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1. Introduction 

Nowadays, micro/nano science and technology has been one of the most attractive research 
fields. However, real time and accurate observation in micro/nano manipulation is a top 
important enabling technique. Most recently, with the great development of microscopes 
and computer vision techniques, real time visualization, including 2D motion measurement 
and 3D reconstruction, on micro/nano scale is becoming possible.  

As for 2D motion measurement, visual motion measurement on micro/nano scale is still an 
open problem. Many researchers have designed different algorithms, and most of them are 
based on a block matching algorithm, which locates matching blocks in a researched digital 
image for the purposes of distance or similarity estimation. Usually, block matching based 
methods can achieve better performances when the texture is not relevant, or the aliasing 
problem in the derivative estimation, which is caused by the large inter-frame 
displacements (Giachetti & Torre, 1996). Images, however, are typically processed assuming 
a uniform grid of pixels. While straightforward, the uniform grid representation does not 
scale well in a multi-scale setting, because it requires an excessive amount of refinement to 
capture small details in a image, including sub-pixel resolution. The motion to be estimated 
is, on most situations in micro/nano manipulation, small and not integer. Therefore, it is 
necessary to improve the existing algorithms and obtain higher precision not limited by the 
pixel dimension, i.e., sub-pixel motion estimation. In 1989, Anandan reaches a sub-pixel 
precision by locally approximating the difference function with a quadratic surface and 
published (Horn, 1986; Horn & Schunck,1981; Singh, 1990), however, the sub-pixel 
estimation resolution usually introduces more computational burden.  

As far as 3D reconstruction is concerned, depth measurement, i.e., methods to attain 3D 
information from 2D images, is an important research field in computer vision, and now it 
has been one of the key techniques in many fields, such as medicine, robotics, remote 
sensing and micro/nano manipulation. In recent years, there are various 3D reconstruction 
methods, including volumetric methods, depth from stereo (DFS), depth from focus (DFF) 
and depth from defocus (DFD)( Yin,1999), researched and used in real applications. 
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Volumetric methods usually reconstruct 3D models of external anatomical structures from 
2D images. They represent the final volume using a finite set of 3D geometric primitives. 
Then, from an image sequence acquired around the object to reconstruct, the images are 
calibrated and the 3D models of the referred object are built using different approaches of 
volumetric methods. These methods work in the object volumetric space and do not require 
a matching process between the images used. Thus, typically, the 3D models are built from a 
sequence of images, acquired using a turntable device and an off-the shelf camera (Teresa et 
al,in press, 2008). However, in some real applications, we do not need to reconstruct the 3D 
model of objects, because depth is enough to understand the 3D relationship of scenes. 

DFS estimates depth from two images of the same scene captured by cameras at different 
positions and with different postures (Wu, 1999). Because it needs to extract and match 
feature points in these images, the computational task is so huge. As for DFF, it uses a 
mapping relation between focus and depth to estimate depth. It obtains a sequence of 
images with different depth, measures the focus degree using a measurement operator 
(Bove 1993; Nayar,1992), and attains the desired depth when the measurement value is 
maximal or minimal. Compared to DFS, DFF is simple in principle, but its estimation 
accuracy is highly related to the number of images. 

DFD is first introduced by Pentland in 1987(Pentland,1987). It has been proved to be an 
effective depth reconstruction method by using the concept of blurring degree of region 
images with limit depth of field (Girod & Scherock, 1989; Pentland et al, 1994; Navar et al, 
1996). Usually, DFD algorithm captures two images obtained with different camera 
parameters, measures blurring degree of every point, and estimates depth using the point 
spread function. During the past years, DFD has become attractive because 1) it requires 
only two images; 2) it avoids matching and masking problems; 3) it is effective both in the 
frequency domain and in the spatial domain (Gokstorp,1994; Subbarao & Surya,1994). 
However, since all above DFD methods need to capture two defocused images with 
changed camera parameters, they can not be used in applications with high level 
magnification microscopes, such as micro/nano manipulation, because on these situations, 
it is destructive to change camera parameters. This is the main reason why DFD has not 
been used in micro/nano manipulation until now.  

2. 2D motion measurement  

Computer vision is one of the most important techniques used in motion measurements, 
especially 2D motion measurement, because the instruments used in computer vision are 
comparatively cheaper, the measurement process is simple and the result is direct. In recent 
years, with the development of revolution and sensitivity on visual sensors, the 
measurement scale of computer vision has reached micro/nano scale.  

Block matching method (BMA) is one of the most widely applied methods to compute the 
visual 2D motion from images, i.e. to estimate the 2D motion projected on the image plane 
by the objects moving in the 3D scene, as it is less susceptible to a random error source than 
edge based or image moment methods. 

2.1 BMA method  

The foundational principle of BAM is to find a matching block from an image X in some 
other image Y, which may appear before or after X, and through comparing them to 

www.intechopen.com



 
Applications of Computer Vision in Micro/Nano Observation 

 

529 

measure difference, such as distance or similarity, between two images. Therefore to select a 
criteria to determine whether a given block in image Y matches the search block in image X 
is top important, i.e., the object function. 

BMA based techniques usually can be divided into two classes according to the 
measurement criterion, including the minimal difference and the maximal similarity. The 
widely used object functions based on difference measurements include Sum-of-Squared-
Differences (SSD), Sum-of-Absolute-Differences (SAD) which can transferred into Local-
SAD (LSAD) when its intensity is locally scaled and Zero-SAD (ZSAD) with setting the 
average gray level difference equal to zero. If the difference minimum is replaced by the 
maximum of a correlation measurement, some object functions can be got, such as 
Normalized-Cross-Correlation (NCC)(Qi & Michale,1987), Approximate-Maximum-Direct-
Correlation (AMDC)( Kim & Meng,2007), or some other variations those are all approximate 
maximum likelihood estimators(Robinson & Milanfar,2004).  

 

Fig. 1. Motion of the continuous image F(i,j) with respect to the pixel grid 

Here, SSD, LSAD, ZSAD and NCC are all adopted to estimate the motion between two 

neighbor images in a same image sequence. The theory is shown in Fig. 1. Generally, X(i,j) 

and Y(i,j) are referred to as the model image and the target image respectively. F(i,j) is the 

continuous image function, εx,y represents additive noise, s=(sx, sy) is the shift between the 

model image and the target image. 

 , ( , )i j xX F i j     (1) 

 , ( , )i j x y yY F i s j s      (2) 

The object functions for SSD, LSAD, ZSAD and NCC are respectively defined as follow, 
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where ,i jx , ,i jy are the original gray intensity of each point in the model and target image 

respectively, , ,,i j i jX Y  are the mean of each image inside their respective “block”, u, v are 

coordinates of the model image block, and R(u ,v) is the object function between the model 

block and the target block. The shift ( , )x ys s s  is estimated by finding the peak of the 

objective function. 

The shift between the model image and the target image can be denoted as, 

 ns s s   (9) 

where ( , )n x ys n n  is the integer shift and ( , )x ys     is the sub-pixel shift. If the evaluation 

step is one pixel, ns
 can be obtained from, 

 
( , ) max{ ( , )}x yR n n R u v

 (10)  

However, the peak position above can only be solved with pixel-level accuracy, and it is not 

enough in many applications, especially in micro/nano manipulation. In order to attain the 

sub-pixel resolution, a quadratic curve fitting around the peak sn is usually used to estimate 

the sub-pixel shift sΔ as follows, 

 2( ) x x xf x a x b x c    (11) 

 
2( ) y y yf y a y b y c  

 (12) 

where ax, bx, cx, ay, by, cy are coefficients of the quadratic curves along x and y axis, which are 

the parameters to be estimated. The shift ( , )x ys     is estimated by finding the peak of the 

following f(x) and f(y). 
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 2max( ( ))x x xf x a x b   

 
(13) 

 
 2max( ( ))y y yf y a y b   

 
(14) 

If three points are used, the estimation results of the shifts can be denoted,  
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 where R’(u - nx, v - ny)=R(u, v). 

However, the precision of the method mentioned above is usually low as it has no 
additional points to be used. Thus, one simple and effective way to improve the estimation 
precision is to properly increase the interpolated points and the order of the fitting 
polynomials. 

2.2 Improved block matching algorithm  

2.2.1 The searching region 

As is known, the searching region is the main factor which influences the computational 
cost and affects the performance of the BMA. Thus, in this section, with respect to an image 
sequence, an improved method is proposed to reduce the searching region effectively. 

Since our aim here is to estimate the shift in the image sequence, and generally the motion is 
small between two neighbor images, it is not necessary to calculate R(u, v) with blocks 
throughout the whole image. Furthermore, the computation procedure not only increases 
the computational burden but also adds some opportunities of wrong matching when the 
texture or gray level of the target image is very similar.  

Assuming that the largest shift is known, our proposed new BMA can be denoted as 
following steps, 

- First, define the initial position. Since the shift between every two images is very small, 
it is reasonable to take the position of the block in the model image as the initial 
position in the target image. 

- Second, define the maximal distance that the block can move in target image as stepmax_x 
and stepmax_y , where stepmax_x and stepmax_y can be determined through experience. 

- Third, move step by step along x and y axis and calculate R(u, v) at each step. During 
this process, the total distance along x axis should be always equal or lesser than 
stepmax_x, the total distance along y axis should be always equal or lesser than stepmax_y.  

- Finally, find out the minimal or maximal value of the object function and the 
corresponding moving steps. 

It is clear that using the improved algorithm the computational burden can be greatly 
reduced because of the reduced searching region. Besides, if the whole image is similar in 
texture and gray level, or the block is very small, the improved method can also effectively 
decrease casual matching errors. 
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2.2.2 The block size  

In BMA, the size of a block is another important factor to influence the matching precision 

and the complexity. If the block is too small, the matching information is limited and it 

would influence the matching precision greatly. While if the block is too large, the 

deformation during movement cannot be omitted. Besides, the larger block can result in a 

large computational burden. Therefore, to research the relationship between the block size 

and the object function is meaningful. 

A standard grid used as the target object is shown in Fig.2, the magnification of the 
microscope’s objective lens is 60 , which means that the underlying image is very smooth. 
The black squares designate the “blocks”. First, we tested the matching error of different 
object functions on different block sizes. The results are shown in Fig.3, where the vertical 
axis denotes the estimation errors, with unit of pixel; the horizontal axis denotes the block 
size, with unit of pixels.  

1. The estimation error of NCC is sensitive to the block size and has no obvious rule. 
Therefore if one wants to estimate the sub-pixel shift between two images by using 
NCC, the block size should not be the main regulating parameter. 

2. The estimation error of LSAD is sensitive to the block size too, the larger the block size 
is selected, the smaller the estimation errors. Thus, with respect to the LSAD sub-pixel 
estimation, it is often beneficial to increase the block size. 

3. As far as other functions are concerned, including SSD and ZSAD, they have the similar 
estimation results which can achieve much smaller errors comparatively, and they are 
not sensitive to block size as NCC and LSAD. 

4. As far as the standard grid block, the most appropriate size is 50 50 pixels, which 
includes an integral corner of a white grid and a little black background. It proves this 
kind of block both can express the internal difference of the block approximately and 
can eliminate the coupling between x and y direction. 

 

Fig. 2. The standard grid micrograph 
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Fig. 3. Estimation errors with different block size 

2.2.3 The sub-pixel fitting precision  

Third, it is well known that estimation error of the curve fitting may become smaller when 

the order of a fitting polynomial increases. In this experiment, the comparison of the sub-

pixel shift estimation error among different fitting polynomials including quadratic curve, 

cubic curve, quartic curve and spline curve, was conducted. Here, we used the same five 

fitting points, where the middle point is the peak and the other four points are on its both 

sides evenly. The main results are shown as Fig.5 to Fig.8, from which the following results 

can be obtained, 

1. No matter what objective functions are used, the estimation error of the quadratic curve 

is always larger than the original method because of redundancy. While due to high 

smoothness, the spline curve can achieve an optimal result for all objective functions. 

2. For NCC and SSD, the sub-pixel estimation is better enough when the fitting function is 

the cubic curve. That means, if the higher order fitting function is selected, the 

improvement in the estimation precision is unclear compared with the introduced 

computational burden. As far as the LSAD and ZSAD are concerned, the estimation 

precision improvement of the quartic fitting function is obvious. Thus, it can be 

concluded that the objective function is the main factor to decide the order of fitting 

equation. 

3. Since the computational burden has been greatly reduced by using the new BMA 

proposed in section 2.2.1, much higher precision can be achieved by using higher order 

fitting functions and larger number of fitting points. That can be properly selected 

based on the preceding conclusions in real applications. 
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Fig. 4. Estimation errors with NCC 
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Fig. 5. Estimation error with SSD  
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Fig. 6. Estimation error with LSAD 
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Fig. 7. Estimation error with ZSAD  

Based on the theory and experiment results in 2.2, if we want to attain a matching result 
with high precision and low computational task using the grid block, the following 
parameters should be chosen: the reduced searching region, ZSAD object function, 50 50 
pixels block size and the quartic sub-pixel fitting function. 

2.3 The driving characteristic of a piezoelectric actuator  

In order to validate the precision of our improved BAM practically, we used the PI nano 
platform to control the motion of the standard grid and calculated it with our method. 
Because the platform can output the nano motion, the shift of the grid is known. The KH-
7700 microscope was used to capture the images of the grid, and the shift of each step was 
50nm. Since the horizontal pixel is 57.47nm, the practical calculation result should be 0.89 
pixels. Fig.9 is the result of the integral shift and Fig.10 is the shift of sub-pixel where the 
vertical axis denotes the motion, with unit of pixel, and the horizontal axis denotes the shift 
steps; the line with “*” is the true movement and the line with “o” is the calculation 
movement. 

From Fig.9-10, we can see that the precision of our improved sub-pixel motion measurement 

method is very high, the integral pixel measurement is exactly equal to the true value and 

the sub-pixel measurement result is close to the true value. Therefore, the method can be 

used to measure the practical shifts in micro/nano manipulation.  

Then, the sub-pixel block matching method of displacement measurement based on 
computer vision was used to measure the driving characteristic curve of a piezoelectric 
actuator practically. The result was shown in Fig.11, where the vertical axis denotes the 
motion, with unit of nm, and the horizontal axis denotes the driving voltage, with unit of V. 
Fig.11(a) is the driving curve when the voltage increases to 200V and then decreases to 0V 
smoothly; Fig.11(b) is the driving curve when the voltage increases to 150V and then 
decreases to 0V; Fig.11(c) is the driving curve when the changing routine of the voltage is 

0V-200V-0V,0V-150V-0V,0V-100V-0V,0V-50V-0V; Fig.11(d) is the driving curve when the 

changing routine of the voltage is 0V-200V-0V,0V-160V-0V,0V-120V-0V,0V-80V-0V,0V-
40V-0V.  
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The measurement results of the piezoelectric actuator driving characteristic are consistent 
with the physics analysis. Furthermore, the proposed method, which is simple in 
manipulation and credible in measurement results, satisfies the requirement of the 
micro/nano measurement with high precision. 
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Fig. 8. The integral pixel measurement result  
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Fig. 9. The sub- pixel measurement result 
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(a) 0V-200V-0V 

 
(b) 0V-150V-0V 

 
(c) 0V-200V-0V,0V-150V-0V,0V-100V-0V,0V-50V-0V 
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(d) 0V-200V-0V,0V-160V-0V,0V-120V-0V,0V-80V-0V, 0V-40V-0V 

Fig. 10. The driving characteristic of a piezoelectric actuator 

3. 3D reconstruction  

Shape, or depth profile, reconstruction, is based on measurement depth information from 

2D images, and now it has been widely used in many fields, such as medicine, robotics, and 

remote sensing. 

All existing DFD algorithms can be divided into two kinds, local DFD algorithm and global 
DFD algorithm. In local DFD, a window around every pixel point is predefined, and the 
point’s blurring is defined as that of the window (Pentland,1987; Vinay & Subhasis,2007). 
However, the difficulty of selecting proper size of window is a well known disadvantage of 
DFD algorithm, because there is a trade-off between having a window that is as large as 
possible to average out noise, but as small as possible to guarantee that within it (Ens 
&Lawrence ,1993; Nair & Stewart,1992). As far as global DFD is concerned, its main idea is 
completely different with local DFD algorithm since it works on the entire image without 
information of its radiance, or the appearance of the surfaces, and depth. Therefore, it is 
necessary to construct the depth model and the radiance model simultaneously (Favaro et al 
2008, 2003 2002). This, however, will bring the problem of huge computation cost. A general 
method to solve this problem is to simplify the imaging model, for example, assuming the 
scene contains “sharp edges”, that is, there are discontinuities in the scene (Asada et al 
1998). Another way is to use a cubic function or structure light to approach the radiance 
(Nayar et al 1996; Lagnado & Osher,1997). Unfortunately, both local DFD and global DFD 
are on the basis of attaining two defocused images with different camera parameters which 
may destroy the camera drastically if the camera’s amplification level is high. 

In this section a novel DFD method with single fixed optical microscope is proposed to 
reconstruct the shape of samples on micro/nano scale. In the method, the blurring image 
model is constructed with the relative blurring and the diffusion equation, and the relation 
between depth and blurring is discussed from four aspects. The method proposed needs 
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only one microscope with unchanged camera parameters, so the reconstruction process is 
very simple. The experiments and error analysis results show that it can reconstruct shape 
on micr/nano scale.  

3.1 The imaging model for defocus 

In the defocus imaging model, a defocused image can be theoretically considered as the 
summation of some defocused points, and this process can be denoted by the following 
convolution function normally: 

 
( , ) ( , ) ( , )E x y I x y h x y 

 (17) 

where E(x, y) and I(x, y) are the defocused image and the focused image, respectively, h(x, y) 
is the point spread function. 

When the point spread function is approximated by a shift-invariant Gauss function, the 
imaging model in Eq.(17) can be formulated in terms of the isotropic heat equation: 
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where a is the diffusion coefficient, 
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If the depth map is an equifocal plane, a is constant. Otherwise, a is shift-variant, and the 
diffusion equation becomes: 
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where “ ”denotes the gradient operator and “ ”is the divergence operator, 

,
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x y x y

    
         

 . 

It is also easy to verify that the variance  is related to the diffusion coefficient a via: 

 2 2ta   (20) 

Suppose there are two images E1(x, y) and E2(x, y) for two different focus setting, also, 

1 2  (that is, E1(x, y) is more defocused than E2(x, y)), then E2 (x, y) can be written as: 
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where 2 2 2
2 1     is called the relative blurring(Favaro et al, 2008). So Eq.(18) can be 

written as: 

 
1

0 0

0

( , , ) ( , , ) [ , ) ( , )

( , , ) ( , )

u x y t a u x y t a t

u x y E x y

     
 


 (22) 

Eq.(19) becomes: 

 
1

0

0

( , , ) ( ( , ) ( , , ) ) ( , )

( , , ) ( , )

u x y t a x y u x y t t

u x y E x y

     
 


 (23) 

When the time-shifted is t ,the solution of the diffusion equation is 

2( , , ) ( , )u x y t E x y  ,and t  can be defined as, 

 
2

2 12 2( )t t a ta    
 (24) 

Thus, the relation between the relative blurring and the depth map can be denoted as: 

 
2 2 2 2

2 1( )b b   
 (25) 

where  is a constant between the blurring radius and the blurring degree, bi (i=1,2) is the 

radius of the burring round : 

 

1 1 1

2

Dv
b

f v s
  

 (26) 

where s denotes depth of the blurring point and D denotes the radius of the lens.  

3.2 The new shape reconstruction method 

Suppose E1(x, y), whose depth map is s1(x, y), is the defocused image attained before depth 
variation, and E2 (x, y) is another defocused image attained after depth variation, in this 
section, we will propose a new shape from defocus method in which the depth map s2 (x, y) 
is attained through a depth change Δs, and the main theory is shown in Fig.12. 

 

Fig. 11. The main theory of our method 

Microscope 

s1(x,y) 

s2(x,y) 

△s2(x,y) 
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Suppose s0 is the focus depth, and 1 2( , ) ( , ) ( , )s x y s x y s x y   . Based on the diffusion 

equations in section 2, the following functions can be given: 

 
1

2

0

0

( , , ) ( ( , ) ( , , ) ) ( , )

( , , ) ( , )

( , , ) ( , )

u x y t a x y u x y t t
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u x y t E x y

     
 
  


 (27) 

where the relative blurring can be denoted as: 
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Define: 
22

2 2 2
0 1

4 1 1

( , )
k

s s x yD v




 
   

 
, thus the desired depth map is:  

 2

0

1
( , ) 1 /( )s x y k

s
   (29) 

In real applications, it is reasonable to discuss the following four cases when the distance 

between the sample and the microscope is becoming shorter and shorter. 

a. s1> s2>s0 

 

Fig. 12. The theory of case A 

In this case, E1 (x, y) and E2 (x, y) are on the large side of s0, and E1(x, y) is more defocused 

than E2(x, y), so it is backward diffusion process from E1 (x, y) to E2(x, y), that is, the 

diffusion efficient a is negative. The theory is shown as Fig. 13 and the finial depth can be 

denoted as:  

 2

0

1
( , ) 1 /( )s x y k

s
    (30)  
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b. s0>s1> s2 

 

Fig. 13. The theory of case B 

As is shown in Fig.14, here, E1(x, y) and E2 (x, y) are on the small side of s0, E1(x, y) is less 

defocused than E2(x, y), so it is afterward diffusion from E1(x, y) to E2(x, y), and the diffusion 

efficient a is positive. The finial depth can be denoted as: 

 
2

0

1
( , ) 1 /( )s x y k

s
   (31) 

c. s1>s0, s2 < s0, ( s0-s2 )< ( s1-s0 ) 

 
(a) 

 
(b) 

Fig. 14. The theory of case C 
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This case is a little more complicated than the first two scenarios. E1(x, y) is more defocused 

than E2(x, y), but they are not on the same side of s0. Suppose s'2(x, y) is the symmetrical 

depth of s2(x, y) about s0, the process can be transferred from Fig.15(a) to Fig.15(b), and the 

finial depth can be denoted as: 

 2

0

1
( , ) 1 /( )s x y k

s
    (32) 

 2 0 2 0 0 22( , ) -( ( , ) ) - ( , )s x y s s x y s s s x y   
 (33) 

d.  s1>s0, s2 < s0, ( s0-s2 )> ( s1-s0 ) 

 
(a) 

 
(b) 

Fig. 15. The theory of case D 

Here, E1(x, y) is less defocused than E2(x, y), and they are not on the same side of s0. Suppose 

s'2(x, y) is the symmetrical depth of s2(x, y) about s0, the process can be transferred to 

Fig.16(b), and the finial depth can be denoted as: 

 2
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1
( , ) 1 /( )s x y k

s
    (34) 

 2 0 2 0 0 22( , ) -( ( , ) ) - ( , )s x y s s x y s s s x y   
 (35) 
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As a global algorithm, we construct the following optimization problem to calculate the 

solutions of the diffusion equations. 

  
2

2

2
( , )

arg min ( , , ) ( , )
s x y

s u x y t E x y dxdy     (36) 

However, the optimization process above is ill posed(Favaro et al 2008), that is, the 

minimum may not exist, and even if it exists, it may not be stable with respect to data noise. 

A common way to regularize the problem is to add a Tikhonov Penalty:  

 
 

2

2

2

2 2

( , )

2 2

argmin ( , , ) ( , )

( , ) ( , )

s x y

s u x y t E x y dxdy

s x y s x y 

  

  

 

k

 (37) 

where the additional term imposes a smoothness constraint on the depth map. In practice, 

we use 0  , 0k  which are all very small, because this term has no practical influence on 

the cost energy denoted as: 

 
 2

2

22

( ) ( , , ) ( , )F s u x y t E x y dxdy

s k s 

  

  

 
 (38) 

Thus the solution process is equal to the following: 

 
34 37

arg min ( )

. . .( ), .( )
s

s F s

s t Eq Eq


 (39  

Eq. (39) is a dynamic optimization which can be solved by the gradient flow, the algorithm 

can be divided into the following steps (the detailed process can be seen in literature (Favaro 

et al 2008)): 

1. Give camera parameters f, D,  , v,s0;two defocus images E1,E2；a threshold  ； and 

optimization step  ; 

2. Initialize the depth map with a plan s, to be simple, we can suppose that the initial 
plane is an equifocal plane; 

3. Compute Eq.(28)and attain the relative blurring; 

4. Compute Eq.(27) and attain the solution ( , , )u x y t  of diffusion equations ; 

5. Compute Eq.(38) with the solution of step(4). If the cost energy is below  , stop; or 

compute the following equation with step  , 

6. '( )
s

F s
t


 


 (40) 

7. Compute Eq.(26), update the depth map, and return to step(3). 

So if the initial depth is known, maybe it is just a general value, the dynamic depth, as well 

as the expected shape, can be reconstructed. 
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3.3 Experiment results 

In order to validate the new algorithm, we used it to reconstruct the shapes of a nano 

standard grid which is 500nm high, two AFM cantilevers. We used the microscope of 

HIROX -7700 shown as Fig.17, and magnify the grid into 7000 times. The rest parameters are 

as the following: f=0.357mm, s0 =3.4mm, F-number =2, D= f/2. 

 

Fig. 17. HIROX-7700 

In order to investigate the influence of different region size on the algorithm, we tested the 

grid with three kinds of region size and two kinds of AFM cantilever. As for the grid, 

through comparing to the true grid, the error maps in each experiment are constructed and 

the mean square error of the proposed method was calculated to test the precision. When 

testing the AFM cantilevers, we used PI nano platform to test the reconstruction precision. 

3.3.1 Shape reconstruction of the nano grid 

Firstly, the experiment using 120×110 pixel grid region was conducted. The results are 

shown in Fig.18 to Fig.21. Fig.18 is two defocused images in which the left is the image 

before variation and the right is that after variation; Fig.19 is the constructed 3D shape of the 

nano grid. In order to investigate the precision of the new algorism, we constructed the error 

map Φ between the true shape s and the estimated shape s , and computed the mean square 

error φ of the whole image. The compute formulas are shown in Eq.(41) and Eq.(42). Fig. 20 

is the true shape of the grid and Fig.21 is the error map. 

 1s
s

    (41) 

 2E ( -1)    
s
s

 (42) 
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Fig. 18. The defocused images 

 

Fig. 19. The constructed 3D shape 

 

Fig. 20. The true 3D shape  
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Fig. 21. The error map 

From Fig. 10-21, we can see that the new algorithm can attain good results in constructing 
nano grid shape, and the precision of the proposed method is very high. The mean square 
error of the whole image is equal to -0.048, and the average error is -9.26 nm. 

 Secondly, we tested our algorithm on the grid region of 120×50 pixels, the results are shown 
as Fig.22- Fig.25. The mean square error is equal to -0.038 and the average error is 10.39 nm. 
From the figures, we can see that the error of our construction algorithm is slightly larger at 
the edge of the image and smaller at other region, this results from the optimization method. 
However, the average error is only about 2.3% and it can certainly satisfy the demand of 
micro/nano magnification.  

 

Fig. 22. The defocused images 

 

Fig. 23. The constructed 3D shape 
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Fig. 24. The true 3D shape   

 

Fig. 25. The error map 

3.3.2 Shape reconstruction of the AFM cantilever 

The raise height of the cantilevers was controlled by the Iphysik Instrumente(PI) nano 
platform. Furthermore, we provided the performance of the algorithm on three kinds of 
raise height: 500nm, 300nm and 100nm. The theory of the experiment is shown as Fig.26. 

 

Fig. 26. The experiment theory of reconstruction AFM cantilever 

microscope 

cantilever 

PI platform 
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Firstly, the experiment using the conductive AFM cantilever was conducted. Fig.27 is two 
defocused images, in which the left is the image before variation and the right is that after 
variation; Fig. 28(a)- Fig.28(c) are the constructed 3D shapes of the bended cantilever when 
the PI platform rises 500nm, 300nm and 100nm. 

 

Fig. 27. The defocus images of the conductive cantilever 

  
(a) (b) 

(c) 

Fig. 28. The constructed 3D shape for 500nm, 300nm and 100nm 
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From Fig. 28., we can see that when the PI platform rises, the top end of the conductive 

cantilever bends obviously, and the deflection decreases gradually from the top end to the 

trailing end until close to a steady value; the bended degree is a monotonic function with the 

raise height. In order to contrast the bended precision, we choose the section image of them 

on the same position, and show them in Fig.29. From it, we can see that the deflection height 

is proportionately increases when the platform rises, and the height difference between the 

top end and the steady value is exactly equal to the raise height of the PI platform. 
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Fig. 29. The contrast of the conductive cantilever 

Secondly, the experiment using the triangle cantilever was conducted. Fig.30 is two defocus 

images, in which the left is the image before variation and the right is that after variation; 

Fig.31(a)- Fig.31(c) are the constructed 3D shapes of bended cantilever when different raise 

height is 500nm, 300nm and 100nm; Fig.31 is the contrast image of these three sections. 

From them we can get the same conclusions as the last experiment, but the sensitivity of the 

triangle cantilever is lower because the reconstructed shapes are a little rough. 

From these experiments, we can see that, regardless of the cantilever shape, our algorithm 

all can reconstruct the global bended shape exactly with only two defocused images. The 

following conclusion can be given:  

1. The most obvious bend of the cantilever concentrates on the region near to the tip, it is 
reasonable because when the PI platform works up, the stress all concentrates on the tip 
due to our experiment theory. 

2. The cantilever’s original shape, material and illumination can influence the 
reconstruction result to some extent. For example, the conductive cantilever is thinner 
than the triangle cantilever, and the shape reconstruction of it is smoother due to its 
higher sensitivity; the black edge of the cantilever results in a little error in the result. 

3. The raise height is larger, the calculation result is exacter, and the reconstruction image 
is smoother 

4. No matter how much the raise height is, the reconstruction height tends to be steady 
finally. Furthermore, the height difference between the maximum value and the 
original value is equal to the raise height of the PI platform. 
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Fig. 30. The defocus images of the triangle cantilever 

 

(a) (b) 

(c) 

Fig. 31. The constructed 3D shape for 500nm, 300nm and 100nm  
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Fig. 32. The contrast of the triangle cantilever 

4. Conclusion 

In this chapter, two typical micro vision algorithms were researched to model the process in 
micro/nano size: sub-pixel 2D motion measurement and DFD 3D reconstruction. 

As for 2D motion measurement, this chapter mainly researched the problem of motion 
measurement based on the sub-pixel estimation for image sequences. Firstly, three 
important factors, including the searching region, the model size, and the fitting precision of 
sub-pixel, are analyzed and researched in detail, and the most appropriated parameters are 
chosen with respect to both the experiment results and the measurement characteristic of 
micro/nano image sequences. Then, the nano platform with high precision, the microscope 
with high magnification and the standard grid are used together to validate the 
measurement precision of this method. Finally, the proposed method is used to measure the 
driving characteristic curve of a piezoelectric actuator practically. The experimental results 
of the piezoelectric actuator driving characteristic measurement are consistent with the 
physics analysis. Also, the proposed method, which is simple in manipulation and credible 
in measurement results, satisfies the requirement of the micro/nano measurement with high 
precision. 

On the other hand, a global shape reconstruction of the standard nano grid using single 
optical microscope was researched based on a new DFD method. Our primary contribution 
is to suppose a new global DFD algorithm. Therefore, it can be used to attain 3D information 
in one-eye vision, hand-eye system, especially in micro/nano manipulation. The second 
contribution is proposing a series of experiments to validate the method on micro/nano 
scale. The results below are significant: the computer vision can be used to reconstruct the 
global shape of the samples in micro/nano manipulation using defocused images without 
changing camera parameters. 
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