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1. Introduction 

Endocytosis is a complex process that is used by eukaryotic cells to internalize fragments of 
plasma membrane, cell-surface receptors, and various soluble molecules. Many different 
mechanisms have been developed to achieve internalization of membrane-bound receptors 
and their ligands and they can be distinguished in clathrin-mediated endocytosis and non-
clathrin internalization routes. In the clathrin-mediated endocytosis, receptors bind to the 
adaptor protein AP2 that, in turn, recruits clathrin to coat the invaginating pits at the plasma 
membrane. Coated pits are pinched off by the large GTPase dynamin to generate vesicles 
that traffic from the plasma membrane, undergo uncoating and fuse to the early endosomal 
compartment. Of note, dynamin is also required in non-clathrin-mediated endocytosis [for 
detailed recent reviews see (Doherty & McMahon, 2009; Loerke et al, 2009; Mettlen et al, 
2009; Traub, 2009)]. 

From early endosomes vesicles can be re-delivered to the plasma membrane through the 
exocytic pathway (Grant & Donaldson, 2009). Vesicle budding, uncoating, motility and 
fusion are controlled by the large family of Rab small GTPases. Rab proteins, in their 
active GTP-bound form, recruit downstream effectors that, in turn, are responsible for 
distinct aspects of endosomes function from signal transduction to selection and transport 
of cargoes. Furthermore, they control vesicular movements on microtubules thus 
supporting polarized distribution of internalized receptors and signalling molecules 
[reviewed in (Stenmark, 2009; Zerial & McBride, 2001)]. In this regards, the endo-exocytic 
processes are profoundly linked with the ability of the cell to elicit receptor-mediated 
signaling cascades. 

Endocytosis has long been considered as an attenuator of signaling as it downregulates 
receptors at the plasma membrane. However, the ability of internalized receptors to signal 
from the endosomal compartment and to be recycled to specific regions of the plasma 
membrane allows signal modulation both in time and in space. Indeed, endocytosis-
mediated recycling of receptors is also a major mechanism in the execution of spatially 
restricted functions, such as cell motility. Moreover, the endo-exocytic cycle of adhesive 
receptors back and forth from the plasma membrane represents another crucial regulatory 
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aspect played by traffic in the dynamic control of cell-to-cell and cell-to-extracellular matrix 
contacts. 

We, therefore, propose to illustrate the state of the art together with most recent discoveries 
on the following issues: 

1. The signaling endosome: a modality to finely tune persistence of extracellular stimuli 
inside the cell and to control their re-distribution and compartmentalization. The latter 
aspect is of extreme relevance for the role of endo-exo membrane trafficking in the 
execution of cell polarity programs.  

2. Involvement of endocytosis and exocytosis in the formation and turnover of cell-to-cell 
and cell-to-extracellular matrix adhesion. We will review the major findings showing 
the relevance of membrane trafficking of adhesive receptors, namely cadherins and 
integrins, and describing the molecular machinery involved that has been identified so 
far. We will also address recent work indicating that distinct molecular machineries are 
required for trafficking integrins in active and inactive conformation. 

3. Unconventional function of membrane trafficking proteins in mitosis. 
Trafficking molecules also participates to cell cycle progression and to the correct 
execution of mitosis. We will review the knowledge raised on this issue and discuss 
how the function of these molecules is related to their established role in membrane 
trafficking. 

2. Endocytosis and signalling 

Through endocytosis, active, signalling receptors - such as receptor tyrosine kinases (RTKs) 
– are removed from the plasma membrane (PM) and destined for degradation and this is 
crucial to achieve signal extinction and long-term attenuation. Endocytosis is able to 
remodel the composition of the plasma membrane (PM), thus allowing plasticity in the 
cellular responses to the microenvironment. Recent evidence, however, has demonstrated 
that endocytosis has a broader impact on signalling than simply signal extinction (Scita & Di 
Fiore, 2010; Sorkin & von Zastrow, 2009). Indeed, internalized receptors (and sometimes 
their ligands) are not only routed to the lysosome for degradation, but, in some cases, can be 
recycled to specific regions of the PM where polarized signalling is needed for events such 
as cell migration. Furthermore, signalling might not only occur from the PM, but also could 
persist along the endocytic pathway as, in the endosomal compartments, signalling 
receptors are often still bound to their ligands, and continue to be active. More interestingly, 
signalling receptors in the endosomal compartment could potentially interact with 
substrates that are not present at the PM. Under this scenario, endocytosis would be a 
mechanism to sustain signalling and to achieve signal diversification and specificity.  

2.1 Signalling elicited by the endocytic compartments 

The concept that signalling continues along the endocytic pathway was shown in the case of 

several signalling receptors, including RTKs and the TGFǃR (tumor growth factor β 
receptor) (Sorkin & von Zastrow, 2009). In all cases, receptors remain bound to their ligand 
and active once internalized within endosomes, thus sustaining signalling from the 
intracellular compartments (Burke et al, 2001; Di Guglielmo et al, 1994; Grimes et al, 1996; 
Haugh et al, 1999; Hayes et al, 2002; Howe et al, 2001; Lai et al, 1989; Pennock & Wang, 2003; 
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Wada et al, 1992; Wang et al, 2004; Wang et al, 1996). In agreement with this, all the 
components of the MAPK (mitogen-activated protein kinase) activation cascade can be 
found in endosomes (Pol et al, 1998; Roy et al, 2002), showing that RTKs signalling persist 
also after internalization. In this way, sufficient duration and amplitude to signalling is 
allowed. Furthermore, endosomal-specific proteins have been identified and shown to be 
required to sustain signalling. One example is represented by P18, which works at the 
endosomal membrane as an anchor for an ERK-activating scaffold and is required to achieve 
maximal activation of ERK1/2 (Nada et al, 2009). A similar mechanism occurs in the case of 
GPCR (G protein-coupled receptor) signalling, where ǃ-arrestin, similarly to P18, acts as a 
specific scaffold to anchor ERK1/2 to the endosome (DeWire et al, 2007) thus allowing 
proper signal duration. 

A series of genetic evidence support a role for endocytosis in the sustaining of the signalling. 
Historically, the first proof was provided by the use of a dominant-negative mutant of 
dynamin that blocks EGF internalization and causes the inhibition of EGF-induced 
activation of PI3K and ERKs (extracellular signal-regulated kinases) (Vieira et al, 1996). This 
initial evidence was then reinforced by experiments with siRNAs (small interfering 
RNAs) targeting proteins involved in internalization, which show that endocytosis is 
required for ERK activation by several receptor kinases [reviewed in (Sorkin & von 
Zastrow, 2009)]. Not only endocytosis is crucial to sustain signalling, but it is also 
required to determine signal specificity and diversification. Indeed, endosomes can 
support signalling cascades that cannot happen at the PM. The existence of endosome-
specific signalling cascades has been shown for different receptor systems, including 
RTKs, GPCRs and Notch (reviewed in (Scita & Di Fiore, 2010; Sorkin & von Zastrow, 

2009)). In the TGFβR pathway, specific signalling proteins are recruited to endosomes 
through their binding to PI3P (phosphatidylinositol 3-phosphate, which is enriched in 
endosomal membrane compared to PM) and this allows intracellular-specific signalling. 

Indeed, the activated TGFβR receptor interacts with the adaptor protein SARA (smad 
anchor for receptor activation) in early endosomes. SARA is associated with the receptor 

target SMAD2, and this allows the efficient phosphorylation of SMAD2 by TGFβR in 
endosomes (Chen et al, 2007; Hayes et al, 2002; Tsukazaki et al, 1998). Once 
phosphorylated, SMAD2 forms a complex with SMAD4, which translocates to the nucleus 
to regulate gene transcription. 

Importantly, early endosomes are a morphologically and functionally heterogeneous 

population, characterized by the presence of biochemically distinct membrane subdomains 

(Lakadamyali et al, 2006; Miaczynska et al, 2004; Sonnichsen et al, 2000; Zoncu et al, 2009).  

At the molecular level, small GTPases play a crucial role in determining the different sorting 
fates of cargoes at these stations, which ultimately impact on the final signalling response 
[reviewed in (Stenmark, 2009)]. For instance, APPL1-containing endosomes are precursors 
of early endosomes specifically enriched in Rab5 but lacking EEA1. It has been proposed 
that the progressive accumulation of PI3P species (through association and activity of 
phosphatidylinositol 3-kinase, PI3KC3/Vps34) causes the recruitment of EEA1, which 
competes with APPL1 for Rab5 binding, displacing it from the maturing early endosomes 
(Zoncu et al, 2009). Importantly, APPL1- but not EEA1-positive endosomes are competent 
for AKT signalling (Zoncu et al, 2009). This “phosphoinositide switch” is responsible for the 
maturation of endosomes and it is involved in signalling specification.  
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A non-canonical example of endosome-specific signalling is provided by the TNFR (tumor 
necrosis factor receptor) signalling cascade (Schutze et al, 2008) that promotes pro-apoptotic 
signalling. The components of this pathways are recruited to the ligand-bound TNFR at the 
plasma membrane (Micheau & Tschopp, 2003). In order for apoptosis to be achieved, the 
cysteine protease caspase-8 has to be activated by its proteolytic cleavage and this occurs on 
endosomes (Schneider-Brachert et al, 2004). Although, the mechanisms that prevent caspase-
8 recruitment and activation at the PM are not yet known, this represents another example 
of how endocytosis contributes to signal specificity.  

2.2 Regulation of signalling by endosome sorting 

Once internalized and sorted to the early endosomes, cargoes can be routed to degradative 
pathways, terminating signalling, or recycled back to PM, allowing further rounds of 
activation. Both these mechanisms contribute to regulate signalling in space and time 
[reviewed in (Marchese et al, 2008; Sorkin & von Zastrow, 2009)].  

Transfer of activated receptors to late endosomes/multivesicular bodies (MVB) terminates 

signalling, either by sequestering receptors in intraluminal vesicles, thus preventing their 

interaction with signal transducers, or by promoting their lysosomal degradation. Receptor 

ubiquitination plays a critical role in this process. Indeed, several protein complexes 

harbouring ubiquitin (Ub)-binding domains recognize ubiquitinated cargoes and escort 

them along the degradative route to the lysosome (Dikic et al, 2009). These complexes called 

ESCRT (endosomal sorting complex required for transport) act sequentially at various 

stations of the degradative route and are involved in MVB inward vesicles budding and 

cargo sequestration in the intraluminal vesicles of MVBs [for reviews see (Hurley & Hanson, 

2010; Raiborg & Stenmark, 2009)].  

On the other hand, recycling of internalized receptors to the PM allows the recovery of 

unoccupied/free receptors to the cell surface and restores receptor sensitivity to 

extracellular ligands, as is the case for GPCRs. One classical example is represented by ǃ2AR 

(ǃ2 adrenergic receptor). This class of receptors signals though interaction with PM-resident 

trimeric G proteins, which transduce signalling from the PM. Upon agonist stimulation, 

coupling of ǃ2AR trimeric G proteins is inhibited by receptor phosphorylation events [see, 

for instance, (Benovic et al, 1985; Benovic et al, 1986; Pitcher et al, 1992), reviewed in (Kelly 

et al, 2008)], which cause functional desensitization of signalling in the absence of 

endocytosis. However, ǃ-arrestins are recruited to the phosphorylated receptors, triggering 

their internalization and sorting into a rapid recycling pathway. This step promotes receptor 

dephosphorylation by an endosome-associated PP2A protein phosphatase, thus ensuring 

the return of intact receptor for successive rounds of signalling (Pitcher et al, 1995; 

Vasudevan et al 2011; Yang et al, 1988), a process called “resensitization”.  

A related example, where the differential trafficking fate determines the duration of the 
signal, is represented by the EGFR system. When stimulated with TGFǂ or EGF, EGFR is 
rapidly internalized. However, while EGF binding to EGFR remains stable at the pH of 
endosomes, TGFǂ rapidly dissociates from the receptor. This results in different signalling 
outputs: EGFR/EGF complex remains stable and active at the endosomal station and is then 
transported to lysosomes for degradation, allowing signal termination; in contrast, in the 
case of TGFǂ, the receptor detaches from ligand at the endosomal station and it is recycled 

www.intechopen.com



 
Endocytosis and Exocytosis in Signal Transduction and in Cell Migration 

 

161 

back to the PM, ready to undergo an additional round of activation (Decker, 1990; Ebner & 
Derynck, 1991; French et al, 1995; Longva et al, 2002). In agreement with this, TGFǂ is a 
more potent mitogen than EGF (Waterman et al, 1998). The idea that endosome sorting 
regulates signalling output as a function of ligand type was shown also in the case of KGFR 
(keratinocyte growth factor receptor). Indeed, stimulation with two different ligands, KGF 
or FGF10, targets the receptor to two distinct trafficking routes, degradation vs. recycling, 
respectively, and this correlates with the higher mitogenic activity exerted by FGF10 on 
epithelial cells (Belleudi et al, 2007).  

The central role of endocytosis in cellular signalling raises the possibility that alteration of 

this process might contribute to pathological phenotypes in which aberrant signalling is 

central, such as development and progression of cancer. Several lines of indirect evidence 

support a role of endocytosis in cancer [reviewed in (Lanzetti & Di Fiore, 2008; Mosesson et 

al, 2008)]. However, solid proof for a causative role of endocytosis in tumourigenesis is 

missing. A recent advance in this direction came from a study by Kermorgant’s group 

(Joffre et al, 2011), who investigated the mechanism leading to tumourigenesis of two 

oncogenic Met mutants (M1268T and D1246N). These mutations cause constitutive Met 

kinase activity that was originally considered at the basis of their oncogenic potential. By 

using a combination of in vitro and vivo approaches, Kermorgant’s group showed that 

endocytosis and intracellular trafficking of these mutants play a crucial role in determining 

their tumorigenic activity, besides their basal kinase activation. Indeed, these mutants are 

constitutively internalized and recycled back to the PM at a higher rate compared to WT 

receptor, and they also show impaired degradation. Importantly, inhibition of 

internalization with different genetic and pharmaceuticals tools is able to significantly 

reduce the ability of these mutants of induce transformation in vitro and to generate 

tumours in ex vivo xenograft experiments, without altering their activation status. Although 

the endocytic mechanism used by these mutant receptors is far to be clear (they seem to 

enter a constitutive pathway that depends on Cbl, Grb2, Clathrin and dynamin and that is 

independent from receptor kinase activity and ubiquitination), this is the first evidence for a 

direct involvement of endocytosis and endosome sorting in cancer development. 

2.3 Different trafficking routes determine signalling outputs 

Different internalization pathways are often associated to distinct intracellular fates. Several 

signalling receptors, including RTKs, GPCRs, TGFβR, NOTCH and WNT undergo both 
clathrin-mediated endocytosis (CME) and non-clathrin endocytosis (NCE) and this 
influences the final signalling output (Le Roy & Wrana, 2005). A mechanism of this kind 
takes place during internalization and signalling of the EGFR (Sigismund et al, 2005). At low 
doses of EGF, the EGFR is almost exclusively internalized through CME, which leads to 
recycling of the receptor and sustains signalling, with only a minor fraction of EGFRs 
targeted to degradation (Sigismund et al, 2008). At higher doses, about half of the ligand-
engaged receptors are then internalized through NCE, a pathway that targets EGFRs to 
lysosomal degradation causing rapid signal extinction (Sigismund et al, 2008). This dual 
mechanism perfectly couples with the different EGF concentrations found in body fluids 
[ranging from 1 to hundreds of ng/ml, reviewed in (Sigismund et al, 2005)]. Indeed, under 
scarce ligand availability, endocytosis (through CME) preserves the activated receptors from 
degradation, maximizing the signalling response; at high EGF, the NCE pathway destines 
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the excess of activated EGFR/EGF complex to degradation, protecting cells from 
overstimulation. This concept has been challenged in other studies, where EGFR was 
reported to be internalized exclusively through CME at all concentrations of EGF (Kazazic et 
al, 2006; Rappoport & Simon, 2009). The discrepancy may be due to the different cellular 
systems used in these studies. It still remains to establish the nature of the NCE pathway 
used by the EGFR and the molecular mechanism involved [which is still poorly 
characterized, although it has been shown to be caveolin-independent and to require 
receptor ubiquitination (Sigismund et al, 2008; Sigismund et al, 2005)]. 

A similar scenario was previously reported in the case of TGFβR. This receptor is 
internalized both by CME and NCE and this has profound impact on the final signalling 
output (Di Guglielmo et al, 2003). Proteins of the TGFǃ superfamily signal through the 

transmembrane Ser-Thr kinase TGFβR type I and type II heteromeric complex (TβRI and 
TβRII). Ligand-induced assembly of the heteromeric receptor complex activates TβRI, which 
initiates Smad signalling by phosphorylating the receptor-regulated Smads. The Smad 
adaptor protein SARA plays a crucial role at this step. Indeed, SARA binds the receptor and 
contains a FYVE (Fab1p, YOTB, Vac1p and EEA1) domain, which also binds to membranes 
through specific interactions with phosphatidyl inositol 3′ phosphate (PI3P). Receptor 
internalization through the clathrin pathway is essential for signalling and SARA has been 
found in the PI(3)P-enriched EEA1-positive endosomes that are downstream of this route 
(Di Guglielmo et al, 2003). Conversely, receptors that enter cells through NCE are associated 
with Smad7 and the E3 Ub ligase SMURF; they are ubiquitinated and subjected to 
degradation (Di Guglielmo et al, 2003).  

It is important to note that CME is not always associated to signalling and NCE to 
degradation, but the opposite is also true, as it was shown in the case of LRP6 [WNT3a-
activated low-density receptor-related protein 6, (Yamamoto et al, 2008)]. In the presence of 
Wnt3a, LPR6 is phosphorylated and internalized into caveolin-positive vesicles, where it can 
stabilize ǃ-catenin and activates signalling via the CK1g kinase. If LRP6 binds the Wnt3a 
antagonist Dkk (Dickkopf), it is targeted to the clathrin pathway, which is not competent for 
signalling but rather directs LRP6 to degradation. 

Other examples on how the route of internalization influences the final signalling output 
have been recently provided in the case of IGF-1R (Martins et al, 2011; Sehat et al, 2008) and 
PDGFR (De Donatis et al, 2008). In both cases, it has been proposed that they can enter 
through both clathrin-dependent and -independent pathways depending on the amount of 
ligand used to stimulate cells, similarly to what has been shown for the EGFR system. This 
again impacts on the final biological response. For instance, in the case of PDGFR, cells 
switch from a migrating to a proliferating phenotype in response to an increasing PDGF 
gradient. It was proposed that the decision to proliferate or migrate relies on the distinct 
endocytic route followed by the receptor in response to ligand concentration (De Donatis et 
al, 2008). Although these studies remain at the phenomenological level with no mechanistic 
insights, they confirm the idea that integration of different internalization pathways is 
crucial to decode signal information and to specify the signalling response.  

2.4 Role of endo-exo membrane trafficking in the execution of cell polarity programs 

Endo and exocytosis not only control the persistence and the nature of signals as highlighted 
above, but also the restricted compartmentalization of the signals. This has profound 
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implications in particular in the establishment of cell polarity, a process that largely relies on 
the correct localization of protein complexes and signalling platforms at cell-to-cell and cell-
to–extracellular matrix contacts. In this regards, a key role in the controlled distribution of 
signal transducers in restricted areas of the plasma membrane, in response to extracellular 
cues, is played by small GTPases of the Rab family like Rab5, Rab8 and Rab11.  

Rab5 is a master regulator of endocytosis and actin remodelling (Lanzetti et al, 2004; 
Lanzetti et al, 2000; Palamidessi et al, 2008; Zerial & McBride, 2001). It controls the 
internalization of a variety of distinct receptors, including the adhesive molecules integrins 
and cadherins (Palacios et al, 2005; Pellinen et al, 2006), as detailed in paragraph 3, thus 
participating to the processes of cell-to-cell and cell-to-extracellular matrix adhesion. 
Importantly, in Drosophila melanogaster deletion of Rab5 or disruption of the endocytic 
protein Syntaxin/Avalanche affects the polarized, restricted apical distribution of the fate-
decision receptor Notch and of the polarity determinant Crumbs (Lu & Bilder, 2005). Failure 
in internalization of Notch and Crumbs causes their accumulation and results in the 
expansion of the apical membrane domain. Impaired Notch internalization severely impacts 
on its degradation and signalling and, in turn, this leads to overgrowth of imaginal 
epithelial tissues (Lu & Bilder, 2005) indicating that endocytosis may also control epithelial 
tissue proliferation. 

Rab8 participates in polarized transport of molecules to the basolateral membrane (Huber et 
al, 1993) and also in cilia (Nachury et al, 2007). Genetic deletion of Rab8 in mice has been 
found to affect the distribution of apical proteins to the surface of intestinal epithelial cells 
resulting in accumulation of vacuoles containing apical hydrolases and microvilli with the 
final outcome of animal death by starvation (Sato et al, 2007). Thus, Rab8 has been proposed 
to play a crucial role in the biogenesis of the apical membrane, a process that is profoundly 
influenced also by another Rab protein involved in recycling routes: Rab11 [reviewed in 
(Hoekstra et al, 2004)]. Indeed trafficking via the recycling endosomes is required for the 
establishment or rearrangement of cell polarity in various settings including cellularization, 
cell–to-cell boundary rearrangement, asymmetric cell division, and cell migration (Assaker 
et al, 2010; Bryant et al, 2010; Emery et al, 2005; Xu et al, 2011). Furthermore, it provides a 
very efficient mechanism to reinforce polarity by feedback loops (Assaker et al, 2010).  

In addition to these GTPases, the endocytic protein Numb has also been implicated in the 
establishment of apical-basolateral polarity. Numb participates to cadherin endocytosis by 
interacting with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. 
Impairment of Numb induces mislocalization of E-cadherin from the lateral to the apical 
membrane. This function of Numb appears to rely on its phosphorylation by Atypical 
protein kinase C (aPKC), a member of the PAR complex, as it prevents association of 
phosphorylated Numb with p120 and ǂ-adaptin thereby attenuating E-cadherin endocytosis 
(Sato et al, 2011). 

Beside the involvement of endo-exocytosis in apical-basolateral polarity, these trafficking 
routes are also required in the establishment of planar cell polarity (PCP) [for a detailed 
reviews on membrane trafficking in cell polarity see (Nelson, 2009)]. Intracellular membrane 
trafficking has emerged as a crucial regulator of PCP in the Drosophila wing where inhibition 
of dynamin or Rab11 disrupts PCP-dependent hexagonal repacking (Classen et al, 2005). 
More recently, Rab5 has been found to bind to Go and to participates in PCP and in 
Wingless signal transduction, pathways initiated by G-protein coupled receptors of the 
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Frizzled (Fz) family. Additionally, Rab4 and Rab11 function in Fz- and Go-mediated 
signaling to favor PCP over canonical Wingless signaling (Purvanov et al, 2010). 
Furthermore, the Rab5-effector Rabenosyn-5 is required for the polarized distribution of 
PCP proteins at the apical cell boundaries aiding the establishment of planar polarity 
(Mottola et al, 2010). 

The requirement for regulation of clathrin-mediated endocytosis in planar cell polarity also 

emerges from the study showing that the planar polarized RhoGEF2 controls the function of 

Dia and Myosin II which, in turn, are responsible for the initiation of E-cadherin endocytosis 

by regulating their lateral clustering (Levayer et al, 2011).  

Another relevant instance of the involvement of endo/exocytosis in the execution of 

polarized function is directed cell migration. Also in this case important lessons come from 

the Drosophila model. In the fruit fly, endocytosis of motogenic receptors and their recycling 

to the plasma membrane serve to maintain their polarized distribution at the leading edge of 

migrating cells, thus promoting directional motility (Jekely et al, 2005; McDonald et al, 2006; 

McDonald et al, 2003; Montell, 2003; Wang et al, 2006). This is achieved via a tight control of 

endocytosis and recycling in restricted areas of the cell membrane through the regulation of 

a subset of molecules such as the endocytic E3 ligase Cbl, or the Rab5 GEF Sprint (Jekely et 

al, 2005).  

Collectively, these observations provide genetic evidence that one physiological role of 

endocytosis is to ensure localized intracellular responses to extracellular cues, i.e. the spatial 

restriction of signalling. Similar circuitries are also exploited in mammalian cells to achieve 

and maintain cell polarity and also to execute polarized functions such as directed cell 

migration (Balasubramanian et al, 2007; Caswell & Norman, 2008; Jones et al, 2006; 

Palamidessi et al, 2008; Riley et al, 2003; Schlunck et al, 2004). Of note, directed cell 

migration in mammalian cells has been found to require Rab proteins like Rab25 and Rab5 

(Caswell et al, 2007; Palamidessi et al, 2008). Rab25 promotes the extension of long 

pseudopodia in 3D matrices, by regulating the recycling of a pool of �5�1 (Caswell et al., 

2007; detailed in paragraph 3), Instead, Rab5-dependent endocytosis allows for the 

activation of Rac, induced by motogenic stimuli, on early endosomes. Subsequent recycling 

of Rac to the plasma membrane ensures localized formation of actin-based migratory 

protrusions (Palamidessi et al, 2008).  

3. Regulation of cell adhesion dynamics by trafficking adhesive receptors 

The acquisition of key molecular strategies that support social cell functions, such as 
intercellular communication and adhesion either to other cells or to the surrounding 
environment, represented a tenet in the evolution from simple unicellular to complex 
multicellular organisms on the Earth (Rokas, 2008). Indeed, the appearance of genes 
encoding for adhesion receptors is likely to have represented a major driving force of the so 
called Cambrian explosion during which, around 500 million years ago, the appearance on 
our planet of multicellular organisms, aka metazoans, and an astonishingly wide 
exploration of most of their possible morphological organizations took place (Abedin & 
King, 2010). In mammalians, the ability of dynamically regulating cell adhesion in space and 
time is crucial for several physiological and pathological phenomena, such as embryonic 
development (Hynes, 2007), tissue and organ morphogenesis and repair (Insall & Machesky, 
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2009), leukocyte extravasation (Hogg et al, 2011), platelet aggregation (Tao et al, 2010), and 
cancer cell metastatic dissemination throughout the body (Roussos et al, 2011). Cadherins 
(Takeichi, 2011) and integrins represent the main classes of transmembrane receptors 
respectively mediating cell-to-cell and cell-to-extracellular matrix (ECM) adhesion in 
mammals. A dynamic control of cell adhesion can be accomplished by regulation of either 
conformation or endo-exocytic traffic of adhesion receptors. Cadherin and integrin 
conformational activation can be triggered by the binding of either extracellular divalent 
cations, e.g. Ca2+ for cadherins (Takeichi, 2011) or Mg2+ for integrins (Tiwari et al, 2011), or 
cytosolic proteins, such as talin and kindlin in the case of integrins (Moser et al, 2009). The 
mechanisms that directly supersede to the control of cadherin (Gumbiner, 2005; Niessen et 
al, 2011; Takeichi, 2011) and integrin conformation (Moser et al, 2009; Shattil et al, 2010) have 
been extensively described elsewhere. Here, we will instead review the emerging evidence 
of how cell adhesion and migration critically depends on cadherin and integrin traffic. 

3.1 Role of E-cadherin traffic in adherens junction maintenance and remodeling 

Normal epithelial tissues are hold together by adherens junctions (AJs), i.e. cell-to-cell 
adhesion sites that originate after the dimerization in trans of epithelial (E)-cadherin 
molecules (Gumbiner, 2005; Niessen et al, 2011; Takeichi, 2011). E-cadherin-dependent 
assembly of AJs is required to assemble and maintain the apico-basal polarity of functional 
epithelia (Rodriguez-Boulan et al, 2005). 

In Drosophila and in mammals, the maintenance of both AJs and epithelial polarity depends 
on a complex formed by the small GTPase Cdc42 and its partner PAR6 that binds aPKC 
(Goldstein & Macara, 2007; Iden & Collard, 2008; McCaffrey & Macara, 2009).  

Interestingly, Cdc42, PAR6, and aPKC are required for the activation of a signaling pathway 
responsible for the dynamin-driven pinch-off of vesicles during E-cadherin endocytosis 
from Drosophila AJs (Baum & Georgiou, 2011; Georgiou et al, 2008; Leibfried et al, 2008) and 
a genome wide siRNA screen in C. elegans also identified Cdc42, PAR6, and aPKC as key 
regulators of endocytosis (Balklava et al, 2007). In addition, pharmacological inhibition of 
dynamin coupled to two-photon FRAP microscopy demonstrated that in mammalian cells 
E-cadherin engaged at mature stationary AJs turns over by endocytosis and not by free 
diffusion through the PM (de Beco et al, 2009). Drosophila Cdc42 interacting protein 4 (Cip4), 
aka transducer of Cdc42-dependent actin assembly 1 (TOCA-1) in mammals, displays both 
an FCH-Bin–Amphiphysin–Rvs (F-BAR) and a Src homology 3 (SH3) domains that 
respectively bind curved membranes and dynamin (Fricke et al, 2009). Of note, Cip4 
knockdown causes AJ and E-cadherin endocytosis defects identical to those caused by the 
lack of components of the Cdc42/PAR6/aPKC apical complex (Baum & Georgiou, 2011; 
Leibfried et al, 2008).  

Once internalized, E-cadherin is first trafficked to Rab5 containing early endosomes and 

from there to a Rab11-positive recycling compartment (Emery & Knoblich, 2006; Harris & 

Tepass, 2010; Wirtz-Peitz & Zallen, 2009). Sec10 and Sec15 proteins then directly bind and 

interconnect the ǃ-catenin-bound endosomal E-cadherin to the exocyst complex located at 

the PM, hence favoring the recycling of the adhesion receptor (Langevin et al, 2005).  

There is now a mounting consensus that the maintenance of stable AJs requires the 
continuous and local traffic of E-cadherin back and forth from the PM (Baum & Georgiou, 
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2011; Emery & Knoblich, 2006; Harris & Tepass, 2010; Wirtz-Peitz & Zallen, 2009). Therefore, 
endless cycles of polarized endocytosis and recycling of E-cadherin are responsible for the 
existence in space and time of AJs that warrant an efficient intercellular adhesion in stable 
epithelia.  

This would suggest that in living cells, because of the intrinsic physical and biochemical 
properties of its molecular components, what appears as a stable adhesion site is nothing 
but an almost continuous and swift spatio-temporal succession of short-lived adhesive 
events. In this framework, endocytosis could be required either to remove and then 
replenish via recycling the adhesive material or to provide a substantial fraction of the force 
required to maintain adhesion.  

Moreover, the incessant turnover of E-cadherins would allow cells to rapidly adapt the 
structure of their AJs in response to extracellular signals during tissue reshaping. Indeed, 
during embryonic development, cancer cell metastatization, and tissue fibrosis epithelial 
cells activate the epithelial-mesenchymal transition (EMT) program during which they lose 
their AJs and become motile (Kalluri & Weinberg, 2009; Thiery & Sleeman, 2006). For 
example, in epithelial cells, hepatocyte growth factor (HGF), acting through the MET 
tyrosine kinase receptor, activates H-Ras that, by stimulating the Rab5 guanosine exchange 
factor Ras and Rab interactor 2 (RIN2), induces E-cadherin endocytosis (Kimura et al, 2006). 
In addition, HGF signals via Src and generates a tyrosine phosphosite on E-cadherin where 
the E3-ubiquitin ligase Hakai docks to trigger the ubiquitination and lysosomal degradation 
of E-cadherin (Fujita et al, 2002; Palacios et al, 2005). 

3.2 Combined regulation of integrin function by conformation and traffic 

Integrin heterodimers can switch from low (inactive) to high affinity (active) conformation 

for their ECM ligands (Hynes, 2002). Conformational activation of integrins can be due to 

the interaction of their cytoplasmic tails with different proteins acting as positive (e.g. talin 

and kindlin) (Moser et al, 2009; Shattil et al, 2010) or negative (e.g. mammary-derived 

growth inhibitor, MDGI) modulators (Nevo et al, 2010). Due to their ability to mechanosense 

the surrounding ECM environment and mediate the interactions that support cell adhesion 

and migration (Parsons et al, 2011), active integrins are key regulators of several important 

adhesion dependent functions, such as assembly and morphogenetic movements of tissues 

and organs or migration of isolated/clustered cells through the body (e.g. immune or cancer 

cells). For example, the remodeling of immature vascular networks that occurs during 

embryonic, but not tumor angiogenesis, depends on the ability of endothelial cells (ECs) to 

instantaneously mechanotransduce variations in fluid shear stress (Hahn & Schwartz, 2009). 

Integrin traffic is increasingly recognized as a key determinant in the dynamic control of cell 
adhesion to the ECM (Caswell et al, 2009; Pellinen et al, 2006). Integrins can be internalized 
in a clathrin-dependent as well as in a clathrin-independent way. For example, ǂ5ǃ1 
integrin, the major fibronectin (FN) receptor, can be endocytosed into clathrin-coated 
vesicles (CCVs) (Pellinen et al, 2008) or by a caveolin-mediated pathway (Shi & Sottile, 
2008). It was initially hypothesized that in migrating cells integrins can be preferentially 
endocytosed in ECM-adhesion sites located at the trailing edge and then recycled back en 
masse toward the leading edge (Bretscher, 1989). More recently, such a theoretical long range 
model has been challenged by an experimental short range model that showed how in cells 
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migrating in 3D matrices a spatially restricted subpopulation of ǂ5ǃ1 integrin is instead 
internalized from the PM of ECM-adhesions located at the cell front and quickly recycled 
back to the same or proximal adhesive structures (Caswell & Norman, 2008; Caswell et al, 
2007; Caswell et al, 2009). The Rab11 subfamily member Rab25, which resides in a vesicular 
compartment located in close proximity of the tips of invading pseudopods, physically 
interacts with the ǃ1 subunit of the internalized integrins and promotes tumor cell invasion, 
likely by favoring the localized recycling of ǂ5ǃ1 integrin (Caswell & Norman, 2008; Caswell 
et al, 2007; Caswell et al, 2009). Another key regulator of integrin traffic in motile cells is the 
Rab11 effector Rab-coupling protein (RCP), which binds with ǃ3 integrin and, when ǂvǃ3 
integrin is inhibited, switches to the cytodomain of ǃ1 integrin, connecting ǂ5ǃ1 integrin 
with Rab11 and thus favoring its recycling to the PM (Caswell et al, 2008; Caswell et al, 
2009). Of note, RCP also associates with EGFR and, upon ǂvǃ3 inhibition, the recycling to 
the PM  of endocytosed EGFR is enhanced in coordination with that of ǂ5ǃ1, finally 
resulting in an increased EGFR auto-phosphorylation and downstream activation of AKT 
(Caswell et al, 2008; Caswell et al, 2009). 

In the last couple of years, the new concept that endocytosis of active and inactive integrins 

could be mediated by different sorting machineries started emerging. Neuropilin 1 (Nrp1) is 

a transmembrane protein, initially identified in neurons, that is also expressed in ECs, where 

it works as a co-receptor for both pro- and anti-angiogenic factors, such as vascular 

endothelial growth factor (VEGF)-A165 and semaphorin 3A (SEMA3A) respectively 

(Bussolino et al, 2006; Neufeld & Kessler, 2008; Serini & Bussolino, 2004). The very C-

terminal SEA motif of Nrp1 cytodomain binds the endocytic adaptor GAIP interacting 

protein C terminus 1 (GIPC1)/synectin (Cai & Reed, 1999) that can also bind to the motor 

Myosin VI (Myo6) (Reed et al, 2005). Nrp1, via its cytodomain, controls EC adhesion to FN 

in a way that does not depend on its function as co-receptor for either VEGF-A or SEMA3A, 

but rather on its ability to promote the GIPC1/synectin- and Myo6-dependent endocytosis 

of the active, but not inactive conformation of ǂ5ǃ1 integrin from ECM adhesions 

(Valdembri et al, 2009). Remarkably, Nrp1 silencing does not affect the ratio between active 

and inactive ǂ5ǃ1 integrin, indicating that not only the conformational switch of integrins, 

but also the regulation of active integrin traffic and distribution constitutes an equally 

crucial parameter in the control of EC adhesion to the ECM (Valdembri et al, 2009). It has 

hence been proposed a model in which, upon FN binding, active ǂ5ǃ1 integrin associates 

with Nrp1 at the PM. GIPC1/synectin and Myo6 then favor the rapid internalization of the 

active ǂ5ǃ1/Nrp1 complex into Rab5-positive early endosomes, from which (active) ǂ5ǃ1 is 

then recycled back to the PM, likely in newly forming ECM-adhesion sites. 

The described endo-exocytic cycle of active integrins back and forth from ECM adhesions is 

remarkably similar to the traffic dependent E-cadherin dynamics observed in AJs of 

epithelial cells (see above). It is therefore tempting to speculate that also an ECM adhesion 

site could result from a rapid sequence of localized and exceptionally brief adhesive events, 

during which traffic could be crucial either to endocytose and then immediately recycle 

active integrins or to generate the force that has to be applied on ECM-bound active 

integrins to allow cell adhesion. Likely because GIPC1/synectin also binds the C-terminal 

SDA motif of the ǂ5 integrin subunit cytodomain (Tani & Mercurio, 2001), while in ECs 

Nrp1 and Myo6 are specifically dedicated to the endocytosis of active ǂ5ǃ1 integrin, GIPC1 

controls inactive ǂ5ǃ1 internalization as well (Valdembri et al, 2009). The different molecular 
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composition of the machineries that control active vs. inactive integrin traffic could imply 

that higher amounts of endocytic proteins are required to effectively internalize ECM-bound 

integrins. Accordingly, the force-generating retrograde motor Myo6 (Spudich & 

Sivaramakrishnan, 2010) participates to endocytosis, transport of endosomal vesicles along 

F-actin (Hasson, 2003), and active integrin internalization (Valdembri et al, 2009) as well. 

Clathrin coats exist either as classical curved clathrin-coated pits or as flat clathrin-coated 
plaques that depend on the presence of the actin cytoskeleton and occur only at ECM-
adherent surfaces, indicating that integrin-mediated adhesion of cells to the ECM likely 
control the organization of the different clathrin-based endocytic structures (Kirchhausen, 
2009; Saffarian et al, 2009). The potential role of cell-to-ECM adhesion in regulating clathrin-
mediated endocytosis is further supported by the recent experimental observation that the 
closer clathrin-coated pits are to integrin-containing adhesion sites the slower are their 
internalization dynamics (Batchelder & Yarar, 2010). It is indeed possible that the binding of 
integrins to the ECM could give rise to forces that counteract the pulling forces required to 
deform and curve the PM to finally allow clathrin-based internalization. Such a hypothesis 
could also account for the requirement of different molecular complexes for active vs. 
inactive integrin internalization.  

To date, only few proteins have been selectively involved in inactive, but not active, integrin 

traffic and the degree of specificity for the bent/inactive integrin conformation is still matter 

of debate. A prominent example is represented by the endocytic adaptor protein disabled 2 

(DAB2), that is able to directly bind the cytodomain of integrin ǃ subunits (Calderwood et 

al, 2003), and was recently found to selectively promote the internalization of inactive ǃ1 

integrins (Teckchandani et al, 2009). However, during ECM-adhesion disassembly 

experiments, Chao and Kunz, by incubating living cells with the anti-active ǃ1 integrin 

monoclonal antibody 12G10, found that active ǃ1 integrins could be endocytosed in a 

DAB2-dependent manner as well (Chao & Kunz, 2009). However, since incubation of living 

cells with function activating or blocking antibodies represents a significant bias in the study 

of integrin activation physiology, further work is needed to better characterize the role of 

DAB2. 

4. Unconventional function of membrane trafficking proteins in mitosis 

Recent findings have shown that clathrin-mediated endocytosis is active throughout mitosis, 

while the recycling pathway slows down from prophase until the completion of anaphase 

(Boucrot & Kirchhausen, 2007). These data have been generated by monitoring the changes 

in plasma membrane area during mitosis in living cells with a membrane-impermeant dye 

that becomes fluorescent upon binding to the outer leaflet of the plasma membrane. Since 

the dye cannot flip to the inner leaflet, only endocytic vesicles generated by internalization 

of the plasma membrane can be visualized. At metaphase, these plasma membrane-derived 

vesicles are not delivered back at the surface resulting in a net decrease of the cell area. In 

turn, this translates in cell detachment and round up from prophase to anaphase. The 

recycling pathway recovers at telophase when the forming daughter cells start to spread 

again (Boucrot & Kirchhausen, 2007).  

Interestingly, mitotic phosphorylation of Rab4, a GTPase required for recycling from early 

endosomes to the plasma membrane (van der Sluijs et al, 1992), prevents its localization at 
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endosomal membranes (Ayad et al, 1997). During mitosis, phosphorylated Rab4 is in the 

cytosol complexed with the peptidyl-prolyl isomerase Pin1 and it is no longer able to recruit 

downstream effectors on endosomes (Gerez et al, 2000). Thus an appealing possibility is that 

Rab4 phosphorylation might participates in the inhibition of the recycling pathway 

measured by Boucrot and Kirchhausen during the early steps of mitosis. 

Of note, fusion of early endosomes in mitosis is blocked via cdc2-dependent 

phosphorylation events (Tuomikoski et al, 1989). This might represent an additional 

mechanism to inhibit vesicles recycling at the plasma membrane by altering the homeostasis 

of the endosomal compartment and affecting the generation of exocytic vesicles. Inhibition 

of homotypic fusion of early endosomes at mitosis is also caused by decreased residence 

time of the early endosome-tethering molecule EEA1 on endosomal membranes (Bergeland 

et al, 2008). It would be interesting to define how the acceleration of the EEA1 cycle between 

cytosol and membranes is achieved in mitotic cells.  

Endocytic/trafficking proteins are also emerging as important factors required for the 
proper execution of cell division. Beside the involvement of trafficking molecules in 
membrane delivery to the cleavage furrow at cytokinesis [for recent reviews see (McKay & 
Burgess, 2011; Montagnac et al, 2008)], some of these proteins also display specific functions 
in mitosis. Here we will review knowledge rising on this issue. 

One of the best-characterized endocytic molecules showing a distinct role in mitosis is the 
clathrin heavy chain. The clathrin complex is organized in a triskelion made of three heavy 
chains each with an associated light chain (ter Haar et al, 1998). At metaphase, clathrin also 
localizes to kinetochore fibers (spindle microtubules connecting kinetochores to spindle 
poles) of the spindle apparatus (Royle et al, 2005). Here it stabilizes spindle microtubules 
aiding congression of chromosomes on the metaphase plate. Depletion of clathrin heavy 
chain by RNA interference causes failure in the correct attachment of chromosomes to 
kinetochore fibers resulting in misaligned chromosomes and in persistent activation of the 
mitotic checkpoint thus prolonging mitosis (Royle et al, 2005). More recently, some advances 
in understanding clathrin function at the spindle have been made. Clathrin heavy chain has 
been found to bind to TACC3, phosphorylated on serine 558 by Aurora A, and to recruit it 
to the spindle. In turn, TACC3 is responsible for localization of ch-TOG, a protein that 
promotes microtubule assembly and spindle stability, to spindles (Lin et al, 2010). In 
agreement, functional ablation of clathrin heavy chain causes loss of ch-TOG from spindles 
and destabilizes kinetochore fibers affecting chromosome congression. Based on electron 
microscopy data, it has been proposed that TACC3/ch-TOG/clathrin heavy chain complex 
works as an inter-microtubules bridge that stabilizes kinetochore fibers by physical 
crosslinking reducing the rate of microtubule catastrophe (Booth et al, 2011). 

Another important endocytic player is epsin, an adaptor molecule that binds and deforms 

membranes driving curvature of clathrin-coated pits (Ford et al, 2002). At mitosis, epsin 

participates in spindle morphogenesis indirectly through its ability to regulate mitotic 

membrane organization (Liu & Zheng, 2009). In cells depleted of epsin, by RNAi-mediated 

silencing, the membrane network that uniformly surrounds the chromosomes is distorted 

with uneven membrane distribution frequently showing layers of membrane whorls. This, 

in turn, alters spindle morphology resulting in splayed spindle poles and multipolar 

spindles (Liu & Zheng, 2009).  
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Huntingtin-interacting protein 1-related (HIP1r) functions in clathrin-mediated endocytosis 
and links endocytosis to the actin cytoskeleton (Engqvist-Goldstein et al, 2001). HIP1r also 
localizes to the spindle and its depletion by RNA interference causes chromosome 
misalignment and activation of the spindle checkpoint (Park, 2011). 

In addition, is worth to mention that Rab6A’, a GTPase that regulates trafficking between 
the Golgi and post-Golgi membrane compartments, is also required for spindle stability 
(Mallard et al, 2002). At mitosis, depletion of Rab6A’ arrests cells at metaphase (Miserey-
Lenkei et al, 2006). Aligned chromosomes, in Rab6A’-depleted cells, show increased amount 
of p150Glued, a subunit of the dynein/dynactin complex, and of Mad2 at kinetochores. 
p150Glued takes part in the release of the checkpoint protein Mad2 from kinetochores thus 
switching off the mitotic checkpoint, an operation required for the transition of cells from 
metaphase to anaphase. The inability of Rab6A’-silenced cells to progress mitosis might be 
the consequence of defective p150Glued-mediated transport of Mad2 out of kinetochores 
resulting in the failure to turn off the checkpoint. Thus Rab6A’, by regulating the dynamics 
of the dynein/dynactin complex at the kinetochores, cooperates to the inactivation of the 
Mad2-spindle checkpoint. 

Some trafficking proteins have also been found to act at the centrosome which is part of the 
mitotic machinery that ensure proper chromosome segregation. One of these proteins is 
dynamin. In addition to its membrane localization, dynamin is at the centrosome 
throughout the cell cycle and localizes to the spindle midzone and to the cleavage furrow 
during cytokinesis (Thompson et al, 2004; Thompson et al, 2002). Depletion of dynamin by 
RNA interference causes centrosome separation indicating a role for dynamin in the 
maintenance of centrosome cohesion (Thompson et al, 2004).  

The Autosomal Recessive Hypercholesterolemia (ARH) protein provides another example. 
ARH is a cargo-specific adaptor that functions in clathrin-mediated endocytosis of receptors 
of the LDLR family (Shin et al, 2001). It displays a complex subcellular localization being on 
endocytic vesicles and at the centrosome in interphase. During mitosis, it also localizes to 
kinetochores, spindle poles and midbody. The suggested function for ARH is in centrosome 
assembly, as ARH-/- embryonic fibroblasts show smaller centrosomes. Since ARH binds to 
the dynein motor protein it could cooperate in the transport of components to the 
centrosome. Of note, functional ablation of ARH also strongly delays cytokinesis (Lehtonen 
et al, 2008). 

In addition, the Rab-GAP protein RN-tre is phosphorylated at mitosis and 

dephosphorylated by the dual-specificity phosphatase Cdc14A (Lanzetti et, 2007). Cdc14A 

controls key mitotic events and it is also implicated in centrosome function in human cells 

(Mailand et al, 2002). Mitotic phosphorylation on RN-tre modulates its GAP activity 

establishing an additional link between endocytosis and the machinery working at mitosis 

(Lanzetti et al, 2007). 

Finally, Rab5 is required for nuclear membrane breakdown at mitosis, as depletion of this 
GTPase in C. elegans delays nuclear envelope disassembly and the release of nuclear 
envelope and lamina components (Audhya et al, 2007). The activity of Rab5 in nuclear 
envelope disassembly appears to result from its involvement in structuring the ER, of which 
the nuclear membrane represents a functional district (Audhya et al, 2007). Rab5 participates 
to mitotic ER clustering  and to disassembly of the nuclear envelope also in mammalian cells 
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(Audhya et al, 2007; Serio et al, 2011). Although the molecular mechanisms are unclear, it 
has been proposed that Rab5 might act in trans, while localized on endosomes, by 
interacting with effectors on the ER membrane to induce their homotypic fusion. 
Furthermore, recent findings have shown that, at mitosis, Rab5 is required for proper 
chromosome alignment both in human cells and in the Drosophila system (Serio et al, 2011; 
Capalbo et al, 2011). 

One relevant question is whether the modality of function for these molecules at mitosis is 
distinct from their role in membrane trafficking during interphase. A couple of observations 
argue in favor of this possibility. 

First, some of these proteins display a subcellular localization in mitosis distinct from 

trafficking membranes. For instance, the globular N-terminal domain of the clathrin heavy 

chain is responsible for clathrin localization to kinetochore fibers and a number of assays, 

including labeling of intracellular membranes, electron microscopy analysis and mass 

spectrometry, revealed that it does not coat membranes at the spindle but it rather bind to 

microtubules or to microtubules-associated proteins (Royle et al, 2005). Localization of 

dynamin to centrosome, which is a non-membranous organelle, is dynamic and occurs 

through its middle domain in a microtubules-independent manner (Thompson et al, 2004).  

Second, these molecules appear to interact with binding partners distinct from those 

involved in vesicular trafficking pathways and such interactions seem to be relevant during 

cell division. Indeed, clathrin has been reported to bind and stabilize spindle microtubules 

(Royle et al, 2005) while dynamin interacts with the centrosomal protein γ-tubulin 

(Thompson et al, 2004). In addition, the β2-adaptin subunit of the clathrin adaptor AP2 

associates, at least in vitro, with a component of the mitotic spindle checkpoint, the kinase 

BubR1. Although the physiological meaning of this interaction is unknown, it might provide 

a link between endocytic proteins and the mitotic checkpoint machinery (Cayrol et al, 2002). 

Of note, two accessory components of clathrin coated pits, epsin and Eps15 are 

phosphorylated at mitosis and such modification reduces their binding to the α-adaptin 

subunit of AP2 (Chen et al, 1999). Among the different hypothesis that can be envisioned, 

one appealing possibility is that mitotic phosphorylation of epsin and Eps15 alters their 

binding capabilities promoting formation of protein complexes working at mitosis and 

involving partners distinct from AP2. Importantly, epsin has been shown to facilitate 

spindle organization independently from its endocytic function by using cell-free spindle 

assembly assays. In these assays, Xenopus egg extracts, lacking the membrane cortex, have 

been depleted of epsin and reconstituted with purified epsin or with epsin lacking the 

membrane-bending domain. Only full length epsin was able to rescue the spindle defects 

demonstrating that the membrane curvature activity of epsin is required for the 

establishment of spindle morphology independently from endocytosis (Liu & Zheng, 2009). 

This study nicely extends the concept that endocytic proteins have a role in mitosis distinct 

from the one exerted during interphase.  

Given that endocytosis is active throughout the cell cycle and that, at mitosis, some 

endocytic proteins are also involved in pathways different from internalization, these 

molecules might play two distinct functions simultaneously thus coordinating membrane 

traffic with the execution of mitotic events.  
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Genetic instability is a driving force in tumourigenesis and it is prompted by alteration in 
centrosome function and in spindle assembly (Lengauer et al, 1998; Lingle et al, 2002; Orr-
Weaver & Weinberg, 1998). Since endocytic proteins participate in the regulation of mitotic 
events, this could represent a novel, previously unrecognized, link between endocytosis and 
cancer. 

5. Conclusions 

Endo and exocytosis are well-known mechanisms that regulate signal transduction and the 
execution of different cellular programs. The number of players, their crosstalk and the 
networks that they generate is continuously growing adding novel layers of complexity and 
definition to the current picture. 

Intriguingly, increasing evidence shows that signalling itself can control and modulate 
endocytic pathways (Collinet et al, 2010). Activated receptors elicit a variety of signals that 
directly or indirectly control endocytosis by several means including phospho-modification 
of downstream effectors involved in endocytosis, control of protein synthesis and also 
modulation of actin cytoskeleton dynamics, a process that aids clathrin-mediated 
endocytosis. This is an emerging view in the trafficking field that will certainly disclose new 
areas of investigation. 
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