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Shale Gas Development in the United States 

Daniel J. Soeder 
U.S. Department of Energy, National Energy Technology Laboratory, 

USA 

1. Introduction   

Although natural gas has been obtained from organic-rich shales in the United States since 

the first commercial gas well was produced in 1821 to provide gas light to four commercial 

establishments and a mill in the small town of Fredonia, New York, large-scale shale gas 

production is a recent phenomenon. Assessments of the geological and engineering 

challenges of shale gas resources were performed in the 1970s and 1980s, as new domestic 

energy sources were sought in response to an oil embargo imposed upon the United States, 

and the resulting “energy crisis” that followed. The amount of natural gas present in the 

shales was found to be significant, but commercial production had to await advances in 

drilling and completion technology that came about in the 1990s. The new technology 

allowed for the economic development of this resource in the 21st Century. 

1.1 Basic shale geology 

Shale is the name for a class of sedimentary rocks. The term shale refers to a rock that is 

composed primarily of tiny grains of clay minerals and quartz, the mineral components of 

mud. These materials were deposited as sediment in water, which was then buried, 

compacted by the weight of overlying sediment, and cemented together to form a rock 

through a process called lithification. Clay minerals are a type of sheet silicate related to 

mica that usually occurs in the form of thin plates or flakes. As the sediment was deposited, 

the flakes of clay tended to stack together flat, one on top of another like a deck of cards, and 

as a result, lithified shale often has the property of splitting into paper-thin sheets. This is 

called fissility, and it is an easy way to identify shale from other fine-grained rocks like 

limestone or siltstone. 

Because the grains of material that make up shale are so small, pore spaces between these 

grains are equally small. Although shale can have porosity in the range of ten percent, the 

pores and flowpaths are so tiny that it is difficult for any fluids in the pores, like gas, oil or 

water, to flow out of the rock. Cracks or fractures are needed to for flowpaths.  

Shale comes in two general varieties based on organic content: dark or light. Dark colored or 

black shales are organic-rich, whereas the lighter colored shales are organic-lean. Organic-

rich shales were deposited under conditions of little or no oxygen in the water, which 

preserved the organic material from decay. The organic matter was mostly plant debris that 

had accumulated with the sediment. As these materials were buried deeply beneath 
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younger sediments and subjected to intense heat and pressure over geologic time periods, 

they became hydrocarbons, or what we know as oil, gas and coal.   

A location with a good exposure of rock that is representative of the formation as a whole is 
called the “type section,” and formation names are assigned by geologists after a nearby 
geographic feature. Some well-known gas shales in the United States include the Marcellus 
Shale, named for the village of Marcellus, New York (figure 1), and the Barnett Shale, named 
for exposures in the valley of a creek called the Barnett Stream near Fort Worth, Texas 
(Stamm, 2011).  

 

Fig. 1. Marcellus Shale type section near Marcellus, New York, showing natural fractures. 
Rock hammer is 13 inches (33 cm) in length, tip pointed north. Photo by D.J. Soeder. 

1.2 Natural gas in shale 

Shale gas resources are huge. Estimates tabulated by Bruner and Smosna (2011) from 
different authors on the size of the Marcellus Shale resource alone range from about 85 
trillion cubic feet (TCF) to nearly 500 TCF of technically recoverable gas. (One TCF equals 
about 9.3 billion cubic meters). The Utica Shale below the Marcellus may have even greater 
reserves. Such numbers are of course built on many assumptions about the geology, gas 
generating potential, gas in place, and percentage of recoverable gas, resulting in a wide 
range of estimates. In nearly all cases, however, they are quite large when compared to 
conventional gas reservoirs. The amount of gas consumed annually in the United States is 
about 23 TCF, making the “hundreds” of TCF considered recoverable from domestic gas 
shales a significant resource, no matter what the exact figure might be.  
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To understand why the gas resources in these shale formations are so large, it is helpful to 
review the manner in which oil and gas are created over geologic time periods. Rocks that 
have the ability to produce hydrocarbons in commercial quantities with standard well 
drilling technology are known as conventional reservoirs. The hydrocarbons present in a 
conventional reservoir were usually created elsewhere, and migrated into the porous and 
permeable reservoir rock, where they were trapped. Creating a conventional oil and gas 
reservoir is a complicated process that requires a number of events to occur in a specific 
order. These are: 1) source rock, 2) thermal maturity, 3) reservoir rock, 4) trap and seal, and 
5) migration pathway. The rarity of all these things happening with precise timing and in 
the proper sequence is the main reason oil and gas can often be quite difficult to find.  

Source rock: Petroleum and natural gas were formed from decayed plant matter trapped 

and preserved in fine-grained sediments. Two common sources of organic material were 

algae or other water plants, and woody land plants. Some animals may have contributed as 

well, but most fossil fuel is derived from ancient plant material, not dead dinosaurs. Decay 

bacteria usually require oxygen, so if the dead plants settled to the bottom in water that 

contained low levels of dissolved oxygen, the organic matter was often preserved and 

buried under more sediment. These organic-rich sediments (later turned into rock) are 

known as source rocks. Until recently, source rocks were not considered to be much good 

for production, because they are generally made up of fine-grained, low permeability 

materials deposited in quiet water environments, like black shale.  

Thermal maturity: In addition to containing a few percent of preserved organic matter, the 

source rock sediment had to be buried deeply, and subjected to heat and pressure within the 

Earth to become thermally mature. Temperatures within the Earth increase with depth. This 

is called the geothermal gradient and varies with location. In most places, the temperature 

generally increases by about 25 degrees C with every kilometer of depth (Blackwell and 

Richards, 2004). More deeply buried rocks were exposed to higher temperatures. Organic 

materials, exposed to high temperatures over geologic time periods slowly break down 

without oxidizing, turning organic carbohydrates into fossil fuel hydrocarbons such as coal, 

oil and natural gas.  

The thermal maturity of a gas shale is related to its burial history. For example, Lash (2008) 
published an analysis for Devonian formations in western New York, determining that the 
Marcellus Shale was initially buried rapidly beneath a thick wedge of sediments, then uplifted 
and eroded by mountain-building before being buried again under more sediment derived 
from the new mountains. Parts of the Marcellus Shale that were deeply buried were exposed 
to temperatures above 175 degrees C for millions of years, thoroughly cooking everything in 
the rock. Most measurements of thermal maturity on the Marcellus Shale place it quite high, 
well beyond the liquid petroleum range. Dry methane gas is almost the only hydrocarbon 
remaining in this shale, although some ethane is present in the western part of the basin.  

Other shales with lower thermal maturity ranges do produce liquids along with the gas. A 
shale in Texas called the Eagle Ford produces dry methane gas where it is deeply buried, 
and significant natural gas liquids in shallower areas. Natural gas liquids are known as 
condensate, which travels up the well as a vapor, but then condenses into liquid form under 
the lower pressures and temperatures at the surface. Condensates such as propane and 
butane are worth substantial money, and are eagerly sought by the petroleum industry. 

www.intechopen.com



 
Advances in Natural Gas Technology 

 

6 

Reservoir rock: Conventional oil and gas production comes from reservoir rocks, which 

consist of coarse-grained sandstones or limestones with significant porosity and high 

permeability. These formations are too open and sponge-like to be good source rocks, but if 

a source rock elsewhere is able to fill up the reservoir rock pore spaces with oil and gas, it is 

easy to produce with conventional wells.  

Trap and seal: In order to contain the gas and oil in a conventional reservoir rock, there 
must be some kind of a trap, such as a fold or a fault, to create an underground structure 
that acts as container of sorts to hold the hydrocarbons in the reservoir rock. To be effective, 
the trap must also include an impermeable caprock to seal the reservoir and contain the 
hydrocarbons within.  

Migration pathway: Because the source rocks and reservoir rocks are usually completely 

different formations, once the oil and gas have formed in the source rock, they need a 

migration path to get from the source rock to a reservoir rock. This can be a fracture like a 

fault that allows movement through the intervening rocks, or just tilted beds that will let 

hydrocarbons slowly flow updip. Timing is everything: if the migration pathway is in place 

before a reservoir rock is available, the oil and gas will be lost. On the other hand, if the 

reservoir rock is present but no migration path ever develops, the reservoir stays empty.  

In summary, a driller will end up with a dry hole in a conventional oil or gas reservoir if 

any one of the five items described above is missing, or occurs out of sequence.  

Gas shales are unconventional reservoirs. This means that they are significantly larger than 

a conventional reservoir, but they are also much more difficult to produce. The shale acts as 

both the source rock and the reservoir rock. The gas in the shale was created from organic 

material deposited with the sediment, and was not required to migrate anywhere to be 

trapped in a reservoir. However, because the gas has remained in the shale, it must be 

produced directly from this fine-grained, impermeable rock, and that is not a simple task.  

If the quality of most natural resources is plotted against the quantity, a triangle or pyramid 

shape is typically produced, showing a small amount of high-quality resource, and 

significantly larger volumes as the quality goes down (figure 2). The lower quality resource 

is usually more difficult and expensive to produce, but if there is a technological or 

economic breakthrough that makes it competitive with the higher-graded resource, the 

production quantities can be enormous. This has happened with commodities like iron, coal, 

gold, and timber, to name a few. For example, high purity drinking water from protected 

springs or pristine mountain streams is in very limited supply. However, suppose a new 

technology allowed seawater to be turned into drinking water of the same quality at a 

similar cost, or better yet, cheaper. Supplies would suddenly expand greatly.  

This is essentially what happened with shale gas. The application of new drilling and 
hydraulic fracturing technology has allowed drillers to extract this gas directly from the 
source rock at prices comparable to gas from conventional reservoirs.  

The U.S. Geological Survey (USGS) has the responsibility for estimating oil and gas 
resources in the United States, including shale gas. USGS hydrocarbon assessments are 
based on mathematical models, which use an understanding of the geology of the rock unit 
and the production characteristics of existing wells. The production data used by the USGS  
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Fig. 2. The resource triangle illustrating the distribution of most natural resources, including 
natural gas, when quantity is plotted against quality. 

are the decline curves, or the fall-off in production over time, from a large number of gas 
wells. Unfortunately, very little decline curve data have been made available, and 
production from gas shales is so new that most of the wells have not declined very much 
anyway. As such, calculations of the true size of the shale gas resource have been 
problematic at best (Coleman and others, 2011). 

The wide range of estimates for U.S. domestic shale gas resources is a clear sign that a better 
understanding is needed of the processes that generate and store gas in the shale. Greater 
rigor may also need to be applied to some of the assumptions used in the various estimates. 
Discovering how the physical properties of the shale act to control the limits of gas content 
would help to constrain the numbers and provide more accurate and realistic estimates of 
gas in place, or GIP. 

The amount of recoverable gas is always a fraction of the GIP, under the assumption that 
100 percent of the gas will never be recovered, even under the best of circumstances. 
Hydraulic fractures don’t contact every part of the formation, some pores may be blocked 
with water or oil, and others may not be connected to flowpaths. The value for this fraction 
varies from assessment to assessment, ranging from a low of about 10 percent up to 50 
percent or even higher. In one of the classic publications on the resource, Engelder and Lash 
(2008) stated that the Marcellus Shale GIP exceeds 500 TCF over an area encompassing parts 
of New York, Pennsylvania, West Virginia, and Ohio. They assumed a technically 
recoverable gas fraction of 10%, leading to a reserve estimate of 50 TCF. This caused quite a 
stir at the time, because 50 TCF of producible gas from a single formation was more than 
double the annual consumption of natural gas in the entire United States.  

It has only gone up from there. More refined calculations by Engelder (2009) came up with 
significantly higher estimates for GIP, and a 50 percent probability that the Marcellus Shale 
will ultimately yield 489 TCF of gas, assuming a power-law decline rate, 80-acre well 
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spacing, and 50 year well life. U.S. government numbers for Marcellus Shale recoverable gas 
from the U.S. Energy Information Administration (EIA) are about 410 TCF (EIA, 2011). A 
recent Marcellus Shale assessment by the USGS (Coleman, 2011) has concluded that the 
median amount of technically recoverable gas from this formation is about 84 TCF, and it 
may go as high as 144 TCF, but this is still quite conservative compared to some of the other 
numbers out there. The EIA recently reduced their estimates to be more in line with the high 
end numbers from the USGS.  

Why is there so much gas in shales like the Marcellus?  Most geologists agree that the gas 
was derived from rich deposits of organic matter in the shale, formed from abundant marine 
algae that grew and died in a shallow inland sea during the time of Marcellus Shale 
deposition. Wrightstone (2011) suggests that the planktonic or floating marine plants were 
fertilized by mineral-laden dust blown into the basin by trade winds off arid highland areas 
to the east. Periodic dust storms from these deserts would have added fine particles of 
quartz to the water in the enclosed basin, along with a host of mineral nutrients, including 
iron and phosphorous. It has been known for some time that iron is an essential fertilizer for 
algae. The dust-blown minerals could have fertilized an explosion of plant growth in the 
water. Wrightstone cites documentation from a modern algae bloom that occurred in the 
Tasman Sea after an Australian dust storm of epic proportions in 2009, and similar blooms 
in the Atlantic Ocean from dust storms off the Sahara Desert. Under a microscope, a 
significant part of the mineral matter in the Marcellus Shale can be seen to be composed of 
small particles of quartz that are just the right size to have been carried by the wind.   

Algal blooms concentrate a great deal of organic matter in the water column, and then 
transport this organic matter to the ocean bottom when the plants die and sink. When these 
blooms happen, bacteria trying to feed on large masses of dead algae rapidly remove any 
residual oxygen from the bottom waters and create anoxic sediments, which preserve the 
organic material. The anoxic muds were then buried, exposed to heat and pressure, and 
generated copious amounts of methane gas. 

2. History of U.S. shale gas investigations 

Although the first commercial American gas well was hand-dug into Devonian-age shale in 
Fredonia, NY by William Hart in 1821, serious shale gas studies did not begin in the United 
States until the 1970s, in response to oil shortages that led to an “energy crisis.” This crisis 
was actually a series of oil shocks precipitated by a Middle East war in 1973, and the Iranian 
revolution in 1979. The energy shortages experienced during these episodes worried the 
American public, and influenced U.S. foreign policy.  

The Middle East war known variously among historians as the Yom Kippur War, the 
Ramadan War, the 1973 Arab-Israeli War, or the Fourth Arab-Israeli War was fought 
between October 6 and October 25, 1973. Lasting less than a month, it involved armies from 
Egypt, Syria, Iraq and Jordan attacking Israel, followed by an Israeli counterattack, and 
ended with a U.N. brokered ceasefire (Rabinovich, 2004). Both the United States and Soviet 
Union enlisted the two sides as proxies, with the Soviets resupplying and supporting Egypt, 
and the Americans airlifting material and providing intelligence support to Israel. U.S. 
involvement led some members of the Organization of Petroleum Exporting Countries, an 
oil cartel better known by its acronym OPEC, to call for an embargo on oil exports to the 
United States. At a meeting of oil ministers in Kuwait on October 20, 1973, members of 
OPEC declared a total embargo on American oil deliveries (Yergin, 1991).  
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The oil embargo on the U.S. lasted until the spring of 1974. Although this was at a time 
when significantly less than half of the oil used in the United States was imported, and not 
all the member countries of OPEC had even joined in the embargo, the action still resulted 
in severe shortages, long lines at gasoline stations when there was fuel available, and 
consumer panic. The price of oil quadrupled almost overnight. The American driving 
public, who had not worried about gasoline supplies since the days of fuel rationing during 
the Second World War, were shocked and stunned.  

The U.S. postwar housing boom had relocated many people into suburbs at long distances 
from city centers. Suburban life meant that automobiles were required for nearly all 
transportation needs. Fuel shortages and price hikes in the winter of 1973-74 raised the 
prospect of being stuck with an empty gas tank in a useless car, and unable to carry out the 
simplest tasks. In the rhetoric of the time, people demanded that something be done to 
prevent America from being held “hostage” to imported oil. Many people thought that if the 
United States could send men to the moon, we ought to be able to figure out how to fuel our 
automobiles. The public outcry forced the government to act. The United States Department 
of Energy (DOE) was formed from a number of smaller agencies as a cabinet-level entity of 
the U.S. federal government under President Jimmy Carter on August 4, 1977. Along with 
inherited responsibilities like running the national labs and maintaining the nation’s nuclear 
weapons stockpile, a primary mission of the new DOE was to find technological solutions to 
the energy crisis.  

The second oil shock hit in 1979, during the Iranian revolution. The student protests that 
eventually led to the fall of the Shah severely disrupted Iranian oil production, and 
essentially curtailed exports for several months. Although the United States received only a 
relatively small percentage of imported oil from Iran, the disruption to global supplies was 
enough to precipitate a second oil shortage, with the same gasoline station lines and panic as 
seen in 1973. The 1979 crisis was much shorter-lived, however, because Saudi Arabia and 
other exporting nations were able to make up for the Iranian oil shortages and return 
American imports to nearly steady levels (Yergin, 1991).  

Schrider and Wise (1980) described some of the potential new domestic sources of fossil 
fuel, including natural gas, being investigated by DOE. These included unconventional 
gas resources such as coalbed methane, tight gas sands, gas dissolved in deep brines 
under high pressures, and shale gas. There was no doubt that the production of these 
would be a technical challenge, but if they could be exploited, the energy would help 
displace imported oil. A number of scientific and engineering investigations were begun 
on unconventional energy resources by the U.S. government, one of which was the 
Eastern Gas Shales Project.  

2.1 U.S. Department of Energy Eastern Gas Shales Project   

In 1975, the Energy Research and Development Administration, a predecessor agency to the 
U.S. Department of Energy, initiated the Eastern Gas Shales Project (EGSP) to assess the 
potential for a sequence of Devonian-age shales in the Appalachian Basin, as well as similar 
rock units in the Michigan and Illinois Basins to produce large amounts of natural gas under 
the proper conditions. The initial definition of proper conditions was to find organic-rich 
black shales that contained abundant natural fractures. The organic matter in the black 
shales would provide the gas, and the fractures would provide the flowpaths. Engineering 
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experiments would seek to link the natural fractures through a series of man-made 
hydraulic fractures, creating a network of high-permeability flowpaths through the shales.  

Under DOE, the EGSP had 3 major components: resource characterization, development of 
production technology, and the transfer of that technology to industry. The project was 
managed by the DOE Morgantown Energy Technology Center (METC) in West Virginia, 
which later became a campus of the present-day DOE National Energy Technology 
Laboratory (NETL). Over a period of about 6 years, from 1976 to 1982, the EGSP used 
cooperative agreements with drillers to collect oriented drill core from a variety of shale 
units in the Appalachian, Michigan and Illinois Basins. Directional or “oriented” core was 
necessary, because one of the major pieces of data being gathered was the strike and dip of 
the natural fractures. Most of the EGSP cores came out of the Appalachian Basin, and many 
of these were from the shallower, western side near the Ohio River. The shale sequence in 
the eastern part of the basin is considerably deeper, and therefore more expensive to drill. 
Only eight of the EGSP wells were drilled all the way down to the Marcellus Shale, and data 
from those are now in high demand.  

Cores were collected from 34 different EGSP wells in the Appalachian Basin, in formations 
ranging from the Cleveland Shale to the Marcellus Shale. Three wells were also cored in the  
Devonian Antrim Shale of the Michigan Basin, and seven wells into the equivalent New 
Albany Shale in the Illinois Basin, for a total of 44. The locations of the EGSP wells in the 
Appalachian Basin are shown in figure 3 (Bolyard, 1981). 

 

Fig. 3. Map locations of the DOE Eastern Gas Shales Project drill cores collected in the 
Appalachian Basin between 1975 and 1981. Figure from Bolyard, 1981. 
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As soon as the core was recovered, it was unloaded from the plastic sleeves used to line the 

core barrel, washed to remove drilling mud, assembled, aligned, measured for length and 

had depths marked on it. The cores were solid cylinders of rock, 3.5 inches (9 cm) in 

diameter that weighed about ten pounds per foot (~15 kg per meter). The field crew then set 

to work collecting and preserving samples, and creating a field description of the lithology, 

noting in particular any gas shows, natural fractures or other features. The most time-

sensitive of the field samples were short segments of core designated for chemical gas 

analysis. As quickly as possible, but certainly within two hours of the core reaching the 

surface, these offgassing samples were hermetically sealed in steel cans. The cans were sent 

to a chemistry lab in Ohio, where the composition of the gas was analyzed as it came out of 

the rock. The final field task was to pack the core back up into the plastic liners and cap the 

ends for transport to the EGSP core lab in Morgantown, WV.   

Once the core arrived at the lab, it was laid out on tables, carefully pieced together, cleaned, 

oriented and measured. Using the core orientation data and a circular plastic protractor, 

north lines were drawn on the rock cylinders in permanent marker, which allowed for the 

measurement of the orientation of any features or natural fractures encountered in the core 

(figure 4).  

 

 
 

Fig. 4. Black Cleveland Shale above gray Chagrin Shale in an EGSP core from Ohio, with 

pyrite at the contact (2040.54 ft.). An orientation groove is visible to the right of the depth 

marks; the vertical line on the front of the core marks north. Photo by Daniel J. Soeder. 
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Cores were then processed for data collection. The lithology and color of the core were 

described from bottom to top. Wet core surfaces were compared to standardized color chips 

to determine color. Many so-called black shales are actually a yellowish black color similar 

in tint to ripe olives. Only the Marcellus Shale was found to be a true charcoal black. 

Correlations between organic carbon content, gas potential and “blackness” of the shale 

were impractical, because once the organic carbon content reached a few percent, the shale 

was black and didn’t get any blacker with more carbon (Hosterman and Whitlow, 1980).  

Fractures were identified as natural or coring-induced, based on criteria defined by 

Kulander and others (1977). Natural fractures were further classified as joints or faults. 

Joints are fractures where the two walls have simply pulled apart. Faults are fractures where 

the two walls have slid past each other; often leaving a polished, grooved surface behind 

called a slickenside. The orientation of the natural fractures was measured using the north 

directional line on the cores as a reference. The frequency of the coring- induced fractures 

was counted, but little else could be done with them. It was hoped that they could at least 

provide an indication of the brittleness of the rock, and a possible response to hydraulic 

fracturing. Rock samples were collected from the cores for the various labs, agencies and 

universities that had asked for them, and small wooden blocks were inserted into the core to 

mark where each sample was taken from, and who had it.  

The cores were photographed with a specially made rig that could trundle a camera down 
the length of a core table. The photos were hand-pasted into albums and kept as a reference. 
Sadly, many of these photos suffered water damage years later when in storage, and have 
been lost. Gamma radiation readings were collected on the cores every foot (30 cm) using a 
scintillometer for comparison with gamma ray logs collected downhole on a wireline tool. 
Unfortunately, like the core photographs, the scintillometer readings have also been lost 
over the three decades that have passed since the data were first collected.  

Funding for the Eastern Gas Shales Project formally ended in 1992, but the budget had been 

at relatively low levels since 1982. Despite the low funding levels, a number of cutting edge 

engineering experiments were run on shale. An air-drilled, horizontal test well was 

completed in the Huron Shale in December 1986 (Duda and others, 1991), which was drilled 

with the intent of intercepting existing fractures and improving the efficiency of natural gas 

recovery. Innovative logging techniques, directional drilling techniques, assessments of 

reservoir anisotropy, liquid CO2 fracturing, and other new technologies were tried out on 

gas shales during the last decade of the program. These studies greatly assisted industry in 

the commercial development of shale gas a decade later. 

By 2007, many of the old EGSP reports, publications and data tables were being eagerly 
sought out by industry people interested in the potential of shale gas, and personnel at 
DOE-NETL started getting numerous requests for copies. Many of these had been packed 
away for years, or were quite rare. In response to increasing demands for information as 
unconventional gas drilling expanded, the NETL library assembled nearly every relevant 
document from the DOE unconventional gas program, some of which were literally down 
to the last copy in the known universe. The documents were transferred into an electronic 
format and placed on two DVDs, allowing hundreds of reports and scientific papers on 
western U.S. gas sands, secondary gas recovery, eastern U.S. gas shales, methane hydrates, 
deep source gas, and methane recovery from coalbeds to be carried in one‘s pocket.  
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There were many other aspects of the Eastern Gas Shales Project above and beyond the core 
recovery and analysis activity, but that part of the work is described here because it would 
later turn out to be an important factor in the decision to develop the Marcellus Shale gas 
resource. Many of the other EGSP efforts, including drilling engineering and well design, 
field tests on a wide variety of reservoir stimulation techniques, early attempts at computer 
modeling, development of an assessment procedure and nomenclature for rock fractures, a 
vast amount of gas chemistry and geochemistry analysis, and geological basin studies were 
equally pioneering in the development of shale gas and other unconventional gas resources.  

2.2 Institute of Gas Technology shale gas research 

The Institute of Gas Technology (IGT), located in Chicago, Illinois is now known as the Gas 
Technology Institute (GTI). It had been founded in 1949 as a research institute for the gas 
utility companies, who were moving away from the use of manufactured or town gas, made 
from coal and water, and replacing it with natural gas from oil wells that was being 
pipelined up from the Gulf Coast. Town gas was extremely hazardous, consisting of a 
mixture of carbon monoxide and hydrogen. Natural gas, on the other hand, is composed of 
non-toxic methane, and it was abundant in the oilfields of Texas and Louisiana. Interstate 
transmission companies were building thousand-mile pipelines from production areas on 
the Gulf Coast to market areas in the Northeast and Midwest. In order to recoup some of the 
costs of the pipelines and new distribution systems, the gas utility and transmission 
companies wanted to encourage the use of more natural gas. IGT was initially founded to 
conduct gas utilization research, developing new consumer appliances, and finding 
additional commercial and industrial applications for natural gas. It wasn’t until the first 
energy crisis in 1973 that IGT began a natural gas supply research program.  

In the early 1980s, IGT had a subcontract with Sandia National Lab to analyze the core from 
a DOE tight gas sand project called the Multiwell Experiment, or MWX. Tight gas sand is a 
sandstone formation with reasonable porosity and a fair amount of gas in the pores, but 
with permeability almost as low as that of a shale. It is an abundant  gas resource in a 
number of southern and western states in the U.S., and in western Canada. The challenge is 
figuring out how to extract the gas economically. The MWX was a series of three wells 
drilled relatively close together into the Mesaverde Formation in the Piceance Basin of 
western Colorado. One of the wells was hydraulically fractured, and the other two were 
observed for effects. The final part of the experiment was to drill an angled borehole across 
the hydraulic fracture, and capture it in the core, which was done successfully.  

The analysis of rock properties such as porosity, permeability, capillary entry pressure, pore 
volume compressibility, pore size distribution and flowpath width are collectively known as 
petrophysics. IGT developed a laboratory instrument to accurately measure the 
petrophysical properties of tight sandstone core samples under pressure conditions 
representative of the rocks at depth. The key was to maintain stable air temperatures inside 
the apparatus, so gas pressures would not fluctuate due to thermal changes. Under these 
steady temperatures, volume and flow measurements using gas were very accurate. The 
apparatus employed a reference pressure stable to about one part in half a million, and it 
could accurately measure gas flows lower than one millionth of a standard cubic centimeter 
(gas at room temperature and atmospheric pressure) per second. This is equivalent to a 
cubic centimeter of gas flowing from a rock over a time period of a million seconds, which is 
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more than 11 ½ days. The reason for making this point is that the device was also used to 
measure gas flow through shale. Some people have questioned whether such low flow 
measurements could actually be made with this degree of precision, and the answer is yes. 
The flows were measured with electronic sensors, and the apparatus was controlled by a 
1980s version of a desktop computer, which in those days used cassette tapes to transfer 
programs and record data. The device was named the Computer-Operated Rock Analysis 
Lab or CORAL. It was described in detail at a Society of Petroleum Engineers (SPE) meeting, 
and in a paper by Randolph (1983).  

When the subcontract with Sandia National Lab expired, IGT received funding in 1983 directly 
from DOE to do additional core analysis and experimental work with the CORAL, including 
trying to measure simultaneous gas and water flow through tight sandstone cores. IGT 
suggested that the CORAL could also be used to try collecting some gas permeability data on 
EGSP shale core, because such permeability data were not in the literature. The DOE project 
manager agreed, and supplied IGT with a list of “zones of interest” in many of the original 
EGSP cores based on gas production or gas shows, correlation with gas-productive intervals in 
nearby wells, successful stimulation results, and indications of high organic content.  

At the end of active core collection in 1982, the EGSP core lab had been shut down, and the 
shale cores were shipped to the state geological surveys in the state where they had been cut 
for storage and safekeeping. Twenty-eight zones of interest were sampled by IGT from 
thirteen cores in Ohio, Kentucky, New York, Pennsylvania and West Virginia.  

In the end, IGT was only able to run two full loads of shale core in the CORAL. The device 
had four core holders, so this was a total of eight samples in all. Six of the samples were 
black Huron Shale, a member of the Ohio Shale, which was known to be gas productive in 
southwestern WV. One of the Huron Shale cores in the first batch had cracked in the 
coreholder, so core seven was a repeat run of another sample from this same well. Core 
number eight was a Marcellus Shale sample from the EGSP WV-6 well.  

The CORAL had been upgraded in anticipation of the shale analyses. The upgrades 
included changing the flow directions of the air circulation system so temperatures of 
critical components were more stable and returned to equilibrium more quickly, improving 
the digitizing resolution with a better data logger, and rewriting the temperature control 
software so it could predict when temperatures were nearing a setpoint and reduce power 
to the heating coils beforehand, instead of overshooting and then having to correct. These 
changes, driven by the desire to make measurements on shale, led to an overall 
improvement in the performance of the apparatus and provided better data on all samples. 

Small rock cylinders cut from the EGSP core samples for CORAL analysis were dried in a 
controlled relative humidity oven to remove water from the rock without dehydrating the 
clays. Proper drying under controlled relative humidity was important for obtaining useful 
measurements (Soeder, 1986). Harsh drying, under high temperatures and/or in a vacuum 
oven causes clay minerals to dry out and collapse, opening up pores and creating abnormal 
permeability. Samples dried at 60oC under 45% relative humidity retain a layer of bound 
water on clays and other hydrated minerals, although free water in the pores is removed. 
Many analyses on a variety of tight sandstones and other rocks had confirmed this. 

IGT core analysis on the eight samples of EGSP shale revealed a number of important 
findings (Soeder, 1988). The first was that the Huron Shale samples contained small but 
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significant amounts of petroleum in the pores, which blocked gas flow. Under low 
differential pressures, no measureable gas flowed through these cores at all. At high 
differential pressure, gas flow rates gradually increased over a period of hours before 
leveling out. The data appeared to show that a liquid phase was being pushed out of the 
pore system by the gas pressure, and gas permeability was slowly increasing as the 
flowpaths were cleared of liquid. Dozens of tight sandstone measurements made on 
samples dried under the same temperature and relative humidity conditions had never 
shown any evidence of a liquid water phase in the samples. Yet all of the Huron Shale cores 
showed some kind of liquid draining from the pores under pressure. The IGT analytical 
chemistry lab placed a sample of the Huron Shale core in a tagged solvent and ran the liquid 
through a gas chromatograph. The data revealed that the Huron Shale contained a light 
paraffinic petroleum, typical of Appalachian Basin oils. It is important to note that a similar 
analysis on the Marcellus Shale sample revealed that there was no oil present in this rock.  

The discovery of oil blocking the pores of the Huron Shale helped explain some of the 
erratic results of the earlier EGSP reservoir stimulation experiments. Many different types of 
stimulations had been used, including hydraulic fracturing, explosives, and fracturing with 
cryogenic liquids, gas and foam, among others. The results had been hit or miss at best – 
some stimulation methods performed well on certain formations in certain locations, and 
poorly elsewhere. There were not enough data to explain why this should be, and a 1982 
report concluded that reservoir stimulation alone was insufficient to achieve commercial 
shale gas production (Horton, 1982). This conclusion implied that the situation was a bit 
more complicated than the old EGSP idea that any black shale will produce gas if 
sufficiently fractured. With the finding that oil was blocking gas flow in the pores of at least 
some shales, a few of the stimulation failures became more understandable. 

The Marcellus Shale sample was measured by IGT in August 1984. Gas flowed through this 
sample with remarkable ease, and excellent data were collected. The values for gas 
permeability (reported as K∞) were 19.6 µd (microdarcies) at 3000 psi net confining 
pressure, and about 6 µd at 6000 psi net confining pressure (Soeder, 1988). The high 
sensitivity of permeability to net confining stress (i.e. doubling the net stress reduced 
permeability by more than two thirds) has implications with respect to production 
drawdown and the expected economics of shale gas wells. Loss of flow under higher net 
stress will be offset somewhat by increased gas slippage as pore pressures are lowered 
during production. Shale gas has not been produced long enough for many wells to have 
entered these stress and pressure regimes, but this is certainly a concern for the future. 
Obviously, a lot more data are needed to understand the petrophysics of shale. 

The CORAL apparatus at IGT was also capable of measuring the pore volume of a core 

sample under representative net confining stress using a Boyle’s Law (pressure-volume 

equivalence) technique. The device used a volume-calibrated, positive displacement pump, 

and a sensitive differential pressure transducer to measure pore volumes with an accuracy 

of 0.01 cm3. Porosity of the Marcellus Shale core was measured using nitrogen gas at two 

pressures to check the validity of the data points. Instead of obtaining the same value for 

pore volume regardless of pressure, significantly more nitrogen gas went into the sample at 

lower pressure. This higher apparent porosity at low pressure is a sign that some of the gas 

was being adsorbed. The phenomenon of adsorption occurs when gas molecules attach 

themselves to electrostatic surfaces inside the pores. The nitrogen data prompted another, 
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more thorough gas porosity measurement at a wider range of pressures using methane, the 

main component of natural gas. These data showed that the amount of methane the 

Marcellus Shale could hold was equal to 0.224 times the square root of the pressure. This is 

called an isotherm in adsorption chemistry and defines an adsorption function. When these 

data are plotted on a linear graph to show the volume of methane per volume of rock as a 

function of pressure, the curve shown in figure 5 emerges. The curved line is due to 

adsorption; if this was strictly a pressure-volume relationship, the line would be ruler-

straight. When this curve is extended out to the value of 3500 psi reported for the initial gas 

pressure of the Marcellus Shale in the EGSP WV-6 well, where the core originated, the 

calculation shows a gas-in-place value for this shale of approximately 26.5 standard cubic 

feet of gas (scf) per cubic foot (ft3) of rock. This was an important piece of data, because the 

National Petroleum Council (1980) had assessed the gas potential of Appalachian Basin 

shales at just 0.1 to 0.6 scf/ft3. The IGT value of 26.5 scf/ft3 in the Marcellus Shale core from 

EGSP WV-6 was an astounding 44 to 265 times greater than the NPC estimate. No one had 

ever reported this much gas in a black shale before. The results were published in a DOE 

report, and as an SPE journal article (Soeder, 1988).  

 

Fig. 5. Natural gas potential in the Marcellus Shale from methane porosity data measured as 

a function of pressure. From Soeder (1988). 

3. Production of shale gas 

The people bewildered by all the drill rigs setting up across the Pennsylvania countryside 

might be surprised to learn that the Marcellus Shale drilling did not simply come as a bolt 

from the blue. After the end of the Eastern Gas Shales Project, the drilling industry 
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continued to innovate with the development of new drilling technology and new hydraulic 

fracturing techniques. The potential applications of these new techniques to the production 

of shale gas were carefully scrutinized by George P. Mitchell, the co-founder of Mitchell 

Energy, who had been involved with shale gas since the early days of the EGSP, drilling a 

number of cooperative wells with DOE in Ohio. Mitchell was interested in the gas potential 

of the Barnett Shale in Texas. Like the Marcellus and other shales, it was difficult to obtain 

economical amounts of gas from vertical wells in the Barnett. Mitchell Energy tried a lot of 

different drilling techniques and reservoir stimulation methods over a period of about 18 

years, including massive hydraulic fracture stimulations, which did produce significant 

flows of gas, but at very high cost. 

The key to producing economical quantities of shale gas has turned out to be the ability to 

drill and fracture horizontal boreholes through the rock, which contacts much more 

formation volume than a vertical well. The typical black shale thickness of only a few 

hundred feet (tens of meters) limits the amount of contact a single vertical well can have 

with the rock. Drilling horizontally, however, allows the wellbore to remain within the 

shale, and penetrate distances of thousands of feet (kilometers). The drilling is coupled with 

hydraulic fracturing to create high permeability flowpaths into the shale. Instead of the 

single hydrofracs done in vertical wells, the long horizontal boreholes allow for an entire 

series of hydraulic fractures to be spaced a few hundred feet apart (figure 6). There can be 

ten or more of these so-called “staged” hydrofracs in a horizontal borehole, resulting in 

large volumes of gas production. Drilling costs for a horizontal Marcellus well are 

approximately 2-3 times higher than for a vertical well, but the initial gas production can be 

3-4 times greater (Engelder and Lash, 2008). 

Advances in horizontal drilling, or more accurately, directional drilling, came about in the 
1990s, driven by the needs of deepwater offshore oil production. As offshore rigs moved 
into deeper water, the engineering design of the platforms changed. Steel towers standing 
on the sea bed had worked fine in shallower water, but drilling in thousands of feet of water 
required the use of semi-submerged, floating platforms held firmly in place by tensioned 
steel cables anchored into the seafloor. These platforms and their associated seabed anchor 
facilities were expensive and complicated to rig up. The less frequently they needed to be 
moved, the better.  

Directional drilling was the answer. If a driller could bore a well directionally into one 

reservoir pocket, and then drill another well in a different direction from the same location 

to intercept a second reservoir pocket, a great deal of oil could be recovered without having 

to move the rig. This need and the large sums of money behind it drove the development of 

directional drilling forward in the 1990s. Some deepwater platforms now routinely drill as 

many as 60 separate directional wells from a single location.  

Directional drilling had been around for years, but there were two problems with it that 
needed to be overcome: steering the bit and knowing where it was located. The first 
technological advance in directional drilling was the downhole motor. Without the need to 
turn the entire drill string from the surface, the drill pipe is much more flexible and can turn 
relatively tight corners. The modern design uses hydraulic power, supplied by a slurry of 
drilling mud pumped down the drill string under high pressure and through an impeller on 
the downhole motor. The motor then turns the bit, which cuts the rock. The impeller, motor  
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Fig. 6. Illustration of the combination of horizontal drilling and hydraulic fracturing 
technology used for shale gas. Not to scale. (Modified from Soeder and Kappel, 2009). 

and bit together are known as the “bottomhole assembly,” and it allows wells to be drilled 
in virtually any direction, including horizontally. The drill bit is steered by using a bent 
section of pipe near the bottomhole assembly to deviate the well away from vertical, by 
changing the pressure being applied against the cutting face, or by varying the rotational 
speed. Some advanced bits have thrust bearings controlled from the surface that change the 
angle of the cutting head to provide precise control.  

Advances in downhole position measurement using a combination of inertial navigation 
with a gyroscopic compass and remote telemetry now allow drillers to more accurately 
monitor the downhole location of their drill bit and the configuration of the borehole. Data 
transmission methods vary, but usually involve digitally encoding the data and transmitting 
it to the surface as pressure pulses in the mud.  

The depth at which a directional wellbore changes from vertical to some other orientation is 
called the kickoff point. The location in 3-dimensional space where the borehole is supposed 
to intercept the producing formation is called the target. The radius of the curve used to 
change the borehole direction from vertical to horizontal is called the build or the build rate. 
The horizontal stretch of the borehole is called the lateral. The path of the lateral through the 
target formation is called the trajectory. 

Directional drilling in gas shale is laid out in patterns that look like the legs of a spider on a 
map. The body of the spider is the drill pad. Multiple wells will originate from a single drill 
pad, ranging from 6 to 10 or more in number. All of the wells start out vertical, and then 
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from a kickoff point about 500 feet (150 m) above the target, build a curve. The trajectory 
takes them down into the target shale in a direction that is usually perpendicular to the 
trend of the most prominent natural fractures, or joints. Laterals can extend 5,000 feet (1.5 
km) or more in length, and are often drilled parallel to one another at some optimal spacing 
for the most efficient recovery of natural gas from the formation.  

Because of the need to protect aquifers, the finished boreholes are lined with casing, held in 
place by cement. Casing is made of heavy steel pipe, which screws together in 
approximately 30-foot (10 m) segments. Each length of casing that is made up of joined 
segments of a particular diameter is known as a string. There are several concentric strings 
of casing in a well, with each successive casing string being smaller in diameter and 
extending to a greater depth. As each string of casing is placed in the hole, cement is 
pumped down through the center, and is distributed by a shoe at the bottom of the string so 
that it oozes up into the annular space between the casing and the borehole wall. Enough 
cement is pumped in to completely fill this annular space, and then left to cure. A proper 
cement job is critical for sealing the casing and keeping it in place.  

Different casing configurations are used in different climates, but in the Appalachian Basin 
of North America, the following design is typical: The conductor casing is installed from the 
surface to a depth of 30 to 60 feet (10-20 m) as a mechanical barrier to support the sides of 
the hole in unconsolidated soil. This is the largest diameter string of casing used in a gas 
well, usually about 24 inches (60 cm) in diameter. Inside the conductor casing, a second, 
narrower casing string known as the surface casing (sometimes called the water or coal 
casing) is run and cemented in place from the surface down to a depth of several hundred 
feet below the deepest freshwater. The surface casing is 14 to 20 inches (35-50 cm) in 
diameter and is used to isolate the gas well from the aquifers and coal seams. It is designed 
to protect the groundwater by preventing any gas or oil from entering the aquifer, while at 
the same time keeping groundwater from flooding the well. Regulations for fresh 
groundwater protection tend to be conservative, and may require surface casing to be set as 
deep as a thousand feet (300 m).  

From the bottom of the surface casing, the main vertical, curved and lateral portions of the 
borehole are drilled. Another string of casing, called the intermediate casing, is installed 
through this part of the hole down to the kick-off point of the curved borehole, and cemented 
into place. This casing is 9 to 12 inches (23-30 cm) in diameter, and its purpose is to keep the 
borehole walls from collapsing and to prevent any gas and liquid in the rocks above the target 
formation from entering the annular space of the well. A final string of well casing, called the 
production casing, is installed in the finished hole. It is usually only about 5 inches (13 cm) in 
diameter, and extends from the surface down the vertical hole, through the curve and along 
the entire length of the lateral to the very bottom end or toe of the hole. It is cemented into 
place through the production zone to the base of the intermediate casing, and serves to 
channel all gas production directly to the surface, without any opportunities to go astray.  

The completion process for the well begins by punching holes in a section of the lateral casing 
in the production zone using shaped explosive charges on a wireline carrier. This perforation 
of the casing creates contact with the reservoir. The holes and cement behind the casing are 
cleaned using a 15% solution of hydrochloric acid. The hydraulic fracturing process begins by 
pressure testing and calibrating all of the equipment. Water, chemicals and sand are mixed in a 
blender and pumped downhole. As the hydrofrac begins, the pump rate is brought up slowly 
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while pressures at the wellhead, downhole, and in the annulus behind the production casing 
are carefully monitored. The frac fluid is pressurized until the breakdown pressure of the 
formation is exceeded and the rock cracks open. The initial part of the frac is just water, called 
the pad. It is followed by water mixed with sand pumped in as a proppant, to keep the 
fractures open after pressure is released. A flow meter on the blender measures the volume of 
fluid pumped downhole, and a densometer measures the amount of sand in the fluid. 
Engineers watch the wellhead, annulus and bottomhole pressures, pump rate, fluid density 
and material parameters throughout the frac. When the first stage of hydraulic fracturing is 
finished, the pressure is released and a seal called a bridge plug is set into the production 
casing to close off the perforated and fractured interval from the rest of the well. The hydraulic 
fracture treatment is repeated in a second stage, which is then also closed off with another 
bridge plug. The process continues until the last stage reaches the upper end of the lateral, 
called the heel, and begins to curve up out of the shale.  

After all the stages of fracturing have been completed, the bridge plugs are removed. Gas 
pressure in the rocks is used to push the frac fluid out of the well during a procedure called 
“blowback,” which is designed to remove as much of the liquid as possible. The expelled 
fluid is diverted into a holding tank. Because the well is not yet on production, this 
operation requires that the gas be burned-off or flared. The water being pushed out of the 
well by gas pressure is called flowback fluid, and the flow of liquid can persist 
intermittently for weeks. Once the gas production begins after the initial discharge of 
flowback fluid, a production wellhead is installed along with a gas meter and connector line, 
and the gas is sold to a transmission company. Most operators filter and recycle the 
flowback fluid into the next frac to avoid the costs of disposal.  

3.1 Development of shale gas resources 

George Mitchell truly believed in the gas potential of the Barnett Shale, and would not give 
up. Because of his determination, Mitchell Energy continued their field experiments in 
Texas, eventually developing something called a light sand frac, which was more effective 
on the shale at a lower cost than most other hydraulic fracture treatments. A rise in gas 
prices in the mid-1990s improved the economics. By 1997, Mitchell had perfected the light 
sand frac technique in vertical wells, and started trying it in horizontal wells. They began 
successfully producing commercial amounts of gas from the Barnett Shale using horizontal 
boreholes and staged hydrofracturing in the early 21st century.  

In the summer of 2004, Southwestern Energy announced that the Fayetteville Shale in 
Arkansas had many of the same characteristics that made the Barnett Shale gas productive, 
which set off another gas drilling boom. Oil and gas producers familiar with the Barnett 
Shale rushed to northern Arkansas to get in on the Fayetteville Shale. Similar drilling booms 
followed soon afterward on the Haynesville Shale in the Arkansas-Louisiana-Texas border 
region known as the ArkLaTex, and the Marcellus Shale in Pennsylvania. 

The Marcellus Shale was developed in the southwestern corner of Pennsylvania by a 
company called Range Resources, who remain a major producer in the area. In 2005, Range 
was drilling a vertical well called Rentz#1 in Washington County, PA to test oil and gas 
prospects in the Lockport Dolomite. This is a Silurian carbonate rock in the Appalachian 
Basin, older than the Marcellus Shale and located below it. The Lockport was originally 
deposited as a calcite-rich limestone, which was later altered into a different rock called 
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dolomite (named after the Italian mountains where it is common) by magnesium-enriched 
groundwater. The alteration process causes calcium carbonate (calcite) to recrystallize into a 
magnesium/calcium carbonate mineral also called dolomite (the rock is often referred to as 
“dolostone” to distinguish it from the mineral). The mineral dolomite usually forms larger 
crystals than calcite, giving a sugary texture to the formerly fine-grained limestone, which 
creates porosity that may contain oil and gas. There is no guarantee that hydrocarbons will 
be present, however. A mantra of all oil and gas geologists is that despite all the geology 
and geophysics used for exploration, you never really know what’s down there until you 
get down there, and the only way to get down there is to drill. 

The Rentz well came back with poor gas shows from the target formation. Bill Zagorski, the 
Range Resources geologist in charge of the well, was left wondering what to do with this 
non-productive, dry hole. Zagorski found himself in Houston a few months later, trying to 
sell an interest in developing a shale gas prospect in Alabama using Mitchell Energy’s 
production technology, when he recalled that he had seen evidence of gas in the Devonian 
shale section penetrated by the Rentz well above the Lockport Dolomite. Some of the 
historical data he had researched when selecting the well location reported gas shows and 
even a “blowout” in old drilling records, which he realized were at depths near the 
Marcellus Shale (Durham, 2010). Zagorski researched what was known about gas resources 
in the Marcellus Shale, which included finding many of the old DOE and SPE publications 
on the subject from the EGSP work two decades earlier, and got the go-ahead from his 
company to try a completion in the Marcellus. 

Range Resources re-completed the vertical Rentz#1 well in the Marcellus Shale, and got a 
significant return of initial gas production. Thus encouraged, they drilled the first few 
horizontal Marcellus wells in 2006 with mixed results, but after some trial and error, Range 
eventually applied a modification to the Mitchell Energy light sand frac called the slickwater 
frac, which turned out to be an effective production technique that is now commonly used on 
Marcellus Shale wells throughout the basin. The first successful horizontal Marcellus well, 
Gulla#9, came online in 2007, returning an initial gas production rate of 4.9 million cubic feet 
per day, which is quite exceptional for any gas well, and until then practically unheard of for a 
gas shale. Zagorski considers Gulla#9 to be the “discovery” well for the Marcellus Shale, and 
the one that started the play. Between 2008 and 2011, nearly 8,000 gas wells have been drilled 
and hydraulically fractured in the Marcellus Shale in Pennsylvania and West Virginia. 

In addition to the Marcellus Shale, gas production from the Barnett Shale in the Fort Worth 
Basin of Texas is still going strong, as are the Haynesville and Fayetteville shales in 
Arkansas. The Woodford Shale in the Anadarko Basin of Oklahoma is also being produced. 
A new shale play getting started is the Utica Shale, an Appalachian Basin black shale that is 
deeper and older than the Marcellus. The Utica actually covers more land area than the 
Marcellus, extending farther into the northern, western and eastern reaches of the basin. It is 
already being explored and produced in Canada along the St. Lawrence River in Quebec. In 
eastern New York, it fills fault bounded valleys called grabens, sometimes to thicknesses of 
several thousand feet. The Utica also extends farther westward than the Marcellus into 
central Ohio. One advantage of producing gas from the Utica Shale is that it underlies the 
Marcellus Shale in many parts of the Appalachian Basin, making “dual completion” wells 
possible: i.e. two production targets from a single borehole.  

Other shales of interest in the Appalachian Basin include the Rhinestreet and Ohio shales 
above the Marcellus. In Utah, gas potentials of the Mancos, Manning Canyon, Paradox, and 
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Pierre-Niobrara shales are being investigated. Alabama is looking into possibilities with the 
Floyd Shale and the Conasauga Shale. Well-known, organic-rich shales like the Antrim in 
the Michigan Basin, the New Albany in the Illinois Basin, and others are now being 
reviewed for their gas potential. Even the black shales in some of the small, Triassic rift 
basins along the U.S. East Coast are being evaluated for shale gas. 

The Eagle Ford Shale in Texas produces significant natural gas liquids, or condensate, along 
with the gas. The liquids are worth more money than gas, and hence are more attractive to 
the petroleum industry, making the Eagle Ford the current “hot prospect” for shale drilling 
in the U.S. The Eagle Ford ranges in depth from about 2,500 feet to over 15,000 feet (760 m to 
4.6 km), which has taken the shale through a variety of thermal maturation windows, from 
dry gas at the deep end through crude oil to “wet gas” at the shallower end. The Eagle Ford 
has problems with what is called retrograde condensate, however. Under reservoir 
pressures and temperatures, the natural gas liquids exist as a vapor phase, and come up to 
the surface as such, condensing out in tanks at the well pad. When reservoir pressures drop 
because of production, however, the vapors condense into liquids downhole, plugging up 
pores in the shale just like the light oil in the Huron Shale did for IGT. Trying to figure out 
how to produce both gas and liquid from such a reservoir without losing permeability is a 
major engineering and technical challenge. The locations of major shale gas plays in the 
United States (excluding Alaska and Hawaii) are shown on the map in figure 7 from the U.S. 
DOE Energy Information Administration. 

 

Fig. 7. Location of shale gas plays in the contiguous United States. Source: U.S. Department 
of Energy, Energy Information Administration.  
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3.2 Shale gas world-wide 

Gas and oil production from shales is of interest worldwide. Many countries who once 
thought they were limited on conventional hydrocarbon reservoirs are finding black shales 
and exploring them for gas and oil. Active drilling projects are underway or planned in 
Britain, Canada, Ukraine, South Africa, several North African countries, and Argentina. 
Mexico, Belarus, Poland, Germany, Brazil, Australia and China are also interested in shale 
gas development. Once George Mitchell’s ideas about how to horizontally drill and 
hydraulically fracture these rocks became known, the exploration of shale energy resources 
took off nearly everywhere (figure 8). 

 

Fig. 8. Sedimentary basins worldwide containing significant shale gas resources.  
Source: U.S. Energy Information Administration. 

The resource numbers are enormous. Recent figures in some of the oil and gas trade journals 
suggest that shale gas reserves worldwide could be greater than 6,000 TCF, or more than ten 
to twenty times the amount of gas estimated for the Marcellus Shale, and possibly much 
higher. The amount of drilling, core sampling and well testing that has been taking place in 
most of these countries so far has been minimal, and data are sparse. Thus, most resource 
estimates are little more than educated guesses. In many countries, the geological thickness 
and extent of the organic-rich, black shale units are not known, so even educated guesses are 
not possible. Countries like Poland and Germany, who import most of their natural gas, are 
interested in developing domestic shale gas resources as a path to energy independence. 
However, environmental concerns over shale gas and particularly hydraulic fracturing are 
giving them pause. Environmental politics in the European Union are much stronger than in 
America, and sensitivities are higher. Countries are looking to the United States for 
environmental data and best management practices. Many are disappointed with the slow 
progress of shale gas environmental research in the United States. 
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4. Environmental concerns with shale gas 

Development of shale gas is an industrial activity. Heavy machinery and serious equipment 
are needed to install the pad, drill down to the appropriate depths, and create and frac the 
long horizontal boreholes necessary for economic gas recovery. It involves a lot of material, 
including gravel, water, sand and chemicals for the pad and the hydraulic fracturing 
operations, along with many trucks to deliver all this to the well site. Installing the well 
creates noise, mud and dust, and requires a large crew of hard-working people, who live at 
the site for several days to weeks at a time. The drilling operations run 24/7, and create a 
neighborhood nuisance with their work lights, constant racket, smelly exhaust and endless 
activity. Having one of these sites near a home, school or business can be distracting, 
inconvenient, annoying, and disruptive.  

Not all of the environmental impacts of shale gas production are known. A significant 
period of “baseline data” must be collected so the starting conditions are documented. Many 
of the parameters needed to determine environmental impacts have not been measured, 
because there has not been funding or time available to measure them. 

Not all of the known environmental impacts are addressed under current regulations. 
Because the shale gas phenomenon is occurring in places that are not considered traditional 
oil and gas states, regulations that were largely designed for dealing with small drilling 
operations are inadequate for the scale of activity associated with shale gas development.  

Not all of the current regulations are being properly enforced. State agencies don’t have 
enough personnel to be everywhere all the time to enforce laws across extensive shale gas 
plays. Despite the huge upsurge in applications for drilling permits, the state oil and gas 
agencies have been largely unable to add a significant number of additional personnel 
because of tight budgets and other constraints. 

Environmental impacts can be short-term or long term. Short-term impacts are related to 
well construction, and include things like water withdrawals, flowback fluid disposal, lights 
and noise from the drilling operations, effects of water impoundments on wildlife, and air 
pollution. Most of these go away once the well is constructed and all the equipment moves 
off, but they can be fairly intense during the drilling process. Long-term impacts are related 
to the well and drill pad occupying the landscape, and include concerns like habitat 
fragmentation, groundwater contamination from leaks or spills, the potential introduction of 
invasive species, and the process of ecological succession as the open drill pad slowly fills 
back in with vegetation. These factors are somewhat more difficult to quantify, and certain 
concerns, like invasive species, may not show up for some time. The short term impacts tend 
to be more acute, and the long term more chronic. Assessing both of these types of impacts 
is important for understanding the overall environmental effects of the gas well.  

An additional unknown is cumulative impact, which stems from the planned development 
of the resource. Environmental effects from individual wells add up as more and more wells 
are placed within a tract of land, eventually taking conditions across a threshold and 
causing impacts much greater than the individual wells alone. At the rate the resource is 
being developed, tracts of land that were only going to contain a few wells have 
mushroomed into dozens. A problem with cumulative impacts is that it is difficult to tell 
when a threshold has been crossed until it is too late. Assessments need to be made of the 
number of wells an ecosystem or a watershed can tolerate per unit area.  
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The five things that are the most susceptible to the potential environmental impacts of shale 
gas development are air, water, landscapes, habitat and ecosystems. Quantifying the 
impacts of shale gas wells on these receptors could help significantly with the improvement 
of both environmental monitoring and management practices to minimize problems. 

Air pollution during well construction and hydraulic fracturing is a concern because of the 
large numbers of diesel engines needed to run heavy equipment. Some drill rigs are now 
electric-hydraulic, drawing power from on-site generators running on natural gas supplied 
by a nearby well instead of diesel. Air can also be contaminated by exhaust from compressor 
stations needed to boost the gas up to pipeline pressures.  

Water issues include potential impacts to water supply, water quality, and damage to small 
watersheds. These were described in a USGS publication by Soeder and Kappel (2009). The 
large volumes of water needed for a staged hydraulic fracture have the potential to impact 
local supplies. Many drillers now build large, central impoundments that they fill during 
times of high streamflow and low demand. Standards for the quality of water used in a frac 
have also been relaxed since drillers realized that swelling clays are generally not a problem 
in thermally-mature gas shales. They no longer require drinking water quality supplies for 
frac fluid. Recycled flowback and raw water from local streams is often used. Recycling the 
recovered high salinity flowback fluid into the next frac has lessened water quality concerns 
considerably. Still, the risk of spills and leaks, the potential for toxic metals and 
radionuclides to oxidize and leach from drill cuttings, and the movement of stray gas 
through aquifers remain water quality concerns. Small watersheds risk potential damage as 
drillers build five-acre drill pads and service roads. A great deal of equipment, supplies and 
vehicles have to be transported into and out of a drill site. Construction of roads alongside 
small streams often does not take stream hydrology into account, changing the flow regime 
and altering the aquatic ecosystem. Other watershed concerns include the potential for 
chemical spills, seepage of contaminants through shallow groundwater, erosion and 
sediment issues, and worries that high salinity flowback water could cause major mortality 
in aquatic ecosystems if released into a stream. 

Habitat and ecosystem impacts near shale gas wells are both short-term and long-term. 
Short term impacts are related to the construction process itself, caused by the effects of 
lights, noise, activity levels, vehicle movements, and chemical exposure on local flora and 
fauna. Long term effects include re-occupation of the drillpad area by displaced plants and 
animals, species succession, potential impacts of structures and facilities on ecosystems, 
habitat fragmentation, and the possible establishment of invasive species. Many of these 
impacts are being assessed in a study being carried out in Pennsylvania (Soeder, 2010). 

One of the popular concerns expressed about hydraulic fracturing is that the fractures may 
break upward into overlying aquifers, and contaminate groundwater with formation brines 
and dangerous chemicals. There are a number of physical reasons that make this highly 
unlikely; including the length of time the fracturing fluid is under pressure, the volume of 
fluid injected, the behavior of stress fields near the surface, and flow gradients once the well 
is in production. It is doubtful that the fluid will climb a mile or more against the force of 
gravity to contaminate a freshwater aquifer.  

Geophysical data support the notion that hydraulic fracture heights remain well below 
freshwater aquifers. A technique called “microseismic monitoring,” originally developed by 
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DOE and Sandia National Laboratory is used to determine the positions of hydraulic 
fractures in the ground. The method uses a string of sensitive microphones known as 
“geophones” that are suspended in a borehole near the frac location. The crackling sound 
emitted by the breaking rock is detected by the geophones and the arrival times of the 
sound at the different sensors are carefully measured. These data are then used to 
triangulate the progression of the frac over time. The vertical geophone string lowered into a 
well is said to be accurate to within a few cm on the height of the fracture. A graph from 
Fisher (2010) using microseismic data to compare the height of Marcellus Shale hydraulic 
fractures with the depth of the deepest aquifer reportedly producing drinking water on a 
county by county basis is shown in figure 9. In no case do the fracture heights approach 
within several thousand vertical feet (km) of the aquifers.  

 

Fig. 9. Microseismic-measured height of hydraulic fractures in nearly 400 Marcellus Shale 
frac stages in numerous wells, plotted against the depth of the deepest freshwater aquifer in 
each county. For the figure, the fracs were sorted from deepest on the left to shallowest on 
the right. Data courtesy of Kevin Fisher, used with permission. 

5. Conclusions 

Organic-rich black shales contain significant amounts of energy in the form of natural gas, 
which may be large enough to make the United States energy independent for the first time 
since the 1950s, and finally bring to an end the so-called ”energy crisis” of the 1970s. The 
size of the gas resource has been known or suspected for many years from government 
studies like the Eastern Gas Shales Project, but the technology needed to economically 
recover the gas was not developed until the 1990s. Mitchell Energy persisted with gas 
production attempts on the Barnett Shale in the Fort Worth Basin of Texas until they finally 
found a successful combination of horizontal drilling and staged hydraulic fracturing that 
allowed the recovery of large amounts of shale gas at economic costs. Range Resources was 
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the first to apply the Mitchell-developed technology on the Marcellus Shale in 2007, and 
started the current play. Shale gas development continues in the U.S. and worldwide. 

The shale gas recovery process is not without environmental concerns. Environmental 

impacts on the Marcellus Shale include potential effects on air, water, ecosystems and 

habitat, some of which are known and others of which are still being studied. Improved 

drilling practices, such as frac fluid recycling, are reducing these impacts. There is reason to 

believe that all environmental impacts and indicators will be identified eventually, and 

properly regulated.  
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