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1. Introduction

Suppose that we have a single sensor receiving a superimposition of attenuated and delayed
replicas of a known signal plus noise. From the received data we want to estimate the
arrival times of the various replicas and their (complex or real) attenuation coefficients
(gains). This is the well-known time delay estimation problem which occurs in many fields
including radar, active sonar, wireless communications, Global Navigation Satellite System
(GNSS), nondestructive testing, geophysical/seismic exploration, and medical imaging. In
this chapter, we will focus on time delay estimation based on one sensor with known probing
signal shapes.

The most well-known time delay estimator is the matched filter approach. If there is only
one signal or the overlapped signals are separated in time by an interval that is much greater
than the width of the signal autocorrelation function, then the matched filter is the optimal
estimator when the noise is white Gaussian (Ehrenberg et al., 1978) . The resolution capability
of the matched filter approach depends on the signal bandwidth and the larger the signal
bandwidth, the better the resolution. However, in many situations there exist some practical
limitations on increasing the bandwidth of the transmitted signals. How to resolve closely
spaced overlapping noisy echoes has attracted the attention of researchers from many fields
for several decades.

Several approaches have been suggested for this problem and many of them benefit from
the recent development of high resolution sinusoidal frequency estimation and Direction of
Arrival (DOA) estimation techniques. Sinusoidal frequency estimation techniques such as
MUSIC (Schmidt, 1986), Linear Prediction (Tufts et al., 1982), and MODE (Stoica & Nehorai,
1990) are applied to the time delay estimation problem in (Bian & Last, 1997; Kirsteins, 1987;
Kirsteins & Kot, 1990). However, these approaches are only applicable to signals with flat
(rectangular) band-limited spectra. Several Maximum Likelihood (ML) approaches have
also been suggested for this problem. Multidimensional global optimization algorithms are
presented in (Bell & Ewart, 1986; Blackowiak & Rajan, 1995; Manickam et al., 1994) to analyze
a special class of ocean acoustic data that has very oscillatory autocorrelation functions. An
efficient approach based on the Expectation Maximization (EM) algorithm (Moon, 1996) is
proposed in (Feder & Weinstein, 1988) that decouples the complicated multidimensional
optimization problem into a sequence of multiple separate one-dimensional optimization
problems. However, its convergence depends highly on the initialization method used and
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no systematic initialization method is given in (Feder & Weinstein, 1988). More recently, time
delay estimation lower bounds (Liu et al., 2010) and time delay estimation for small-samples
(Gedalyahu & Eldar, 2010) are also studied.

In this chapter, a family of relaxation- and FFT-based new algorithms was proposed for
different scenarios. The remainder of this chapter is organized as follows. In Section 2, we
formulate the problem of interest. Section 3 describes the new algorithms. In Section 4, some
applications utilizing the new algorithms are provided. Section 5 concludes the whole chapter.

2. Data model and problem formulation

Time delay estimation is a well-known traditional problem occurring frequently in radar,
active sonar, and many other fields. In this problem, the waveform received at a single sensor
consists of delayed replicas of the transmitted signal with different gains. The gains reflect the
scattering property of the targets or multipath channel transmission features. The received
signal waveform y(t) can be described as

y(t) =
L

∑
l=1

αls(t − τl) + e(t) , 0 ≤ t ≤ T, (1)

where s(t), 0 ≤ t ≤ T0, represents the known transmitted signal (complex or real valued), y(t)
denotes the received signal, which is composed of L replicas of s(t) with different (complex or
real valued) gains {αl}L

l=1 and real valued delays {τl}L
l=1, and e(t) is the receiver noise, which

is modeled as a zero-mean Gaussian random process.

Usually, the above received analog signal is sampled for digital signal processing. To
avoid aliasing, we must sample y(t) according to the bandwidth of s(t). Let Bs denote the
double-sided bandwidth of s(t). Then y(t) must be sampled with the sampling frequency fs

satisfying

fs ≥ Bs . (2)

After A/D conversion, the sampled received signal has the form

y(nTs) =
L

∑
l=1

αls(nTs − τl) + e(nTs), n = 0, 1, · · · , N − 1, (3)

where Ts is the sampling period and is equal to the reciprocal of the sampling frequency fs.

Our problem of interest herein is to estimate {αl , τl}L
l=1 from {y(nTs)}N−1

n=0 with known s(t),

0 ≤ t ≤ T0, or {s(nTs)}N−1
n=0 .

Although we could solve the estimation problem in the time-domain (Bell & Ewart, 1986;
Blackowiak & Rajan, 1995; Bruckstein et al., 1985; Feder & Weinstein, 1988), we shall consider
below solving the problem in the frequency domain and propose a family of relaxation-based
algorithms for different scenarios.

Let Y(k), S(k), and E(k), k = −N/2,−N/2 + 1, ..., N/2 − 1, denote the discrete Fourier
transforms (DFT’s) of y(nTs), s(nTs), and e(nTs), respectively. Provided that aliasing is
negligible, then Y(k) can be written as :
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Y(k) = S(k)
L

∑
l=1

αle
jωlk + E(k), (4)

where

ωl = − 2πτl

NTs
. (5)

Note that the time delay estimation problem is similar to the sinusoidal parameter estimation
problem except that the exponential signals are weighted by the known signal spectrum. If
we divided both sides of (4) by S(k), the problem would become identical to the sinusoidal
parameter estimation problem. Yet we should not do so for the following reasons: first, S(k)
could be zero for some k; second, the noise E(k)/S(k) will no longer be a white noise even
when E(k) is white; third, when E(k) is a white noise, the larger the S(k) at sample k, the
higher the signal-to-noise ratio (SNR) of the corresponding Y(k) and hence dividing Y(k) by
S(k) will de-emphasize those Y(k)′s that have high SNRs. Because of this, many well-known
sinusoidal parameter estimation algorithms, such as MUSIC (Schmidt, 1986), ESPRIT (Roy et
al., 1986), PRONY (Kay, 1988), are not directly applicable to our problem of interest. Using
MODE (Stoica & Nehorai, 1990) would require a multidimensional search over a parameter
space because we can no longer reparameterize the MODE cost function via the coefficients of
a polynomial.

3. FFT-based new algorithms

3.1 W eighted Fourier transform and RELAXation (WRELAX) algorithm

We consider below estimating the unknown parameters by minimizing the following
nonlinear least squares (NLS) criterion:

C1({αl , ωl}L
l=1) =

N/2−1

∑
k=−N/2

∣

∣

∣

∣

∣

Y(k)− S(k)
L

∑
l=1

αle
jωlk

∣

∣

∣

∣

∣

2

. (6)

When e(nTs) is a zero-mean white Gaussian random process, E(k) is also white since DFT
is a unitary transformation. For this white noise case, the NLS approach is the same as
the ML method. When E(k) is not white, however, the NLS approach is no longer the ML
method. However, it has been shown in (Li & Stoica, 1996) that the NLS approach can still
have excellent statistical accuracy.

Minimizing C1({αl , ωl}L
l=1) with respect to the unknown parameters is a highly nonlinear

optimization problem. The cost function has a complicated multimodal shape with a very
small attraction domain, which makes it very difficult to find the global minimum. Below,
we present a relaxation based optimization algorithm to obtain the NLS parameter estimates.
Before we present our approach, let us consider the following preparations. Let

Y =
[

Y(−N/2) Y(−N/2 + 1) · · · Y(N/2 − 1)
]T

, (7)

S = diag
{

S(−N/2) S(−N/2 + 1) · · · S(N/2 − 1)
}

, (8)

E =
[

E(−N/2) E(−N/2 + 1) · · · E(N/2 − 1)
]T

, (9)
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and

a(ωl) =
[

ejωl(−N/2) ejωl(−N/2+1) · · · ejωl(N/2−1)
]T

, (10)

where (·)T denotes the transpose. Denote

Yl = Y −
L

∑
i=1,i �=l

α̂i[Sa(ω̂i)] (11)

where {α̂i, ω̂i}L
i=1,i �=l are assumed to be given. Consider first the case where {αl}L

l=1 are

complex valued. Let

b(ωl) = Sa(ωl), l = 1, 2, · · · , L. (12)

Then (6) becomes

C2(αl , ωl) =‖ Yl − αlb(ωl) ‖2, (13)

where ‖ · ‖ denotes the Euclidean norm. Minimizing C2(αl , ωl) with respect to αl yields the
estimate α̂l of αl

α̂l =
bH(ωl)Yl

bH(ωl)b(ωl)
=

aH(ωl)(S
∗Yl)

‖ S ‖2
F

, (14)

where (·)H represents the conjugate transpose and ‖ · ‖F denotes the Frobenius norm (Stewart,
1973). Then the estimate ω̂l of ωl is obtained as follows:

ω̂l = arg min
ωl

∥

∥

∥

∥

Yl −
b(ωl)b

H(ωl)

bH(ωl)b(ωl)
Yl

∥

∥

∥

∥

2

= arg max
ωl

YH
l b(ωl)b

H(ωl)Yl

bH(ωl)b(ωl)

= arg max
ωl

∣

∣

∣
aH(ωl)(S

∗Yl)
∣

∣

∣

2
, (15)

where we have used the fact that bH(ωl)b(ωl) =‖ S ‖2
F and hence is independent of

ωl . Hence ω̂l is obtained as the location of the dominant peak of the magnitude squared
of the Fourier transform, |aH(ωl)(S

∗Yl)|2, which can be efficiently computed by using the
fast Fourier transform (FFT) with the weighted data vector S∗Yl padded with zeros. An
alternative scheme to zero-padding FFT is to find an approximate peak location first by using
FFT without much zero-padding and then perform a fine search nearby the approximate peak
location by, for example, the f min function in MATLAB, which uses the Golden section search
algorithm. With the estimate of ωl at hand, α̂l can be easily computed from the corresponding
complex height:

α̂l =
aH(ωl)(S

∗Yl)

‖ S ‖2
F

∣

∣

∣

∣

∣

ωl=ω̂l

. (16)

With the above simple preparations, we now present the WRELAX algorithm.

Step (1): Assume L = 1. Obtain {ω̂l, α̂l}l=1 from Y by using (15) and (16).

Step (2): Assume L = 2. Compute Y2 with (11) by using {ω̂l, α̂l}l=1 obtained in Step (1).
Obtain {ω̂l, α̂l}l=2 from Y2. Next, compute Y1 by using {ω̂l, α̂l}l=2 and then redetermine
{ω̂l , α̂l}l=1 from Y1.
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Iterate the previous two substeps until “practical convergence” is achieved (to be discussed
later on).

Step (3): Assume L = 3. Compute Y3 by using {ω̂l, α̂l}2
l=1 obtained in Step (2). Obtain

{ω̂l , α̂l}l=3 from Y3. Next, compute Y1 by using {ω̂l, α̂l}3
l=2 and redetermine {ω̂l , α̂l}l=1 from

Y1. Then compute Y2 by using {ω̂l, α̂l}l=1,3 and redetermine {ω̂l, α̂l}l=2 from Y2.

Iterate the previous three substeps until “practical convergence”.

Remaining Steps: Continue similarly until L is equal to the desired or estimated number of
signals. (Whenever L is unknown, it can be estimated from the available data, for instance, by
using the generalized Akaike information criterion (AIC) rules which are particularly tailored
to the WRELAX method of parameter estimation. See, for example, (Li & Stoica, 1996).)

The “practical convergence” in the iterations of the above WRELAX method may be
determined by checking the relative change of the cost function C1({ω̂l , α̂l}L

l=1) in (6) between
two consecutive iterations. The algorithm is bound to converge to at least some local
minimum point (Karmanov, 1977). The convergence speed depends on the time delay spacing
of the signals. If the spacing between any two signals is larger than the reciprocal of the signal
bandwidth, the algorithm converges in a few steps. As the spacing of the signals becomes
closer, the convergence speed becomes slower.

Once we have obtained the estimates {ω̂l}L
l=1, the estimates {τ̂l}L

l=1 of {τl}L
l=1 can be

determined by using (5).

At this point, we would like to point out the relationship between WRELAX and the
conventional matched filter approach. The matched filter approach can also be formulated
in the frequency domain. Let

F(ω) =
∣

∣

∣
aH(ω)(S∗Y)

∣

∣

∣

2
. (17)

The matched filter method searches for the L largest peak positions of F(ω) as the estimates
of {ωl}L

l=1, and then the gains are determined as follows

α̂l =
aH(ωl)(S

∗Y)

‖ S ‖2
F

∣

∣

∣

∣

∣

ωl=ω̂l

, l = 1, 2, · · · , L . (18)

Hence when there is only one signal, this one-dimensional matched filter approach is
equivalent to the WRELAX algorithm. However, when there are multiple signals that are not
well separated, this conventional matched filter approach will perform poorly. In this case, a
multidimensional matched filter method (Bell & Ewart, 1986) could be used and the method
is equivalent to the NLS fitting approach (Bell & Ewart, 1986). The WRELAX algorithm
decouples the multidimensional matched filters into a sequence of one-dimensional matched
filters. Thus the excellent parameter estimation performance of the NLS fitting approach can
be achieved at a much lower implementation cost.

Similar to the WRELAX algorithm, the EM algorithm proposed in (Feder & Weinstein, 1988)
also transforms the multidimensional optimization problem into a series of one-dimensional
optimization problems. The detailed implementations of the algorithms, however, are quite
different. The EM algorithm consists of two steps, the E (Estimate) step and the M (Maximize)
step. The idea is to decompose the observed data into their signal components (the E step)
and then to estimate the parameters of each signal component separately (the M step). The

59FFT-Based Efficient Algorithms for Time Delay Estimation
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algorithm is iterative, using the current parameter estimates to decompose the observed data.
At each E step, the residue error corresponding to the current estimates is also decomposed
among different signal components. Although initial conditions are needed by EM, no
systematic initialization method is given in (Feder & Weinstein, 1988). We have also found
that the performance of EM is very sensitive to the initial conditions used. Even with the
same initial conditions, our numerical examples show that the convergence speed of EM can
be much slower than the last step of WRELAX. Further, WRELAX does not require any initial
conditions before its iterations and the first L − 1 steps of WRELAX can provide an excellent
initial condition for Step L.

Consider next the case where {αl}L
l=1 are real-valued. Minimizing C2(αl , ωl) with respect to

αl and ωl yields

α̂l =
Re

[

aH(ωl)(S
∗Yl)

]

‖ S ‖2
F

∣

∣

∣

∣

∣

ωl=ω̂l

, (19)

where Re(X) denotes the real part of X, and

ω̂l = arg max
ωl

Re2
[

aH(ωl)(S
∗Yl)

]

. (20)

The WRELAX algorithm could also be implemented in the time domain, which is based on
the correlations. However, we prefer to use the frequency domain version of WRELAX. For
the time domain version, we could be restricted to use the discrete values of {τl}L

l=1 if we only
know the sampled version of s(t). For this case, if a more accurate delay estimate is required,
then one has to resort to interpolation (Bell & Ewart, 1986). This inconvinence can be avoided
by transforming the problem to the frequency domain, where {τl}L

l=1 can take on a continuum
of values. Even without considering the additional interpolation cost, the computational load
of the time domain correlation-based WRELAX is heavier than that of the frequency domain
WRELAX.

We present several numerical examples to demonstrate the performance of the proposed
algorithms. In the following examples, we use a windowed chirp signal, s(t) =

w(t)ejβ(t− T0
2 )2

, 0 ≤ t ≤ T0, where β is the chirp rate and w(t) is a bell-shaped window

function. We use N = 64, β = π × 1012, the signal bandwidth Bs = βT0/π, and the sampling
frequency fs = 2Bs. T0 is chosen in such a way that T0 = (N/2 − 1)Ts. The resolution limit of
the conventional matched filter method is around τe = 1/Bs. L = 2 signals are assumed to be

superimposed together with α1 = ejπ/8, α2 = ejπ/4.

In the first example, the additive noise is zero-mean white Gaussian and
SNR=SNR1=SNR2=10dB. The time delay spacing between the two signals is τ2 − τ1 = τe.
Even in this case, the conventional matched filter method fails to resolve the two signals, as
can be seen from Figure 1(a), where the horizontal axis denotes the normalized time delay
τ/T and the two vertical lines indicate the true time delays of the two signals. However, using
WRELAX we can resolve them very well. As pointed out before, the WRELAX algorithm
can be viewed as transforming the multi-dimensional matched filters into a sequence of
one-dimensional matched filters. The outputs of the two matched filters for all iterations
are plotted in Figure 1(b), which illustrates the convergence process of WRELAX. At the
beginning of the iteration, the peak positions and the corresponding gain estimates obtained
from the filter outputs differ from their true values (one gain estimate is larger and the other
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Fig. 1. Illustrative comparison of WRELAX with the matched filter method. The vertical lines
denote the true time delay. (a) The output of the matched filter and (b)The outputs of the two
decoupled matched filters with WRELAX for all iterations.
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Fig. 2. MSEs (“×”) of WRELAX and Cramér-Rao bound (CRB) (solid line) for (a) τ1 and (b)
α1.

is smaller than the corresponding true gains). After several steps, they converge to the true
time delays and gains.

In this example, the time delay spacing between the two signals is τ2 − τ1 = 0.5τe. The MSEs
for the first signal using WRELAX are compared with the corresponding CRBs in Figure 2 and
the MSE and CRB curves for the other signal are similar. From Figure 2, it can be noted that the
MSEs obtained by using WRELAX approach the corresponding CRBs as the SNR increases.

3.2 Toeplitz property based W eighted Fourier transform and RELAXation (TWRELAX)

algorithm

Here, we extend the above WRELAX algorithm to the case of multiple looks. Two scenarios
will be considered, which include 1) fixed delays but arbitrary gains and 2) fixed delays and

61FFT-Based Efficient Algorithms for Time Delay Estimation
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fixed gains. In radar applications, the two cases correspond to two different target fluctuation
models, e.g., Swerling I and Swerling II (Barton, 1988).

3.2.1 Fixed delays but arbitrary gains

Consider the case where multiple pulses are transmitted and the ranges of target scatterers
remain the same but their gains change randomly during the observation interval.

Let Y(m) be the DFT of the received vector due to the mth pulse. Then

Y(m) =
L

∑
l=1

α
(m)
l [Sa(ωl)] + E(m), m = 1, 2, ..., M, (21)

where α
(m)
l denotes the gain of the lth scatterers due to the mth pulse and the noise vectors

{E(m)}M
m=1 are assumed independent of each other. Our problem of interest is to estimate

{

α
(m)
l , ωl

}

l=1,..,L;m=1,...,M
from

{

Y(m)
}M

m=1
.

We now extend the WRELAX algorithm to this multiple look case. The extended WRELAX
algorithm minimizes the following NLS criterion:

C3(
{

α
(m)
l , ωl

}

l=1,..,L;m=1,...,M
) =

M

∑
m=1

∥

∥

∥

∥

∥

Y(m) −
L

∑
l=1

α
(m)
l b(ωl)

∥

∥

∥

∥

∥

2

, (22)

where b(ωl) is defined in (12).

Before we present the extended WRELAX algorithm, let us consider the following
preparations. Let

Y
(m)
l = Y(m) −

L

∑
i=1,i �=l

α̂
(m)
i b(ω̂i), m = 1, ..., M, (23)

where
{

α̂
(m)
i , ω̂i

}

i=1,...,L,i �=l,m=1,...,M
are assumed given. Then the cost function

C3(
{

α
(m)
l , ωl

}

l=1,..,L;m=1,...,M
) becomes

C4({α
(m)
l }M

m=1, ωl) =
M

∑
m=1

∥

∥

∥
Y
(m)
l − α

(m)
l b(ωl)

∥

∥

∥

2
. (24)

Minimizing C4({αl}L
l=1, ωl) with respect to the complex-valued {α

(m)
l }M

m=1 and ωl yields

α̂
(m)
l =

aH(ωl)(S
∗Y

(m)
l )

‖ S ‖2
F

∣

∣

∣

∣

∣

∣

ωl=ω̂l

, (25)

and

ω̂l = arg max
ωl

[

M

∑
m=1

∣

∣

∣
aH(ωl)(S

∗Y
(m)
l )

∣

∣

∣

2
]

. (26)
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Minimizing C4({α
(m)
l }M

m=1, ωl) with respect to the real-valued
{

α
(m)
l

}M

m=1
and ωl yields

α̂
(m)
l =

Re
[

aH(ωl)(S
∗Y

(m)
l )

]

‖ S ‖2
F

∣

∣

∣

∣

∣

∣

ωl=ω̂l

, (27)

and

ω̂l = arg max
ωl

{

M

∑
m=1

Re2
[

aH(ωl)(S
∗Y

(m)
l )

]

}

. (28)

3.2.2 Fixed delays and fixed gains

When both the delays and gains of the target scatterers remain the same during the multiple
look interval, we can derive an ML estimator when the noise is assumed to be a zero-mean
colored Gaussian noise with an unknown covariance matrix Q. Note that although we could
continue to use the NLS approach for the current problem, we prefer to take the noise statistics
into account since we will show below that doing so in this case introduces little difficulties
for sufficiently large M. For the former problems, modeling the noise with an unknown
covariance matrix Q makes the ML approach ill-defined due to too many unknowns (Li et
al. b, 2002).

Let Y(m) be the DFT of the received data vector due to the mth pulse which can be written as

Y(m) =
L

∑
l=1

αlb(ωl) + E(m), m = 1, ..., M, (29)

where the noise vectors {E(m)}M
m=1 are assumed to be zero-mean colored Gaussian random

vectors with an unknown covariance matrix Q that are independent of each other. Let

b = [ b(ω1) b(ω2) · · · b(ωL) ]
T, (30)

and

α = [ α1 α2 · · · αL ]
T . (31)

Then

Y(m) = bα+ E(m), m = 1, 2, ..., M. (32)

The log-likelihood function of Y(m) is proportional to (within an additive constant):

− ln[det(Q)]− tr

{

Q−1 1

M

M

∑
m=1

[

Y(m) − bα
] [

Y(m) − bα
]H

}

, (33)

where det(·) denotes the determinant of a matrix and tr(·) denotes the trace of a matrix.
Consider first the estimate of Q and the unstructured estimate of C = bα. It is easy to show

63FFT-Based Efficient Algorithms for Time Delay Estimation

www.intechopen.com



10 Will-be-set-by-IN-TECH

that the estimate Q̂ of Q is

Q̂ =
1

M

M

∑
m=1

[

Y(m) − C
] [

Y(m) − C
]H

, (34)

where Ĉ may be obtained by minimizing the following cost function:

C5 = det

[

1

M

M

∑
m=1

(

Y(m) − C
) (

Y(m) − C
)H

]

. (35)

Let

R̂Y1 =
1

M

M

∑
m=1

Y(m), (36)

and

R̂YY =
1

M

M

∑
m=1

Y(m)(Y(m))H . (37)

Then

G =
1

M

M

∑
m=1

[

Y(m) − C
] [

Y(m) − C
]H

= R̂YY − CR̂H
Y1 − R̂Y1CH + CCH

=
[

C − R̂Y1

] [

C − R̂Y1

]H
+ R̂YY − R̂Y1R̂H

Y1. (38)

To minimize det(G), we have

Ĉ = R̂Y1. (39)

Then using the Ĉ in (39) to replace the C in (34) yields

Q̂ = R̂YY − R̂Y1R̂H
Y1. (40)

With these notations, the above C5 can be rewritten as

C5 = det
[

R̂YY − CR̂H
Y1 − R̂Y1CH + CCH

]

= det
[

R̂YY − R̂Y1R̂H
Y1 + (C − Ĉ)(C − Ĉ)H

]

= det(Q̂)det
[

I + Q̂−1(C − Ĉ)(C − Ĉ)H
]

= det(Q̂)
[

1 + (C − Ĉ)HQ̂−1(C − Ĉ)
]

, (41)

where we have used the fact that det(I + ab) = det(I + ba) if the dimensions of a and b
permit. Hence minimizing C5 is equivalent to minimizing

C6({αl , ωl}L
l=1) =

[

C − Ĉ
]H

Q̂−1
[

C − Ĉ
]

=
[

bα− Ĉ
]H

Q̂−1
[

bα− Ĉ
]

, (42)

which is again a highly nonlinear optimization problem.
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We consider below using the relaxation based approach to minimize C6({αl , ωl}L
l=1). Let

Ĉl = Ĉ −
L

∑
i=1,i �=l

α̂ib(ω̂i), (43)

where {α̂i, ω̂i}L
i=1,i �=l are assumed given. Then minimizing C6 becomes minimizing

C7(αl , ωl) =
[

Ĉl − αlb(ωl)
]H

Q̂−1 [Ĉl − αlb(ωl)
]

. (44)

Consider first the case of complex-valued {αl}L
l=1. Minimizing C7(αl , ωl) with respect to αl

and ωl yields:

α̂l =
bHQ̂−1Ĉl

bH(ωl)Q̂−1b(ωl)

∣

∣

∣

∣

∣

ωl=ω̂l

=
aH(ωl)

(

S∗Q̂−1Ĉl

)

∥

∥

∥
Q̂− 1

2 Sa(ωl)
∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

ωl=ω̂l

, (45)

and

ω̂l = arg max
ωl

∣

∣aH(ωl)S
∗Q̂−1Ĉl

∣

∣

2

∥

∥

∥
Q̂− 1

2 Sa(ωl)
∥

∥

∥

2
. (46)

Consider next the case of real-valued {αl}L
l=1. Minimizing C7(αl , ωl) with respect to αl and ωl

yields

α̂l =
Re

[

aH(ωl)S
∗Q̂−1Ĉl

]

∥

∥

∥
Q̂− 1

2 Sa(ωl)
∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

ωl=ω̂l

, (47)

and

ω̂l = arg max
ωl

Re2
[

aH(ωl)S
∗Q̂−1Ĉl

]

∥

∥

∥
Q̂− 1

2 Sa(ωl)
∥

∥

∥

2
. (48)

In the above derivations, Q̂−1 plays the role of whitening the noise. A good estimate of
Q requires a large number of independent data vectors (i.e., M should be large enough as
compared with N). When M is small, the noise covariance matrix estimated from (40) is
singular or near singular. At least N data vectors are needed to guarantee that the matrix Q̂ is
non-singular with probability one.

Usually, the receiver noise e(t) in (1) can be modeled as a zero-mean stationary and ergodic
Gaussian stochastic process. Let the covariance matrix corresponding to the sampled noise

vector [e(0), e(Ts) · · · e((N − 1)Ts)]
T be Qt, where the subscript “t” represents the covariance

matrix of the noise in the time domain. Then Qt is a Hermitian and Toeplitz matrix. The
frequency domain noise covariance matrix Q is related to Qt as follows

Q = γ Qt γ
H , (49)
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where γ is the DFT matrix,

γ =
1√
N

[

a(−π) a(−π + 2π/N) · · · a(π − 2π/N)
]H

, (50)

and

a(ω) =
[

ejω(−N/2) ejω(−N/2+1) · · · ejω(N/2−1)
]T

. (51)

It can be shown that, in general, Q is no longer a Toeplitz matrix. However, we can use the
Toeplitz property of Qt to improve the estimation performance. First, we can obtain Q̂ by
using (40). Then the estimate Q̂t of Qt can be obtained by using (49), which is

Q̂t = γ
H Q̂ γ. (52)

Due to a finite number of data vectors, Q̂t is no longer a Toeplitz matrix. Although there are

many ways to to modify Q̂t to obtain a Toeplitz matrix Q̂
(T)
t , in this paper we use the following

simple approach. Let q̂t(i, j) be the (i, j)th element of Q̂t. Define

r̂(k) =
1

N − k

N−k

∑
i=1

q̂t(i, i + k), k = 0, 1, · · · , N − 1. (53)

Then

Q̂
(T)
t =

⎡

⎢

⎢

⎢

⎢

⎣

r̂(0) r̂(1) · · · r̂(N − 1)

r̂∗(1)
. . .

. . .
...

...
. . .

. . . r̂(1)
r̂∗(N − 1) · · · r̂∗(1) r̂(0)

⎤

⎥

⎥

⎥

⎥

⎦

. (54)

Using Q̂(T) instead of Q̂ in (45)-(48), where

Q̂(T) = γQ̂
(T)
t γ

H , (55)

we obtain a new algorithm referred to as TWRELAX. The TWRELAX algorithm can greatly
improve the estimation performance of WRELAX, especially when M is small as compared
with N, as can be seen from the numerical examples below.

For notational convenience, we denote the new algorithms with and without exploiting the
Toeplitz property of the noise covariance matrix by TWRELAX and WRELAX, respectively.
Here, the time delay spacing between the two signals is τ2 − τ1 = 0.5τe.We have used ǫ =
0.001 to test the convergence of TWRELAX and WRELAX. The colored noise is modeled as a
first-order autoregressive (AR) process with coefficient a1=-0.85.

The MSEs of TWRELAX (“◦”) and WRELAX (“×”) are compared with the corresponding
CRBs (solid line) in Figures 3 and 4 as a function of the SNR and the normalized look number
log2(M/N), respectively. We fix M = 4N in Figure 3 and SNR=−5 dB in Figure 4. From
Figure 3, it can be noted that, when M is sufficiently large, both TWRELAX and WRELAX
can approach the CRBs for a wide range of SNRs and the former performs slightly better than
the latter. However, when M is small as compared to N, TWRELAX outperforms WRELAX
significantly, as can be seen from Figure 4. For this example, when M = N/2, the MSEs of
TWRELAX are very close to the CRBs, while M = 4N is required before the MSEs of WRELAX
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Fig. 3. MSEs of WRELAX (“×”), TWRELAX (“◦”), and CRBs (solid line) for (a) τ1 , (b) α1 as a
function of SNR with M = 4N.
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Fig. 4. MSEs of WRELAX (“×”), TWRELAX (“◦”), and CRBs (solid line) for (a) τ1 , (b) α1 as a
function of the normalized look number log2(M/N) with SNR=−5 dB.

approach the CRBs. Note also that in Figure 4, due to the inversion of poorly estimated noise
covariance matrices, some points of the MSE curves of WRELAX are beyond the scope of the
axis limits.

3.3 Hybrid-WRELAX algorithm and EX tended Invariance Principle Based WRELAX

(EXIP-WRELAX) algorithm

When bandpass real-valued probe signals are used, the correlation function between the
received and the known transmitted signals oscillates near the carrier frequency of the
transmitted signal. In this case, many existing time delay estimation algorithms perform
poorly due to converging to local optimum points. Here, two efficient algorithms are
proposed to deal with the above problem. First we assume that the signal amplitudes
are complex-valued and use WRELAX to obtain the initial estimates of the delays and the
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amplitudes of the superimposed signals by minimizing a much smoother NLS cost function.
Then the initial estimates are refined with two approaches. One approach (referred to as
Hybrid-WRELAX) uses the last step of the WRELAX algorithm to minimize the true NLS cost
function corresponding to the real-valued signal amplitudes. The other approach (referred to
as EXIP-WRELAX) uses the extended invariance principle (EXIP). For Hybrid-WRELAX, the
refinement step is iterative, while it is not for EXIP-WRELAX.

Real-valued signals are often bandpass signals that occur, for example, in underwater sonar
and ultra wideband ground penetrating radar applications. Bandpass signals have highly
oscillatory correlation functions, which makes the super resolution time delay estimation
problem more difficult. The larger the center frequency of the pass band, the sharper the
oscillation of the correlation function.

The same data model as that in the Section 2 is adopted. However, the transmitted signal s(t)
and the received signal y(t) are real-valued, and the gains {αl}L

l=1 and the noise e(t) are also
real-valued.

3.3.1 Hybrid-WRELAX

Since both the transmitted signal s(t) and the received signal y(t) are real-valued, their Fourier
transforms are conjugate symmetric, i.e., Y(−k) = Y∗(k) and S(−k) = S∗(k), k = 1, 2, · · · ,
N/2− 1, where (·)∗ denotes the complex conjugate, and Y(−N/2), Y(0), S(−N/2), and S(0)
are real-valued. It can be readily shown that the cost function (6) is equivalent to

C8({αl , ωl}L
l=1) =

0

∑
k=−N/2

W2(k)

∣

∣

∣

∣

∣

Y(k)− S(k)
L

∑
l=1

αle
jωlk

∣

∣

∣

∣

∣

2

, (56)

where {W(k) = 1}−1
k=−N/2+1 and W(−N/2) = W(0) = 1/

√
2. We assume that e(nTs) is a

real-valued zero-mean white Gaussian random process with variance σ2. Yet E(k) will not
be a circularly symmetric complex-valued zero-mean white Gaussian random process since
E(−k) = E∗(k), k = 1, 2, · · · , N/2 − 1. (The circularly symmetric assumption on the noise
is widely used in the literature (Stoica & Moses, 1997).)

The cost function C8({αl , ωl}L
l=1) in (56) with {αl}L

l=1 being real-valued is referred to as the

true cost function. Minimizing C8({αl , ωl}L
l=1) with respect to the unknown parameters is a

highly nonlinear optimization problem. For narrowband transmitted signals, the cost function
is highly oscillatory and have numerous closely spaced local minima, which makes it very
difficult to find the global minimum. By assuming the real-valued amplitudes {αl}L

l=1 to
be complex-valued, a much smoother cost function can be obtained. This is equivalent to
formulate the original time delay estimation problem in its complex analytic signal form.
Since the analytic signal of the transmitted signal is lowpass, its autocorrelation function is
no longer oscillatory. This is the conventional complex demodulation process and is widely
used in practice. Although it is much easier to find the global minimum of the cost function
corresponding to complex-valued amplitudes, the so-obtained estimates can be much less
accurate than those obtained by minimizing the true cost function. The two cost functions
share the same global minimum only when there is no noise. However, as suggested in
(Manickam et al., 1994; Vaccaro et al., 1992), we can minimize the cost function associated
with complex-valued amplitudes to obtain the initial conditions needed to minimize the true
cost function. Below, we present a relaxation based global minimizer of the NLS criterion
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based on this idea. The algorithm is referred to as the Hybrid-WRELAX algorithm. It simply
requires a sequence of weighted Fourier transforms.

Before we present our approach, let us consider the following preparations. Let

W̄ = diag
{

W(−N/2), W(−N/2 + 1), · · · , W(−1), W(0)
}

= diag
{

1√
2

, 1, · · · , 1, 1√
2

}

, (57)

Ȳ = W̄
[

Y(−N/2) Y(−N/2 + 1) · · · Y(0)
]T

, (58)

S̄ = W̄ diag
{

S(−N/2), S(−N/2 + 1), · · · , S(0)
}

, (59)

and

ā(ωl) =
[

ejωl(−N/2) ejωl(−N/2+1) · · · 1
]T

. (60)

Denote

Ȳl = Ȳ −
L

∑
i=1,i �=l

α̂i[S̄ā(ω̂i)] (61)

where {α̂i , ω̂i}L
i=1,i �=l are assumed to be given. Let

b̄(ωl) = S̄ā(ωl), l = 1, 2, · · · , L. (62)

Then (56) becomes

C9(αl , ωl) =‖ Ȳl − αlbh(ωl) ‖2, (63)

where ‖ · ‖ denotes the Euclidean norm. Minimizing C9(αl , ωl) with respect to the real-valued
αl yields the estimate α̂l of αl

α̂l =
Re

[

b̄H(ωl)Ȳl

]

b̄H(ωl)b̄(ωl)

=
Re

[

āH(ωl)(S̄
∗Ȳl)

]

‖ S̄ ‖2
F

, (64)

where (·)H denotes the conjugate transpose, Re(Z) represents the real part of Z, and
‖ · ‖F denotes the Frobenius norm (Stewart, 1973). (More specifically, ‖ S ‖F=
√

∑
0
n=−N/2 |W(n)S(n)|2.) Then the estimate ω̂l of ωl is obtained as follows:

ω̂l = arg min
ωl

∥

∥

∥

∥

∥

Ȳl −
Re

[

b̄H(ωl)Ȳl

]

b̄H(ωl)b̄(ωl)
b̄(ωl)

∥

∥

∥

∥

∥

2

= arg max
ωl

Re2
[

āH(ωl)(S̄
∗Ȳl)

]

, (65)
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where we have used the fact that b̄H(ωl)b̄(ωl) = ∑
0
n=−N/2 |W(n)S(n)|2 and hence

is independent of ωl . Hence ω̂l is obtained as the location of the dominant peak of

Re2
[

āH(ωl)(S̄
∗Ȳl)

]

. With the estimate of ωl at hand, α̂l is easily computed from the
corresponding complex height by using ω̂l to replace ωl in (64).

Similarly, minimizing C9(αl , ωl) with respect to ωl and the complex-valued αl , respectively,
yields the estimates ω̂l of ωl and α̂l of αl ,

ω̂l = arg max
ωl

∣

∣

∣
aH(ωl)(S̄

∗Ȳl)
∣

∣

∣

2
, (66)

and

α̂l =
aH(ωl)(S̄

∗Ȳl)

‖ S̄ ‖2
F

∣

∣

∣

∣

∣

ωl=ω̂l

, (67)

where ω̂l can also be found via FFT with the weighted data vector.

With the above simple preparations, we now present the Hybrid-WRELAX algorithm.

Step 1: Obtain the initial conditions for Step 2 by assuming that {αl}L
l=1 are complex-valued

and using the WRELAX algorithm as follows:

Substep (1): Assume L = 1. Obtain {ω̂l, α̂l}l=1 from Y by using (66) and (67).

Substep (2): Assume L = 2. Compute Y2 with (96) by using {ω̂l , α̂l}l=1 obtained in
Substep (1). Obtain {ω̂l, α̂l}l=2 from Y2. Next, compute Y1 by using {ω̂l, α̂l}l=2 and
then redetermine {ω̂l, α̂l}l=1 from Y1.

Iterate the update of {ω̂2, α̂2} and {ω̂1, α̂1} until “practical convergence” is achieved (to
be discussed later on).

Substep (3): Assume L = 3. Compute Yh by using {ω̂l, α̂l}2
l=1 obtained in Substep (2).

Obtain {ω̂l, α̂l}l=3 from Y3. Next, compute Y1 by using {ω̂l, α̂l}3
l=2 and redetermine

{ω̂l , α̂l}l=1 from Y1. Then compute Y2 by using {ω̂1, α̂1}l=1,3 and redetermine
{ω̂1, α̂1}l=2 from Y2.

Iterate the update of {ω̂3, α̂3},{ω̂1, α̂1}, and {ω̂2, α̂2} until “practical convergence”.

Remaining Substeps: Continue similarly until L is equal to the desired or estimated
number of signals.

Step 2: Refine the estimates obtained in Step 1 with the last step of the WRELAX algorithm
(i.e., the last substep of Step 1 above) by using Equations (64) and (65) derived for the
real-valued {αl}L

l=1 and using {ω̂l}L
l=1 and the real parts of {α̂l}L

l=1 obtained in Step
1 as initial conditions. Iteratively update {ω̂l, α̂l}, l = 1, 2, · · · , L, until “practical
convergence”.

Note that WRELAX can be used directly for signals with real-valued amplitudes. For this
case, the approach would consist of the substeps of Step 1 above except that (64) and (65) will
be used instead of (66) and (67), respectively. We will use a numerical example in Section 5 to
show the problem encountered by the direct use of WRELAX when the cost function is highly
oscillatory.

3.3.2 EXIP-WRELAX

The Invariance Principle (IP) of ML estimators is well known in the estimation theory (Zehna,
1966). The invariance principle gives a simple answer to the relationship between the
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minimizers of a given cost function parameterized in two different ways in some special cases.
By appropriately reparameterizing the original cost function and enlarging the supporting
domain of the parameter space, less accurate estimates can be obtained from this simple data
model. These estimates may be refined to asymptotically achieve the performance available
using the original data model. This is the basic idea behind the Extended Invariance Principle
(EXIP) proposed in (Söderström & Stoica a, 1989) and (Söderström & Stoica b, 1989) for the
purpose of achieving some computational advantages. In this section, we present an EXIP
based algorithm, referred to as the EXIP-WRELAX algorithm, that avoids dealing with the
highly oscillatory true cost function entirely.

By using (58) and (62), the cost function (56) with {αl}L
l=1 being real-valued can be written in

the following vector form

C10(η) =

∥

∥

∥

∥

∥

Ȳ −
L

∑
l=1

αl b̄(ωl)

∥

∥

∥

∥

∥

2

2

, (68)

where
η =

[

α
T
ω

T
]T

, (69)

with
α =

[

α1 α2 · · · αL

]T
, (70)

ω =
[

ω1 ω2 · · · ωL

]T
. (71)

By replacing the real-valued amplitudes {αl}L
l=1 with the complex-valued amplitudes {α̃l}L

l=1
(notations introduced for the sake of clarity) in (68), we obtain the following cost function:

C11(η̃) =

∥

∥

∥

∥

∥

Ȳ −
L

∑
l=1

α̃l b̄(ωl)

∥

∥

∥

∥

∥

2

2

, (72)

where
η̃ =

[

ReT(α̃) ImT(α̃) ωT
]T

, (73)

with Im(Z) denotes the imaginary part of Z, and

α̃ =
[

α̃1 α̃2 · · · α̃L

]T
. (74)

Denote
η̂ = arg min

η
C10(η), (75)

and
ˆ̃η = arg min

η̃

C11(η̃). (76)

Let
f (η) = Fη, (77)

where

F =

⎡

⎣

I 0
0 0
0 I

⎤

⎦ , (78)

with I and 0 denote the L × L identity matrix and the L × L matrix with zero elements,
respectively. Using the EXIP principle (Söderström & Stoica a, 1989; Söderström & Stoica b,
1989), we can obtain a new estimate ˆ̂η from ˆ̃η by solving the following weighted least squares
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problem

ˆ̂η = arg min
η

[

ˆ̃η − f (η)
]T

WEXIP
[

ˆ̃η− f (η)
]

, (79)

where

WEXIP = E

{

∂2 [Cη̃(η̃)]

∂η̃∂η̃T

}
∣

∣

∣

∣

∣

η̃= ˆ̃η

. (80)

It has been shown in (Söderström & Stoica a, 1989; Söderström & Stoica b, 1989) that ˆ̂η is
asymptotically (for large N or high SNR) statistically equivalent to η̂. The weighting matrix
WEXIP is simply the Fisher In f ormation Matrix (possibly scaled by a constant) for the

complex-valued {α̃l}L
l=1 with η̃ replaced by its estimate ˆ̃η . It can be easily shown that

ˆ̂η =
(

FTWEXIPF
)−1 (

FTWEXIP

)

ˆ̃η. (81)

The EXIP-WRELAX algorithm is composed of two steps. The first step is the same as Step 1 of
the Hybrid-WRELAX algorithm and the second step is to refine the initial conditions obtained
in Step 1 by using (81). Compared to the Hybrid-WRELAX algorithm, the second step of the
EXIP-WRELAX algorithm is non-iterative and avoids dealing with the highly oscillatory true
NLS cost function entirely. Our numerical examples show that at low SNR, the former tends
to outperform the latter.
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Fig. 5. Comparison of the MSEs of the WRELAX for assuming complex-valued signal
amplitudes (“+”), Hybrid-WRELAX (“◦”), and EXIP-WRELAX (“×”) with the CRBs
corresponding to complex-valued (dashed line) and real-valued (solid line) signal
amplitudes for (a) τ1, (b) α1.

The MSEs of the WRELAX (“+”) for assuming {αl}L
l=1 being complex-valued,

Hybrid-WRELAX (“◦”), and EXIP-WRELAX (“×”) are compared with the CRBs obtained by
assuming {αl}L

l=1 being complex-valued (dashed line) and real-valued (solid line) in Figure
5. Note that both Hybrid-WRELAX and EXIP-WRELAX achieve the corresponding CRB.
Note also that the threshold effect is obvious in Figure 5, where the MSEs deviate away from
the CRBs at low SNR. Although the WRELAX for assuming {αl}L

l=1 being complex-valued
also attains its corresponding CRB (dashed line) at high SNR, this wrong CRB can be larger
than the true CRB by approximately 30 dB. (Note that the former CRB is expected to be
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worse than the latter CRB due to the parsimony principle In this example, Hybrid-WRELAX
outperforms EXIP-WRELAX at low SNR.

3.4 Method Of Direction Estimation based WRELAX (MODE-WRELAX) algorithm

WRELAX was extended in to deal with the real-valued signals with highly oscillatory
correlation functions (Hybrid-WRELAX and EXIP-WRELAX). The resolution of WRELAX
are much higher than that of the conventional matched filter approach. However, when
the signals are very closely spaced in arrival times, the convergence speed of WRELAX
decreases rapidly. Here, we study how MODE can be used with our efficient WRELAX
algorithm for super resolution time delay estimation. The new algorithm is referred to
as MODE-WRELAX. Although MODE can provide very poor amplitude estimates and
WRELAX has the slow convergence problem, MODE-WRELAX outperforms both MODE and
WRELAX. MODE-WRELAX can be used for both complex- and real-valued signals (including
those with highly oscillatory correlation functions).

The same data model as that in the Section 2 is adopted. Here, the transmitted signal s(t)
represents an arbitrary known transmitted signal. We assume that s(t) , y(t), e(t) and {αl}L

l=1
are either all complex-valued or all real valued, which will be dealt with in the following
respectively.

3.4.1 MODE-WRELAX for complex-valued signals

Assume that (·)T denote the transpose and let

A =
[

a(ω1) a(ω2) · · · a(ωL)
]T

, (82)

where a(ωl) is same as that in (10).

Then the data model (4) can be written in the following vector form:

Y = SAα+ E. (83)

where Y, S and E are same as that in (7)-(9), α is same as that in (70).

When S is an identity matrix, then the above time delay estimation issue becomes a sinusoidal
parameter estimation problem and MODE is an asymptotically statistically efficient estimator
of {ωl}L

l=1 for complex-valued signals (Stoica & Sharman a, 1990; Stoica & Sharman b, 1990).
The MODE algorithm (Stoica & Sharman a, 1990; Stoica & Sharman b, 1990) can be easily
extended to the data model in (83) where S is an arbitrary diagonal matrix as follows.
The MODE estimates {ω̂l}L

l=1 of {ωl}L
l=1 can be obtained by minimizing the following cost

function
C12({ωl}L

l=1) = YHP⊥
Ã

Y, (84)

and

P⊥
Ã
= I − Ã

(

ÃHÃ
)−1

ÃH , (85)

Ã = SA. (86)

To avoid the search over the parameter space, C10({ωl}L
l=1) can also be reparametrized in

terms of another parameter vector b̃ =
[

b̃0 b̃1 · · · b̃L

]T
, where {b̃l}L

l=0 are the coefficients of
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the following polynomial:

b̃(z) �
L

∑
l=0

b̃lz
L−l � b̃0

L

∏
l=1

(z − ejωl ); b̃0 �= 0. (87)

Since the polynomial b̃(z) in (87) has all of its zeros on the unit circle, its coefficients {b̃l}
satisfy the conjugate symmetry constraint (Stoica & Sharman a, 1990):

b̃l = b̃∗L−l, l = 0, 1, · · · , L, (88)

where (·)∗ denotes the complex conjugate. Let

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b̃0 0
...

. . .

b̃L b̃0

. . .
...

0 b̃L

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ CN×(N−L). (89)

Assume that the diagonal elements of S are nonzero (see Remark 1 for more discussions). Let

B̃ = S−HB. (90)

It can be readily verified that BHA = 0 and hence B̃HÃ = 0. Then P⊥
Ã
= B̃

(

B̃HB̃
)−1

B̃H and

minimizing C12({ωl}L
l=1) in (84) is equivalent to minimizing

C13({bl}L
l=0) = YH B̃

(

B̃H B̃
)−1

B̃HY. (91)

Note that B̃HB̃ in (91) can be replaced by a consistent estimate without affecting the

asymptotically statistical efficiency of the minimizer of (91). Hence b̂ can be obtained
computationally efficiently as follows:

ˆ̃b = arg min
b̃

[

YHS−HB
(

B̂H
0 S−1S−HB̂0

)−1
BHS−1Y

]

, (92)

where B̂0 is the initial estimate of B obtained by replacing b̃ with ˆ̃b(0) in (89). The initial value
ˆ̃b(0) is obtained by setting B̃HB̃ in (91) to I:

ˆ̃b(0) = arg min
b̃

[

YHS−HBBHS−1Y
]

. (93)

To avoid the trivial solution b̃ = 0, we should impose ‖ b̃ ‖= 1 in (92) and (93) or some
other similar constraints. (For detailed implementation steps, see Section 4.) The estimates

{ω̂l}L
l=1 of {ωl}L

l=1 are the phases of the roots of the polynomial ∑
L
l=0

ˆ̃blz
L−l . Once {ω̂l}L

l=1
are obtained, the amplitudes α are estimated by applying the linear least-squares approach to

Y ≈ SÂα, (94)
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where Â is formed by replacing {ωl}L
l=1 with {ω̂l}L

l=1 in (82).
Remark 1: MODE cannot be implemented efficiently to avoid the search over the parameter
space when S(k) = 0 for some k. The most commonly used complex analytic signal s(t) is
low-pass. For this case, we can select a contiguous segment of Y satisfying |S(k)| > 0, K1 ≤
k ≤ K2, and preferrably with |S(k)| above a certain threshold to avoid numerical problems.

We can then apply MODE to the segment {Y(k)}K2

k=K1
to estimate {ωl}L

l=1.

Remark 2: The amplitude estimates given above can be very poor when the SNR is not
sufficiently high. This is because some of the MODE estimates {ω̂l}L

l=1 can be so closely

spaced that Â in (94) is seriously ill-conditioned. We use a simple spacing adjustment scheme
to avoid this problem. After obtaining the MODE estimates {ω̂l}L

l=1 of {ωl}L
l=1, we first sort

them in the ascending order and then check the spacing between two adjacent estimates. If the
distance between any two estimates, say ω̂1 and ω̂2 (ω̂1 ≤ ω̂2), is smaller than a predefined
threshold, say △ωt, we adjust the estimates by replacing ω̂1 with ω̂1 − 0.5△ωt and ω̂2 with
ω̂2 + 0.5△ωt. The amplitudes are then estimated using the adjusted estimates of {ωl}L

l=1. This
spacing adjustment step is ad hoc but can be used to provide good initial delay and amplitude
estimates to replace the first L − 1 steps of WRELAX.

The MODE estimates {ω̂l}L
l=1 of {ωl}L

l=1 and {α̂l}L
l=1 of {αl}L

l=1, which may not be optimal,
especially for real-valued signals, can be refined by using the last step of the WRELAX
algorithm.

WRELAX is a relaxation-based minimizer of the following nonlinear least-squares (NLS)
criterion:

C14({αl , ωl}L
l=1) =‖ Y −

L

∑
l=1

αlSa(ωl) ‖2 . (95)

When the signals are not spaced very closely, WRELAX usually converges in a few steps.
However, when the signals are very closely spaced, the convergence speed of WRELAX is
very slow. Yet by using the above MODE algorithm to obtain the initial conditions and then
using the last step of WRELAX to refine them, super resolution time delay estimation can be
achieved with a fast convergence speed.

Before we present the MODE-WRELAX algorithm, let us consider the following preparations.
Let

Yl = Y −
L

∑
i=1,i �=l

α̂i[Sa(ω̂i)], (96)

where {α̂i, ω̂i}L
i=1,i �=l are assumed to be given . Then (95) becomes

C15(αl , ωl) =‖ Yl − αlSa(ωl) ‖2 . (97)

Minimizing C15(αl , ωl) with respect to ωl and the complex-valued αl yields

ω̂l = arg max
ωl

∣

∣

∣
aH(ωl)(S

∗Yl)
∣

∣

∣

2
, (98)

and

α̂l =
aH(ωl)(S

∗Yl)

‖ S ‖2
F

∣

∣

∣

∣

∣

ωl=ω̂l

. (99)
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With the above preparations, we now present the steps of the MODE-WRELAX algorithm for
complex-valued signals.

Step (1): Select a contiguous segment of data vector Y (for MODE use only) so that |S(k)| >
0, K1 ≤ k ≤ K2. Apply MODE to the segment to obtain {ω̂l}L

l=1. Adjust {ω̂l}L
l=1 so that the

minimum spacing of {ω̂l}L
l=1 is at least △ωt. Obtain the estimates {α̂l}L

l=1 of {αl}L
l=1 by using

(94).

Step (2): Refine the estimates obtained in Step (1) by using the last step of WRELAX. That is,
compute Y1 by using {ω̂l, α̂l}L

l=2 obtained in Step (1). Obtain {ω̂l, α̂l}l=1 from Y1 by using (98)
and (99). Next, compute Y2 by using the updated {ω̂l, α̂l}l=1,3,··· ,L and determine {ω̂l, α̂l}l=2
from Y2. Then compute Y3 by using the updated {ω̂l , α̂l}l=1,2,4,··· ,L and determine {ω̂l, α̂l}l=3
from Y3. Continue this procedure and similarly determine {ω̂l, α̂l}l=L from YL. Repeat the
above process until “practical convergence”.

Similarly, we can use MODE as an initialization method for the EM time delay estimation
algorithm (Moon, 1996), which is referred to as MODE-EM. However, we have found through
numerical simulations that the convergence speed of MODE-EM is slower than that of
MODE-WRELAX.

3.4.2 MODE-WRELAX for real-valued signals

For bandpass real-valued signals, the cost function in (95) is a highly oscillatory cost
function and is very difficult to find its global minimum. Although MODE is derived for
complex-valued signals, we can apply it by assuming the real-valued amplitudes {αl}L

l=1
to be complex-valued. These initial estimates are then refined by the WRELAX algorithm.
Since the attraction domain of the cost function (95) is extremely small, a very good initial
condition is required to achieve the global convergence of any minimizer of (95). The MODE
estimates are first refined by WRELAX by assuming {αl}L

l=1 to be complex-valued since the

attraction domain of (95) becomes much larger when assuming the real-valued {αl}L
l=1 to

be complex-valued (Manickam et al., 1994). The so-obtained estimates are refined again by
WRELAX by using the fact that {αl}L

l=1 are real-valued.

With the above preparations, we now present the steps of the MODE-WRELAX algorithm for
real-valued signals.

Step (1): Select a contiguous segment of data vector Y so that |S(k)| > 0, K1 ≤ k ≤ K2.
By assuming the real-valued {αl}L

l=1 to be complex-valued, obtain the estimates {ω̂l}L
l=1 and

{α̂l}L
l=1 in the same way as Step (1) of the MODE-WRELAX algorithm for complex-valued

signals.

Step (2): Refine the estimates obtained in Step (1) above by using the last step of WRELAX by
assuming complex-valued signals. Take the real parts of the so-obtained amplitude estimates
as the amplitude estimates {α̂l}L

l=1 of {αl}L
l=1.

Step (3): Refine the estimates obtained in Step (2) above by using the last step of WRELAX
and the fact that the signals are real-valued.

Now we consider an example where τ2 − τ1 = 0.2τe. The MSEs of MODE (“◦”), WRELAX
(“×”), and MODE-WRELAX (“∗”) are compared with the corresponding CRBs (solid line)
in Figure 6. Note that due to the highly oscillatory cost functions and very closely spaced
signals, WRELAX converges to some local minimum instead of the global one, which yields
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Fig. 6. Comparison of the MSEs of WRELAX (“×”), MODE(“◦”), and MODE-WRELAX (“∗”)
with the CRBs (solid line) corresponding to real-valued signals for (a) τ1, (b) α1.

very poor estimates. Since the MODE amplitude estimates are obtained without spacing
adjustment, they are so poor at low SNR that some of their MSEs are above the axis limit
due to the inversion of ill-conditioned matrices corresponding to very closely spaced delay
estimates. Although the MSEs of the MODE estimates are close to the CRBs corresponding
to the complex-valued amplitudes when the SNR is high, the wrong CRBs (not shown to
avoid too many lines in the figure) can be larger than the true CRBs, which correspond to the
real-valued amplitudes, by approximately 30 dB.

4. Applications

4.1 Pavement profiling via Ground Penetrating Radar (GPR)

The detection and classification of roadway subsurface anomalies are very important for the
design and quality evaluation of highways. Ultra wideband ground penetrating radar emits
nonsinusoidal impulses with extremely large bandwidth (several GHz) and is very suitable
for this application because of its high range resolution (on the order of several centimeters).
The returned echoes of the ultra wideband ground penetrating radar are superimposed
real-valued signals reflected from the boundaries of different media (layers, voids, etc.), which
can be described by (1). Both the delays and gains are very useful for the detection and
classification of roadway subsurface anomalies. The delays can be used to determine the
layer thickness or anomaly location and the gains can be used to classify the type of media
because the gains are related to the reflection coefficient at the boundary between two media
with different dielectric constants. Once we get the estimates of the media dielectric constants,
we can judge the type of the media.

WRELAX has been applied to layer stripping, based on a single-scan basis using experimental
data and has been proven to be very useful. However, the straightforward extension of
WRELAX from one scan to multi-scans is not feasible since, under moving conditions, the
antenna can change its height relative to the road surface. As the height above the road
decreases (or increases), the amplitude and the time delay of the received signal changes as
well, which can lead to incorrect estimates of layer thickness and permittivity. A motion
compensation and parameter estimation algorithm for GPR is presented for simultaneous
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motion compensation and time delay estimation. More details can be found in our papers
(Li & Wu, 1998; Su & Wu, 2000; Wu & Li, 1998; Wu et al., 1999; 2002).

4.2 Acoustic proximity ranging system

Proximity ranging is very important in a wide range of remote sensing applications, including
level detection, robot manipulation, process control, nondestructive testing, and cavity
thickness monitoring. Various types of sensors based on different physical principles such as
capacitive or inductive proximity sensors, laser displacement sensors, and ultrasonic sensors,
can be used to perform proximity ranging. Among these sensors, ultrasonic sensors have
many important advantages over the others. However, due to the presence of secondary
echoes, using ultrasonic sensors for very close proximity ranging is very difficult. When
ultrasonic sensors face a sound-hard reflective surface, the reflected sound wave can bounce
back and forth several times between the sensors and the reflection surface before decaying
to zero, which results in unwanted strong and overlapping secondary echoes in the received
signal. The time delays for the secondary echoes are approximately integer multiples of the
time delay of the first echo. The matched filter based methods cannot resolve two echoes
with a time spacing less than the reciprocal of the signal bandwidth. Hence, for most of the
very short distance measurement scenarios, the matched filter based algorithms tend to fail or
suffer from severe performance degradations due to their poor resolutions. WRELAX and its
extended version as a super-resolution time delay estimation approaches are developed for
general purposes. They do not exploit the a priori information of the integer multiple time
delays and the nonnegative amplitude due to the acoustically hard reflections. More details
can be found in our papers (Li et al. a, 2002; 2003; Li et al. b, 2003).

5. Conclusion

A family of relaxation- and FFT-based efficient time-delay estimation algorithms were
presented for different scenarios in this chapter. By avoiding the computationally demanding
multidimensional search over the parameter space, the proposed algorithms minimize the
NLS criterion at a much lower implementation cost. They are more efficient and systematic
than existing algorithms. Some practical applications utilizing the proposed algorithms
are also presented. Theoretical analysis and simulations demonstrate the efficiency of the
proposed new algorithms.
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