 
L-points of ternary systems, based on the solution of thermodynamics conditions for the K- 
and L-point using the Newton iteration technique and starting points carefully chosen. They 
applied their procedure to calculate the K- and L-point loci for two ternary systems, namely, 
C2 + C3 + C20 and C1 + C2 + C20, in which the constituent binary C2 + C20 exhibit 
immiscibility. Consequently, the extension of the three-phase LLV region of these systems is 
bounded by the binary 1 2L L V   locus of the system C2 + C20 and the ternary K-point and 
L-point loci. Briefly, the strategy followed by these authors to find the K- and  L-points of 
the two ternary systems was the following: (1) calculation of the critical line, the K-point, the 
three phase line, and the L-point for the system C2 + C20 using thermodynamic conditions, 
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and (2) calculation of the K- and L-point loci for the ternary systems by using as starting 
points the obtained coordinates of the K- and L-point calculations for the binary system C2 + 
C20. In this case, to obtain a K- and L-point for a ternary system, the following set of six 
nonlinear equations,   

 
1 2

1 1 1 1 2

2 1 2 2 2

0
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Vx x x x x

Vx x x x x
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in seven variables, 1 2 1 2, , , , , ,c c cT V V x x x and x    have to be solved, where   designates V 
for the L-point or L2 for the K-point, D  and *D  are the two determinants that must be 
satisfied at a critical point, and i  is the chemical potential of component i . 

The critical criteria given by eqs 10 and 11 are based on the Helmholtz energy, which can be 
expressed as (Baker and Luks, 1980), 
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where in  is the mole number of component i  and V  is the system volume. Derivatives of 
the Helmholtz energy are denoted by a subscript in eqs 10 and 11 (e.g., VA , 

ixA ) indicating 
the differentiation variable (volume V  or mole fraction ix  of component i ). Details to 
obtain the elements of determinants D  and *D  are given in Baker and Luks (1980).  

It is worth mentioning that Gregorowicz and de Loos (1996) calculated the ternary K- and L-
points at chosen values of the temperature, which it is important when the experiments are 
carried out isothermally.  

4.2 Mushrif and Phoenix’s algorithm 

The second approach to calculate K- and L-points was proposed by Mushrif and Phoenix 
(2006). This approach utilizes an efficient critical point solver and a standard phase stability 
test within a nested-loop structure to directly locate K- and L-points. The algorithm consists 
of two nested inner loops to calculate a critical-point temperature and volume at fixed 
composition z . An outer loop uses the critical point as a test phase, searches for an incipient 
phase at a trial composition n̂ , and updates the critical composition to iteratively decrease 
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the tangent plane distance of the incipient phase to zero. The Newton-Raphson method with 
numerical derivatives was used in both the inner and outer loops.  

This algorithm is similar to that proposed by Gauter et al. (1999) to calculate critical end 
points (CEPs) for ternary systems of carbon dioxide as the near-critical solvent and two low-
volatile solutes (1-pentanol or 1-hexanol + n-tridecane) with the PR (Peng and Robinson, 
1976) EoS. These authors used the approach of Heidemann and Khalil (1980) to follow a 
critical line in steps of the mole fraction of the carbon dioxide, searching for a CEP along this 
line; i.e., searching for the occurrence of an additional phase in zero amount by using the 
formulation of Michelsen (1982a).  

The principal difference between the algorithm of Mushrif and Phoenix and that of Gauter 
et al. is that the former directly calculate the K- and L-points without following the critical 
lines.  

In the algorithm proposed by Mushrif and Phoenix (2006), the critical criteria are based on 
the tangent-plane criteria developed by Michelsen and Heidemann (1988) at specified 
temperature and pressure. Michelsen and Heidemann (1988) also formulated the critical-
point criteria in terms of the tangent plane distance based on the Helmholtz energy at fixed 
temperature and volume. The condition for the stability of a mixture, with respect to a trial 
phase n̂ , is  

    
0 0

1

ˆ ln
N

i i i
i

F n f f V P P RT


    (15) 

where F  is the tangent plane distance from the Gibbs energy surface to the hyperplane 
tangent of the Gibbs energy surface at the composition z .  

In eq 15 the sign of F  will determine the stability of the test phase; i.e., if 0F   the test 
phase is stable, if 0F   the test phase is in equilibrium with some alternate phase, and if 

0F   the test phase is unstable. Michelsen (1984) developed the criteria for critical points by 
expanding the tangent plane distance function in a Taylor series around the test point as  

 O(2 3 4 5 )F bs cs ds s     (16) 

such that  0 0F   and   0 0
s

dF ds


  hold at the test point; s  being a parameter that 
defines the distance in composition space from the test point at 0s  . As the sign of the 
tangent plane distance function F  determines the stability of the test phase, it is necessary 
to find the minimum of this function using scaled mole numbers as   1/2

i i i iX n z z  , 
where iz  are mole fractions in the test phase and in  are mole fractions in any alternate 
phase. At the test point  ˆ n z , 0X  and 0F  . Expressions for the first ig  and second 
derivatives ijB  of F  with respect to X  are given in Michelsen (1984). 

Function F  is minimized by varying X  under the constraint that T su X , where u  is a 
vector of unit length. By applying the method of Lagrange multipliers, coefficient b  can be 
expressed as  1 2 Tb  u Bu , regardless of the choice of vector u . The least possible value 
of coefficient b  is obtained by choosing u  as the eigenvector of B  corresponding to the 
smallest eigenvalue min ; i.e., minBu u . 

www.intechopen.com



Phase Behavior Prediction and Modeling of  
LNG Systems with EoSs – What is Easy and What is Difficult? 

 

369 

At trial conditions of temperature and volume, matrix B  is calculated and  min , u  are 
determined by inverse iteration (Wilkinson, 1965), then min 2b  . If 0b  , the system is at 
the limit of intrinsic stability. At a critical point coefficients b  and c  in eq 16 are zero for a 
given eigenvector u  of B  corresponding to the smallest eigenvalue min . For the 
evaluation of coefficient c , Michelsen (1984) showed that this can be determined efficiently 
from information already available of iu  and ig . 

The solution procedure to calculate a critical point is as follows: since coefficient b  is to be a 
zero eigenvalue of B , then it must be a singular matrix with a zero determinant; i.e., 

 det 0B , with a vector u  satisfying 0Bu  ( 1T u u ) 

The criterion of 0b   is met when the matrix B  is singular and is used to find the critical 
temperature at a fixed composition and volume. The determinant of matrix B  is calculated 
through a LU  decomposition of B ( LU B  where L  is lower triangular and U  is upper 
triangular); i.e., the determinant of B  is the product of the diagonal elements of the LU  
decomposed matrix. Once the iteration to find the stability limit has converged, the vector 
u  is determined by inverse iteration technique. 

The implementation of the equation-of-state approach for calculating critical points using 
this procedure requires that temperature T  and volume V  are iterated in a nested way. 
That is, based on an initial guess of V , the temperature is determined in a inner loop until 
the determinant of the matrix B  becomes equal to zero; then the convergence criterion for 
the coefficient c  is checked. If this coefficient, evaluated at the stability limit, is equal to 
zero, the calculation ends; otherwise, a new estimate for the volume is generated in an outer 
loop and the iteration on T  is evaluated again. Once T  and V  have been obtained, the 
pressure P  is evaluated from the equation of state.  

After having calculated the critical point, a noncritical equilibrium phase is searched for at 
constant temperature and pressure conditions. Mushrif and Phoenix (2006) used the stability 
test implemented by Michelsen (1982a) using the critical composition z  as the reference 
phase and 1( ,..., )T

NY YY  as the unnormalized trial phase composition with corresponding 
mole fractions as 

1
N

i i jj
y Y Y


  . 

The tangent plane to the Gibbs energy surface at the trial composition is parallel to the 
reference-phase tangent plane (critical phase) when 

 crit critln ln ln( ) ln 0i i i i if f y P f         (17) 

where 
1

ln( )N
ii

Y


    is the dimensionless distance between the two tangent planes and 

i  is the fugacity coefficient evaluated at composition y . 

If 0  , the trial phase is in equilibrium with the reference phase; if 0  , the trial phase is 
an incipient phase, and if 0  , the reference phase is unstable. By combining eq 17 with 
the definition of  , the set of N  equations to solve for a stationary point can be written as 

 critexp ln ln ( ) ln 0 1,...,i i i ig Y f P i N       y  (18) 
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which can efficiently be solved by Newton iteration or through a minimization method.  

A K- or L-point is found if 0  . When   does not meet the convergence criterion (e.g., 
2 1210 )  , the critical-phase composition of the lightest component (component 1) is 

updated using the Newton-Raphson method as  

 
( )

( 1) ( )
1 1 ( )

1( )

k
k k

k
z z

d dz




    (19) 

where the derivative 1d dz  is approximated by perturbing the critical composition, 
recalculating   from eq 17 and calculating the finite difference analogue of the derivative. 
Mushrif and Phoenix (2006) have pointed out that failure of the algorithm can occur when a 
critical composition is updated to a value where no stationary point exist other than the 
trivial solution. 

To calculate a K- or L-point using this algorithm, it is necessary to provide appropriate 
initial estimates of composition, temperature, and volume. In this case, good initial guesses 
for critical temperatures and volumes were, depending on the type of calculation, the same 
as those used by Heidemann and Khalil (1980). The success of the algorithm to locate a K- or 
L-point strongly depend on (1) the binary interaction parameters used in the equation of 
state and (2) the initial critical composition (0)z . However, it would seem that the value of 
the initial critical composition significantly affects the successful convergence of the method 
to locate a K- or L-point. 

5. Thermodynamic models 

Modeling of the complex phase behavior of LNG systems requires a suitable 
thermodynamic model and a robust and efficient computational algorithm for performing 
phase stability and multiphase flash calculations interwoven in the second element of the 
TMF. Regarding the thermodynamic models, the SRK EoS and the PC-SAFT EoS have 
received wide acceptance in the industry because of their ability to predict accurately the 
phase behavior of oil-gas systems.  

5.1 The SRK equation of state 

The explicit form of the SRK equation of state (Soave, 1972) can be written as  

 
 

 
a TRT

P
v b v v b

 
 

 (20) 

where constants a  and b  for pure-components are related to 

  
2 2

0.42747 ; 0.08664c c
r

c c

R T RT
a T b

P P
   (21) 

where  rT  is expressed in terms of the acentric factor   as 
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      2
2 1/21 0.480 1.574 0.176 1r rT T          (22) 

For mixtures, constants a  and b are given by 

 
1 1 1

;
N N N

i j ij i i
i j i

a x x a b x b
  

    (23) 

and ija  is defined as  

  1 ; , 0ij ij i j ij ji iia k a a k k k     (24) 

where ijk  is an adjustable interaction parameter characterizing the binary formed by 
components i  and j .  

Eq 20 can be written in terms of compressibility factor, Z Pv RT , as  

  3 2 2 0Z Z A B B Z AB       (25) 

where  2A aP RT  and  B bP RT . 

The expression for the fugacity coefficient, i i if y P  ,  is given by 

     1
2

ln 1 ln ln 1

N
j ijji i

i

x ab bA B
Z Z B

b B a b Z
 

 
             

 


 (26) 

5.2 The PC-SAFT equation of state 

In the PC-SAFT EoS (Gross and Sadowski, 2001), the molecules are conceived to be chains 
composed of spherical segments, in which the pair potential for the segment of a chain is 
given by a modified square-well potential (Chen and Kreglewski, 1977). Non-associating 
molecules are characterized by three pure component parameters: the temperature-
independent segment diameter  , the depth of the potential  , and the number of 
segments per chain m .  

The PC-SAFT EoS written in terms of the Helmholtz energy for an N-component mixture of 
non-associating chains consists of a hard-chain reference contribution and a perturbation 
contribution to account for the attractive interactions. In terms of reduced quantities, this 
equation can be expressed as 

 dispres hca a a     (27) 

The hard-chain reference contribution is given by  

 
1

( 1)ln ( )
N

hc hs hs
i i ii ii

i

a ma x m g 


     (28) 
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where 
1

N
ii

m m


  is the mean segment number in the mixture 

The Helmholtz energy of the hard-sphere fluid is given on a per-segment basis as 

 
3 3

1 2 2 2
0 32 2

0 3 3 3 3

1 3
ln(1 )

(1 ) (1 )
hsa

     
    

  
           

  (29) 

and the radial distribution function of the hard-sphere fluid is 

 

2
2

2 2
2 3

3 3 3

1 3 2
(1 ) (1 ) (1 )

i j i jhs
ij

i j i j

d d d d
g

d d d d

 
  

   
     
         

 (30) 

with n  defined as 

 
1

0,1,2,3
6

N
n

n i i i
i

x m d n
 



   (31) 

The temperature-dependent segment diameter id  of component i  is given by 

 1 0.12exp 3 i
i id

kT




      
  

 (32) 

where k  is the Boltzmann constant and T  is the absolute temperature. 

The dispersion contribution to the Helmholtz energy is given by 

 
1

2 3 2 2 3
1 22 ( , ) 1 ( , )

hc
disp hc Z

a I m m m Z I m m       



 

       
  (33) 

where hcZ  is the compressibility factor of the hard-chain reference contribution, and  

 2 3 3

1 1

N N
ij

i j i j ij
Bi j

m x x m m
k T


 

 

 
   

 
  (34) 

 
2

2 2 3 3

1 1

N N
ij

i j i j ij
Bi j

m x x m m
k T


  

 

 
   

 
  (35) 

The parameters for a pair of unlike segments are obtained by using conventional combining 
rules  

    1
; 1

2ij i j ij i j ijk          (36) 

where ijk  is a binary interaction parameter, which is introduced to correct the segment-
segment interactions of unlike chains. 
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The terms 1( , )I m  and 2( , )I m  in eq 33 are calculated by simple power series in density 

 
6 6

1 2
0 0

( , ) ( ) ; ( , ) ( )i i
i i

i i

I m a m I m b m   
 

    (37) 

where the coefficients ia  and ib  depend on the chain length as given in Gross and Sadowski 
(2001).  

The density to a given system pressure sysP  is determined iteratively by adjusting the 
reduced density   until syscalcP P . For a converged value of  , the number density of 
molecules  , given in Å-3, is calculated from  

 
1

3

1

6 N

i i i
i

x m d 






 
  

 
  (38) 

Using Avogadro’s number and appropriate conversion factors,   produces the molar 
density in different units such as 3kmol m . 

The pressure can be calculated in units of 2Pa N m   by applying the relation 

 
Å

3
1010P Z kT

m
  

  
 

 (39) 

from which the compressibility factor Z , can be derived. The expression for the fugacity 
coefficient is given by 

  
1, , , ,

ln 1 ln
j i j k

res resN
res

i k
i kkT v x T v x

a a
a x Z Z

x x


 


                        


   (40) 

In eq 40, the partial derivatives with respect to mole fractions are calculated regardless of 

the summation relation 
1

1N
ii

x


 . 

6. Results and discussion 

Experimental data reported by Llave et al. (1987) for the system nitrogen + methane + 
ethane, by Hottovy et al. (1981) for the system methane + ethane + n-octane, and by Fall and 
Luks (1988) for the system carbon dioxide + nitrogen + n-nonadecane, were used to test and 
compare the robustness, efficiency and reliability of the two computational techniques and 
the SRK and PC-SAFT EoS thermodynamic models embedded in the respective elements of 
the TMF. The prediction and modeling of the phase behavior of these systems demonstrates 
in a clear-cut way the usual numerical difficulties encountered in the process.  

The binary interaction parameters used with the PC-SAFT equation were taken from García-
Sánchez et al. (2004) and from Justo-García et al. (2008b), while those used with the SRK EoS 
were taken from Knapp et al. (1982). Some of the interaction parameters were also obtained 
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from the minimization of the sum of squares of the differences between experimental and 
calculated bubble-point pressures.  

The binary interaction parameters employed are: 
1 2

0.0078C Ck    , 
1 3

0.009C Ck   , 

2 3
0.0170C Ck   , 

2 1
0.0278N Ck   , 

2 2
0.0407N Ck   , 

2 19
0.2714N Ck   , 

2 2
0.0205CO Nk    , and 

2 19
0.1152CO Ck    for the SRK equation, and 

1 2
0.0207C Ck    , 

1 3
0.0168C Ck   , 

2 3
0.0195C Ck   , 

2 1
0.0307N Ck   , 

2 2
0.0458N Ck   , 

2 19
0.1608N Ck   , 

2 2
0.0080CO Nk   , and 

2 19
0.1551CO Ck    for the PC-SAFT equation, respectively. The components’ physical 

properties required for the calculations performed with the SRK EoS were taken from 
DIPPR (Rowley et al., 2006) while the three pure-component parameters (i.e., temperature 
independent segment diameter  , depth of the potential  , and number of segments per 
chain m ) of these compounds for the PC-SAFT equation of state were taken from Gross and 
Sadowski (2001). 

6.1 The nitrogen + methane + ethane system 

The three-phase VLL region displayed by this ternary system is bounded from above by a 
K-point locus, from below by a lower critical solution temperature LCST locus, at low 
temperatures by a Q-point locus, and, due to the fact that this system contains a binary pair 
(nitrogen + ethane) which exhibits LLV behavior, its LLV space is truncated. In this case, the 
partially miscible pair nitrogen + ethane spans the LLV space from a position of the LCST 
locus to a position on the Q-point space. Because methane is of intermediate volatility 
compared with nitrogen and ethane, it creates a three-phase LLV space which extends from 
the binary LLV locus upward in temperature. The topographical nature of the regions of 
immiscibility for the system nitrogen + methane + ethane is shown in Fig. 1. In this figure it 
can be seen that the L-L=V and L=L-V critical end-point loci intersect at a tricritical point 
(L=L=V).  

Fig. 2 presents the experimental and calculated L1-L2-V phase behavior (in terms of L1-L2 
nitrogen mole fraction data) for the nitrogen + methane + ethane system at 135 K and 
different pressures. This figure shows a reasonable agreement between the experimental 
values of liquid phases L1 and L2 and those predicted with both models. Notwithstanding, 
although the LLV calculations performed with both equations up to a position near the K-
point (about 41.25 bar with both models), this point is away from the experimental one 
(43.05 bar at 135 K).  

An attempt to directly calculate either the K- or L-point for this ternary system using the 
algorithm of Mushrif and Phoenix (2006) was carried out. However, the algorithm was not 
able to give correct values of these critical end points. This is because the algorithm is 
strongly initialization dependent and hence gives different values of these points, 
depending on the initial guess of the critical composition, which meets the convergence 
criterion. Our preliminary results show that the algorithm advocated by Gregorowicz and 
de Loos (1996) is more stable than that of Mushrif and Phoenix, even if it also depends on 
the initial values of the critical composition.  

Fig. 2 also shows that at pressures away from the LCST point, the PC-SAFT model gives a 
better representation of the experimental compositions for liquid phase L1 while both  
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Fig. 1. P-T space of the boundaries of the three-phase L1-L2-V regions for the system nitrogen 
+ methane + ethane. Experimental data from Llave et al. (1985, 1987). 
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Fig. 2. Comparison of L1 and L2 compositional data of nitrogen at 135 K for the system 
nitrogen + methane + ethane. Experimental data from Llave et al. (1987). 
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models agree with each other for the liquid L2 phase but represent the experimental data 
very closely. Since there are not experimental data below 22.16 bar, comparisons of the 
models with experiment in the region of the LCST are not possible. However, according to 
the predictions with both models, the estimated LCST point with the PC-SAFT model (37.20 
bar) seems to be closer to the “hypothetical” experimental LCST point (38.37 bar) in 
comparison with the LCST point estimated from the SRK model (35.45 bar). Of course, these 
discrepancies can be due to the fact of using binary interaction parameters determined from 
VL equilibrium data, which, apparently, led to less accurate results.  

6.2 The methane + ethane + n-octane system 

The three-phase LLV region displayed by the methane + ethane + n-octane ternary system (a 
surface in the thermodynamic phase space with two degree of freedom) is bounded from 
above by a K-point locus (L-L=V), from below by a lower critical solution temperature LCST 
locus (L=L-V), and at low temperatures by a Q-point locus (S-L-L-V). For the three 
components in this system, there is no binary immiscibility. The topographical nature of the 
regions of immiscibility for this system is shown in Fig. 3, where symbols are the 
experimental data given by Hottovy et al. (1981) identifying the boundaries of the three 
phase LLV region for this ternary system. This Figure shows also that the L-L=V and L=L-V 
critical end-point loci intersect at a tricritical point (L=L=V) at the upper temperature limit.  
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Fig. 3. P-T space of the boundaries of the three-phase L1-L2-V regions for the system 
methane + ethane + n-octane. Experimental data from Hottovy et al. (1981). 

Following the immiscibility region, a single temperature was chosen to test the 
capabilities of the PC-SAFT with computational technique 1, and the SRK EoS with 
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computational technique 2, to predict the phase behavior for the system methane + ethane 
+ n-octane. Fig. 4 compares the performance of the two methods at 210 K, and at different 
pressures on the basis of the experimentally measured and calculated nitrogen mole 
fractions for the liquid L1 and L2 phases by the two thermodynamic models employed. In 
this case, the predictions of the PC-SAFT model are closer to the experimental 
composition values than those of the SRK model. However, it should be mentioned that it 
was not possible to continue the calculations with this model to approach either the K- or 
L-point because the three-phase LLV triangles become so very narrow as pressure 
decreases or increases that it is extremely difficult to determine an appropriate global 
composition able to separate this mixture into three-phase LLV equilibria. On the other 
hand, because the three-phase LLV triangles predicted with the SRK model are wider than 
those predicted with the PC-SAFT model, it was easier to get a good initial global 
composition to calculate the three-phase LLV equilibria from the LCST point (52.80 bar) to 
the K-point (59.09 bar) applying technique 2.  

An inspection of this figure shows that the predictions of both EoSs don’t follow the 
behavior of the liquid phase L1 as well as the variation of liquid phase L2 as pressure 
decreases. Also, it is interesting to note that although there is not a true experimental value 
of the LCST at the temperature considered, Fig. 4 indicates that the estimated LCST point 
with the PC-SAFT model (56.35 bar) is closer to the “experimental” one (56.64 bar) than that 
obtained with the SRK model (52.80 bar). Nonetheless, the “experimental” K-point (60.19 
bar) is closer to the one calculated with the SRK model.  
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Fig. 4. Comparison of L1 and L2 compositional data of nitrogen at 210 K for the system 
methane + ethane + n-octane. Experimental data from Hottovy et al. (1981). 
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Fig. 4 also shows that at the different pressures the predicted L1-L2-V region (in terms of L1 
and L2 methane mole fraction data) with the SRK model deviates considerably from the 
experimental one, while the PC-SAFT model predictions are more reasonable. However, 
since the interaction parameters for the SRK and PC-SAFT models were determined from 
binary vapor-liquid equilibrium data, the rather poor fit in this region with either model is 
not unexpected. 

6.3 The carbon dioxide + nitrogen + n-nonadecane system 

As mentioned in Section 2, the type of the LLV region displayed by a ternary system 
depends on whether it contains an immiscible pair or not. In this context, the system carbon 
dioxide + nitrogen + n-nonadecane exhibits immiscibility in the carbon dioxide + n-
nonadecane binary pair (Fall et al., 1985), so that its three-phase region is similar to that 
exhibited by the system nitrogen + methane + n-pentane (Merrill et al., 1984b). Therefore, 
the LLV region is “triangular” and is bounded from above by a K-point locus (L-L=V), at 
low temperatures by a Q-point locus (S-L-L-V), and, from a position of the Q-point locus to a 
position on the K-point space, by a binary carbon dioxide + n-nonadecane LLV locus.  

Fig. 5 presents the experimental pressure-temperature diagram of the LLV space displayed 
by the system (Fall and Luks, 1986). An examination of the figure shows that this system 
does not have a LCST (L=L-V) locus and that the Q-point locus terminates at an invariant  
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Fig. 5. P-T space of the boundaries of the three-phase L1-L2-V regions for the system carbon 
dioxide + nitrogen + n-nonadecane. Experimental data from Fall et al. (1985) and Fall and 
Luks (1986). 
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point of the S-L-L=V type. Thus, due to the fact that the carbon dioxide + nitrogen + n-
nonadecane system contains a binary pair (carbon dioxide + n-nonadecane) exhibiting LLV 
behavior, its “triangular” LLV region is a three-sided space without a tricritical point. 

A temperature of 297 K was chosen to study this ternary system and the results obtained are 
presented in Fig. 6. This figure shows that the PC-SAFT model predicts well the 
experimental carbon dioxide compositions of the liquid L2 and vapor phases down to the 
lowest measured pressure of 62.63 bar (i.e., the binary carbon dioxide + n-nonadecane data) 
for this isotherm. However, the SRK model is superior to the PC-SAFT model in predicting 
the three phases in equilibrium for this ternary system. In this case, the calculated L1, L2, and 
V phases are close to the experimental ones. Furthermore, though the SRK EoS overpredicts 
the “experimental” K-point (87.30 bar) by 4.39 bar the performance of the PC-SAFT EoS in 
this particular case is inferior as it overpredicts by 14.6 bar the “experimental” point.  

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

60 65 70 75 80 85 90 95 100 105

Pressure, bar

M
o

le
 f

ra
c

ti
o

n
, 

C
a

rb
o

n
 d

io
x

id
e

Experimental L1 Phase

Calculated L1 Phase: SRK EoS

Calculated L1 Phase: PC-SAFT EoS

Experimental L2 Phase

Calculated L2 Phase: SRK EoS

Calculated L2 Phase: PC-SAFT EoS

Experimental V Phase

Calculated V Phase: SRK EoS

Calculated V Phase: PC-SAFT EoS

 
Fig. 6. Comparison of L1 and L2 compositional data of carbon dioxide at 297 K for the system 
carbon dioxide + nitrogen + n-nonadecane. Experimental data from Fall and Luks (1986). 

Nevertheless, it should be recalled that all calculations were performed using binary 
interaction parameters obtained from regression of binary experimental VL data, many of 
them measured at temperatures higher than that studied here. Furthermore, we are 
confident that the performance of the corresponding thermodynamic models could be 
improved considerably provided the interaction parameters were obtained from the 
regression of the experimental data at three phases. Still, if those sets of interaction 
parameters are used to predict the phase behavior of a given system at conditions different 
from the original ones then there is the risk that the equilibria predictions and calculations 
could either give physical meaningless results or fail altogether. 
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We also tried to directly calculate the K-points at the temperature considered for this ternary 
system by using the algorithm of Mushrif and Phoenix (2006); however, once again, the 
algorithm predicted different values of the critical end points, depending on the initial 
critical composition. In this case, the strategy to find a critical temperature close to the 
temperature of study was to use a series of initial compositions. Unfortunately, none of the 
compositions produced a K-point similar to those obtained from the VLL calculations with 
both models.  

Finally, it should be pointed out that for the sake of comparison both equations of state were 
interwoven into computational procedure 1 and 2, respectively, and that a series of 
multiphase flash calculations were carried out at different temperatures and pressures for 
the three ternary systems studied obtaining the same results for the specific EoS, 
irrespectively of the computational procedure utilized.  

The results obtained showed that there are not any essential differences between, or 
particular advantages of any of two computational procedures, either in their efficiency, 
effectiveness, robustness or in their convergence behavior. Thus, it can be said that both 
procedures 1 and 2 can be used to predict the phase behavior of a wide variety of 
multicomponent nonideal systems over wide ranges of temperature and pressure. 

7. Conclusions  

Though there has been much progress and advance in two-phase stability and two-phase 
split calculations with EoSs, there is still not much progress in three-phase split calculations 
in natural gas systems despite the large number of publications devoted to the subject. The 
reason behind that is that the difficulties and challenges are dominating over the easy to 
perform calculations, if any. Thus, it can be accepted that the algorithms and numerical 
methods advocated are not robust enough for incorporation in a process simulator. In view 
of this, the further development of a reliable, robust and efficient TMF and its subsequent 
approbation on model systems, typical representatives of LNG, is of considerable interest 
both to scientists and engineers.  

On the example of three ternary systems (nitrogen-methane-ethane, methane-ethane-n-
octane, and carbon dioxide-nitrogen-n-nonadecane) the capabilities of a TMF, advocated by 
us, to predict and model complex phase behavior of systems of importance to LNG 
processing are demonstrated. The TMF employs two numerical techniques which embed 
different thermodynamic models and stability analysis routines. 

The results obtained show that there are many and different challenges and difficulties that 
are not always possible to overcome completely. For example, the two techniques for 
multiphase flash calculations cannot always assure steady and non-oscillatory convergence 
with no tendency towards a strong attraction to the trivial solution, particularly in cases 
close to the critical lines. Besides, it is known that the phase equilibrium equations are often 
difficult to converge in the critical region and that the use of inappropriate initial estimates 
can lead to the trivial solution. In view of this, the availability in a TMF of a robust stability 
analysis routine that will provide good set of initial estimates for the compositions of 
possible equilibrium phases and will guarantee steady convergence of the flash routines is 
of great importance. 
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Regarding the prediction of K- and L-points with the Gregorowicz and de Loos and Mushrif 
and Phoenix’s methods, it is clear that the both algorithms are strongly initialization 
dependent. To overcome this problem, for example, Mushrif and Phoenix suggest that the 
critical phase composition is updated based on the values of parameter , calculated from 
equilibrium phase calculations using the Newton-Raphson iteration. However, during this 
process of upgrading, the composition may change to a value where there is no phase in 
equilibrium, particularly when   differs significantly from iteration to iteration.  

The procedure of Gregorowicz and de Loos to calculate K- and L-points seems to be a better 
fitted method to carry out this task. However, the evaluation of the determinants for solving 
the conditions of criticality requires the second derivatives of the Helmholtz energy with 
respect to volume and composition, which makes difficult their evaluation, particularly 
when these derivatives have to be found analytically applying the PC-SAFT EoS. Still, of 
course, a possible solution to this problem is to evaluate these derivatives numerically.  

Finally, both the PC-SAFT EoS and the RKS cubic EoS are capable of representing with a 
reasonable accuracy the experimentally observed phase behavior of the ternary systems 
studied.  
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