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1. Introduction

Discrete Fourier Transform (DFT) is probably the most popular signal processing tool. Wide
DFT use is partly dedicated to fast Fourier Transform (FFT) algorithms (Cooley & Tukey,
1965, Oppenheim et al., 1999, Lyons, 2004). DFT may also be efficiently computed by
recursive algorithms in the window sliding by one sample (Jacobsen & Lyons, 2003, Duda,
2010). Unfortunately, DFT has two main drawbacks that deteriorate signal analysis which
are (Harris, 1978, Oppenheim et al., 1999): 1) spectral leakage, and 2) sampling of the
continuous spectrum of the discrete signal. Spectral leakage is reduced by proper time
windows, and the frequency bins between DFT bins are computed by interpolated DFT
(IpDFT) algorithms, thoroughly presented in this chapter.

2. Basic theory
2.1 Signal model

IpDFT algorithms may be derived for discrete sinusoidal or damped sinusoidal signals.
Discrete sinusoidal signal is defined as

v, =Acos(oyn+¢),n=0,1,2,.,N -1, 1)
and discrete damped sinusoidal signal is defined as

v, =Acos(a)0n+go)efd”,dZO,n=0,1,2,...,N—1, (2)

where A>0 is signal’s amplitude, 0<wo<r is signal’s frequency in radians or radians per
sample also referred as angular frequency or pulsation, and wo=r rad corresponds to the half
of the sampling rate F; in hertz, -n<@<r is the phase angle in radians, n is the index of the
sample, N is the number of samples, and d is damping factor. If discrete signals (1) and (2)
result from sampling analog counterparts then

wy =27(Fy / K), €)
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4 Fourier Transform — Signal Processing

where Fy is the frequency of analog signal, v(f)=Acos(2rFot+¢) or v(t)=Acos(2rFot+@)edst, in
hertz, F; is sampling frequency in hertz, and t is continuous time in seconds.

In section 3 it is shown how to estimate parameters of (1) and (2) i.e. A, @, ¢ and d with the
use of DFT. If the investigation refers to analog counterpart signal than parameters of the
discrete signal should be rescaled adequately, for example Fo=F; wo/ (27).

2.2 DFT analysis

Equations in this section are taken from the textbook (Oppenheim et al.,, 1999). Fourier
transform (FT) of infinite length discrete time signal x, is defined as

0

X(@)= 3 xe ", 4)

Nn=—oo

where 7 is integer sample index that goes from minus to plus infinity and ® is continuous
frequency in radians (angular frequency, pulsation). Continuous spectrum X(e/©) defined by
(4) is periodic with the period 2r. The notation X(ei®), instead of X(w), stresses up the
connection between FT and Z transform.

For finite length discrete time signal v, containing N samples DFT is defined as

N-1 )
V=Y v,e /7N k0,12, ,N-1. (5)
n=0

From (5) it is seen, that by DFT the FT spectrum is computed only for frequencies
@=(21/ N)k, that is DFT samples continuous spectrum of the discrete signal.

Finite length signal v, n=0,1,2,...,N-1 is obtained from infinite length signal x,, n=...-2,
-1,0,1,2,... by windowing, that is by multiplication with discrete signal w,, called window,
with nonzero values only on positions n=0,1,2,...,N-1

vi’l = wnxn ‘ (6)

Signal models (1) and (2) were given with rectangular window defined as

)

n

r |1, 0<n<N
w, = )
0, O>n>=N

Discrete signal is always analyzed with the time window as only finite number of samples
may be read into computer. If no other window is purposely used then the signal is
analyzed with rectangular window (7).

Based on FT convolution property signal windowing (6) in the time domain results in
following convolution in the frequency domain

T

V(e®) = % [ X(@°W(e“)do . 8)

-
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where X(e/9) and W(e/®) are the FT spectra of the infinite length signal x, and the time

window w,. Thus, according to (8) we observe the convolution of the signal spectrum with
the window spectrum, and not the signal spectrum alone.

FT of infinite length signal x,=cos(awon+¢) is a pair of impulses at frequencies *ao+2rk thus
the spectrum of the windowed sinusoidal signal (1) is
V(e) = 20 oy (eito-an)y 4 Ao pmioppygitoran)y 9
2 2
Equation (9) is used as starting point in derivation of IpDFT algorithms. It is also used in
leakage correction algorithms e.g. in (Radil et al., 2009).

According to (9) the spectrum V/(e/®) of the discrete, windowed, sinusoidal signal is the sum

of two periodic replicas of window spectrum W(ei®) shifted to the frequency @ and
rescaled by complex amplitude (Ao/2)e*i9.

(s)O:‘I.D (rad), A=1,9=1.3 (rad), N=8

4 2
| ! — [(A2)W(e0)|
3 [ lA2) W)
05 ! ’ [ 1] F]
L :’,': I'
> 0 ! “%2 | 0,=1.00
0.5 l ° - l I. | :
1 1 t | : . . Il'
'1 L] D '-i: |. WA _I, glr_' ! :|:
0 2 4 B 2 2 4 6
R o (rad)
(a) (b)
(A2)e Wi o) + (A2)ePwiel** o)) 3
i —= DFT
N A N A FT \

o (rad) o (rad)
(©) (d)
Fig. 1. Sinusoidal signal (1) with rectangular window and the modulus of its spectrum:

a) signal (1), b) spectrum components for positive and negative frequencies (9), c) continuous

FT spectrum (4)(9), d) sampling the continuous spectrum by DFT bins (5); wr denotes
estimated value
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6 Fourier Transform — Signal Processing

Fig. 1 illustrates equations given above for sinusoidal signal (1) analyzed with rectangular
window for A=1, wo=1 rad, ¢= 1.3 rad, and N =8. Fig. 1b depicts spectrum components for
positive and negative frequencies (9). The sum of those components gives continuous
spectrum shown in Fig.1c that may also be computed from the FT definition (4). As seen
from Fig.1c the energy is not concentrated in the single frequency bin wo (as would be for
infinite length observation), but spills over to all neighboring frequencies. This phenomenon
is called spectral leakage and may be the reason of significant estimation errors. In the given
example spectral components for positive and negative frequencies (9) influence each other
and maximum shown in Fig. 1c is moved from wo=1 rad to wg=1.04 rad (E stands for
estimated value), that is estimation error equals 4%. Amplitude estimation error equals
approx -15%. Estimation errors depend also on signal’s phase ¢ as the sum (9) is complex.
Because of the spectral leakage, the signal in the example disturbs its own spectrum. The
impact of the spectral leakage would be stronger if the signal was a sum of sinusoidal
signals, as every sinusoidal component would disturb its own spectrum and the spectrum of
all others sinusoidal components.

Fig. 1d depicts DFT spectrum of the signal. DFT bins are only computed for frequencies
@=(21/ N)k. Frequency estimation error in that case equals approx -21%.

In DFT analysis spectral leakage is reduced by application of time windows other then
rectangular and the error caused by the sampling of continuous spectrum only in
frequencies wy=(21/N)k is practically eliminated by IpDFT algorithms.

DEFT (5) is derived for periodic signals; as a consequence frequency analysis is correct only
for the signals containing integer number of periods. The signal with integer number of
periods is called coherently or synchronously sampled. In field measurements, for
sinusoidal signals (1) close to coherent sampling is obtained with PLL (Phase Locked Loop)
that keeps integer ratio of signal’s frequency Fo to sampling frequency F;, see (3). The
frequency of coherently sampled signal is wo=(27/N)k rad and equals the frequency of DFT
bin with index k. Damped sinusoidal signals (2) have transient, and not periodic, nature and
thus cannot be synchronously acquired with PLL.

{-)0=2.ﬂ*{2*;'th}=O.?9 (rad) k
1o ’ -5 0 5 10 15
« DFT
L] . ® . ==

05 EF ﬂ | 1 ©=0.79 ﬂl

=2 |

== 0 . . ] e E@’ d || || || | |I |l

= | |
- ! || .| || [
05 | i
2 f . \
. . 8 A ||I-||V| || f ’1i lllrl\ |'n". f A N Illrl|i &
f |rrI III I I\ ] II' 'nll N "'—.'I [ lll [\ I I'|
4 I oL VWY TLEVVVUYEL L))
0 5 10 15 -2 0 2 39 59
n o (rad)

(a) (b)
Fig. 2. Coherently sampled sinusoidal signal (2 periods) a), and its continuous Fourier

spectrum (denoted by FT) and DFT spectrum b); or - frequency of DFT bin with the highest
magnitude (estimated value)
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Fig. 3. Non-coherently sampled sinusoidal signal a), and its continuous Fourier spectrum
(denoted by FT) and DFT spectrum b); wr - frequency of DFT bin with the highest magnitude
(estimated value)

Fig. 2a depicts coherently sampled sinusoidal signal containing exactly 2 periods. The
frequency of this signal is wo=2(2r/N)~0.79 rad and it equals the frequency of the DFT bin
with index k=2. Fig. 2b shows continuous Fourier spectrum (4) and DFT bins of this signal.
Upper OX axis is scaled in DFT index k, and lower OX axis is scaled in frequency in radians.

The range of frequencies intentionally exceeds 2r (one period) to stress up the periodic
nature of the spectrum of discrete signals and the fact that spectral leakage for small
frequencies originates from neighboring period (i.e. the part of the spectrum for negative
frequencies). For coherent sampling of sinusoidal signal only one DFT bin is nonzero and
the analysis is practically not affected by spectral leakage and sampling of the continuous
spectrum.

Fig. 3a depicts sinusoidal signal which does not contain integer numbers of periods. The
frequency of this signal is wo=2.2(2r/N)~0.86 rad and lays between DFT bins with index k=2
and k=3. Fig. 3b shows FT spectrum and DFT spectrum of this signal. Estimation of signal’s
frequency based on the highest magnitude DFT bin is biased by the error of 0.79-0.86=-0.07
rad or -8%. High estimation errors would also be obtained for amplitude and phase
estimation based on the highest magnitude DFT bin. Those errors caused by the sampling of
continuous spectrum can be significantly reduced by IpDFT algorithms.

2.3 Time windows

The application of time windows in DFT analysis is thoroughly reviewed in (Harris, 1978),
and also described in signal processing textbooks, e.g. (Oppenheim et al., 1999, Lyons, 2004).
Other time windows with interesting properties are described in (Nuttall, 1981).

Window properties are determined by its spectrum W(e/®) that consists from the main lobe
which is the highest peak in the spectrum and side lobes. The shape of the spectrum of
rectangular window (7) may be observed in Fig. 1b. The main lobe of the window should be
as narrow as possible, and side lobes should be as low as possible. Narrow main lobe
improves frequency resolution of DFT analysis, while low side lobes reduce spectral
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8 Fourier Transform — Signal Processing

leakage. Rectangular window is the one with the narrowest main lobe, which is an
advantage and the highest side lobes which is disadvantage. All the other time windows
reduce side lobes, and thus spectral leakage, by the cost of widening main lobe i.e. reducing
frequency resolution. It is also known that rectangular window has the best noise immunity
although systematic errors caused by leakage may be dominant for signal containing small
number of cycles.

Time windows are defined as cosine windows or non cosine windows. The cosine windows
may be written in the form

! 2
Z (-1)" A, cos(—mnj, 0<n<N

wn = =0 N , (10)
0, O>n>=N

where w in A, is introduced to distinguish from signal’s amplitude in (1-2).

IpDFT algorithms may only be analytically derived for Rife-Vincent class I (RVCI) windows.
Coefficients A,» for RVCI windows are given in Tab.l. For M=0 RVCI window is
rectangular window, and for M=1 RVCI window is Hanning (Hann) window. RVCI
windows have the advantage of the fastest decay of the side lobes but they also have wide
main lobe, which may be observed in Fig. 4. RVCI windows are also referred as cos«(X),
a=0,2,4,6... defined in (Harris, 1978).

m = 0 1 2 3 4 5 6
A, M=0 1

Ao, M=1 1 1

Ao, M=2 1 4/3  1/3

A, M=3 1 3/2  3/5 1/10

A, M=4 1 8/5  4/5 8/35  1/35

Ano,M=5 1 105/63 60/63 45/126 5/63 1/126

A, M=6 1 396/231 495/462 110/231 33/231 6/231 1/462

Table 1. Coefficients A,» for Rife-Vincent class I windows (10)

Other examples of popular cosine windows are Hamming window (M=1, Aww=0.54,
A1v=0.46), and Blackman window (M=2, Aq©=0.42, A1#=0.5, A,©=0.08).

Cosine windows (10) are the sum of frequency modulated rectangular windows, thus the
spectrum of order M cosine window is

]a) m R j(o— Am R/ j(o+w,,)

€)=> (-1 w (/@ n)y 4 (=1)™ > Zm R (@t em)y (11)
where @,,=(21/N)m and WWR(e/*) is the spectrum of rectangular window

e]“’ Z e jon — pmjo(N- 1)/2M (12)

sin(w / 2)
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Optimal due to main lobe width and side lobes level are non cosine Kaiser-Bessel and
Dolph-Chebyshev windows (Harris, 1978). Those windows generally perform well as
highlighted in (Harris, 1978 Fig. 12).

Fig. 4 shows comparison of windows spectra for RVCI, Kaiser-Bessel and Dolph-Chebyshev
windows for similar attenuation of the first side lobe approx -31.5 dB (Fig. 4a) and approx
-101 dB (Fig. 4b). RVCI window has the fastest decay of side lobes and the widest main lobe.
Kaiser-Bessel window has narrow main lobe and slowly decay side lobes, and Dolph-
Chebyshev window has the narrowest main lobe and the side lobes on the same level. The
markers in Fig. 4 denote DFT bins. Cosine RVCI window has M+1 nonzero DFT coefficients
as stated by (11). For non cosine Kaiser-Bessel and Dolph-Chebyshev windows all DFT
coefficients are non zero.

N=32 N=32

ea .
+RVCI, M=1 Bo = RVCI, M=6
oK, =4.04 g X oK, B=13.4
-4-C, 31.5 dB %“ -50 ) e 4-C, 101 dB
2100 b koo s
-150 -‘i“,%!;!i”
0 1 2 3
o (rad) o (rad)

(@) (b)
Fig. 4. Amplitude spectra of RVCI, Kaiser-Bessel (K) and Dolph-Chebyshev (Ch) windows

with similar attenuation of the first side lobe, markers denote DFT bins; a) attenuation
approx -31.5 dB, b) attenuation approx -101 dB

3. Interpolated DFT algorithms

IpDFT algorithm for sinusoidal signal analyzed with rectangular window was introduced in
(Jain et al., 1979). In (Grandke, 1983) similar derivation was presented for sinusoidal signal
analyzed with Hanning window. IpDFT algorithms for higher order RVCI windows are
given in (Andria et al., 1989). In (Offelli & Petri, 1990) IpDFT algorithm for arbitrary cosine
window was proposed based on polynomial approximation. In (Agrez, 2002) multipoint
IpDFT was introduced with the feature of reducing long range leakage and thus reducing
systematic estimation errors. IpDFT algorithm for the signal analyzed with arbitrary, even
non cosine window was given in (Duda, 2011a).

IpDFT algorithms for damped sinusoidal signal analyzed with rectangular window are
described in (Yoshida et al., 1981, Bertocco et al., 1994). In (Duda et al., 2011b) those
algorithms were put in the same framework, and new algorithms for damped signal with
rectangular window were proposed. Application of RVCI windows for damped signals in
IpDFT algorithms was discussed in (Agrez, 2009, Duda et al., 2011b).

www.intechopen.com



10 Fourier Transform — Signal Processing

The IpDFT problem for sinusoidal and damped sinusoidal signals is depicted in Fig. 5 and
may be formulated as follows. Based on the DFT spectrum Vi (5) of the signal x, analyzed
with the known window w;, (6) find the frequency correction ¢ so to satisfy the equation

a)O:(kiﬁ)%, 0<5<05, (13)

where wy is signal’s frequency, N is the number of samples and k is the index of DFT bin
with the highest magnitude. If | Vi+1|>| Vi-1|, as in Fig. 5, then there is '+' in (13).

For coherent sampling depicted in Fig. 2 frequency correction 6=0, and there is no need to
use IpDFT algorithm. For the example of non coherent sampling shown in Fig. 3 frequency
correction is 6=0.2 and it would be ¢=-0.2 if the signal’s frequency was wo=1.8(2r/N)~0.71

rad.
f/\ — DFT

\ —a®

V(")
o
S

ﬁ\/ M-,_..—e.._._e_g
O 1O D,
o (rad)

Fig. 5. Illustration of IpDFT problem; o-1, @k, wk+1 frequencies of DFT bins, oo - signal’s
frequency, 0 - frequency correction

Let us define the following ratio of modulus of DFT bins with the highest amplitude

Vi | _ V(@ )| _ | V(9 =627 /N +27 / N)|

, (14)
Vil [V(e)] | V(e —627 / N)|

where it was used wi=wo-021/ N, wi+1=w0-021/N+21/N that goes from Fig. 5 and (13). As
stated by (9) the spectrum of the sinusoidal signal consists from the spectrum of the window
moved from the position ©=0 to ®=wy, thus the ratio of signal DFT (14) may be substituted
by the ratio of window DFT

Ve | [IW(=6272 /N +27 /N)|
| Vi | |W(=627 / N)|

R(9) (15)

The approximation sign '~' is used in (15) instead of equality, because the ratios may slightly
differ due to spectral leakage. Solving (15) for frequency correction 6 we obtain two-point
(2p) IpDFT formulas. Analytic solution of (15) is only possible for RVCI windows.

The ratio of DFT bins may also be defined with three bins as
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Vi |+ Vi | _ [ V(@ =627 /N) | +]| V(e =627 /N +27 / N)|
Vil +1Viea | V(g =627 / N)|+|V(wy =627 /N =27 / N)|

, (16)

which may be substituted by

Vi |+ Vi | _IW(=627 / N)|+|W(=627 /N +27 / N)|

R(9) = ~ . 17)
Vil +1Viea | |W(=027 / N) | +|W(-627 /N -2z / N)|
Solving (17) for 6 we obtain three-point (3p) IpDFT algorithm.
Let us define the following summation
min gr | I form=0A", =Ay
) A m 0 ) (18)
M O — (m+n) form=0A", =Ap, /2

where M is the order of cosine window (10) and A,» is the vector of window coefficients.
Then (15) and (17) may be rewritten in the form

|Vk+1 | ~ Sk+1 (19)
Vil Sk
Vil +1Viaa | _ S+ Span (20)

Ve l+1Vig | Sp+ 5

In the next subsections IpDFT algorithms will be derived and explained. In all derivations
the spectrum of the sinusoidal signal (9) is approximated by

V(eja)) z%ej(pw(ej(w—wo))’ 0<w<r- (21)

3.1 Sinusoidal signal — RVCI windows
3.1.1 Rectangular window (RVCI M=0)

Rectangular window w;,R is defined by (7) and the spectrum of this window is given by (12).
From (15) we get

sin(—ox + ) |

|Vk+1|z
sin(-67 / N + 7 / N)|

sin(-ox / N | 22)
| Vil

sin(—or) |

By approximating sine functions by their arguments in (22) we have

(23)

Vial | /N | _| & |
\Vi| |-6r/N+z/N| |5-1|

From (23) frequency correction is

— | Vk+1 I . (24)
[ Vi I+ Vi |
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12 Fourier Transform — Signal Processing

Signal’s frequency in next computed from (13).

The amplitude of the frequency bin wo may be found from the following proportion

V@)l - IWHQ)]  _[sinz/N)| | _or | 25
V(o] |[WRG27/N)| | sin(dr) | |sin(6n)|
From (25) signal’s amplitude is
V(o) HVl|=Z v | =2 s (26)
0 ¢ sin(or) . sin(or)

The phase of the frequency bin @y may be found from the following equation
arg{V(ap)} —arg{V(ey)} = arg{W" (0)) - arg(WX (527 / N)} = —argle =NV} (27)
From (27) signal’s phase is
arg{V (e, )} = arg{V (e )} + arg{e /NED} (28)

The sign '+' or '-' in (28) is selected the same way as in (13).

In similar way, for the three-point interpolation we get from (17) and (12)

| Vi |+ Via | [0 +1]

~ (29)
Vil +1Via | 161
and finally
_ | Vk+1 | + | Vk—l | ) (30)
2|Vi | =1 Vi [+ Vi |
3.1.2 Hanning (Hann, RVCI M=1) window
Periodic Hanning window is defined as
2r
H 0.5—0.5cos(—n], 0<n<N,
w, = N (31)

0, O0>n=N.

Hanning window (31) may be interpreted as the sum of rectangular window and frequency
modulated rectangular window, thus based on FT properties, the spectrum of the Hanning
window is the following sum of the spectra of rectangular windows

WH (/) = —0.25WR (/7)) + 0.5WR (e/2) - 0.25WR (/")) @, =22 /N (32)

Inserting (12) into (32), taking the approximation e/ NN-U)=-1+j /N, and assuming s/ N<<1
the modulus of Hanning window spectrum is
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0.25 0.5 0.25 | )

|WH<ef”)|z|sin(a>N/2>|‘— . + -
sin(w/2—-n/N) sin(w/2) sm(a)/2+7z/N)|

By calculating modulus of DFT bins in (15) we get

025 05 0.25
e
o+1 o6 o-1

|VM|=‘0.25_ 05 | 0.25 | , (34

V.l |6 o6-1 5-2|

which may be rewritten as

Ve | [62(2:025-05)+65(2-05-4-025)+2.025||  S(-1)(5+1) | 5)
|V, | 55 -1)(5-2) 162(0.5-2-0.25)-05|"
As seen in (35) coefficients by the powers of 6 equal zero, and we get simple equation
|Vk+1|:|5+1| (36)
Vel |-6+2
with the solution for frequency correction
o= M . (37)
Vi [+ Vi |
Signal’s frequency is next computed from (13).
Similarly to (26), signal’s amplitude is
wh (o 0.57 025 05 025
Vi) HV | Oy 22| 328, 09 A5, 69
| W™ (627 / N)| sin(or) " | 6-1 o6 o+1
Signal’s phase, computed as by (28), is
arg(V(ap)} = arg{V ()} +argle /) (39)

with the difference that in (28) frequency correction (24) is used and in (39) frequency
correction (37) is used.

3.1.3 Higher order RVCI windows

Rectangular window and Hanning window are RVCI windows of order M=0 and M=1. For
1 1
rectangular window M=0, Aw=1 and from (18 S, _,=——, §5.,=5=—,
& 0 (18)  Sp 15+1] k0 =2k TS
1
Spp1=——
k+1 | 5_1|
calculated from (19) and (20). For Hanning window M=1, A¢w=0.5, A1#=0.5 and from (18)
025 05 -0.25 025 -05 0.25]

—+—+ + + .
s+1 & o6-1 s 5-1 5-2

. IpDFT formulas for two-point and three-point interpolation may next be

Skvo =Sk = and §;,; =
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14 Fourier Transform — Signal Processing

For higher order cosine windows (M>1) we may write down (19) and demand that the
coefficients by the powers of § equal zero, as in (35) for Hanning window, and next solve the
equations for 0. Described procedure allows us to find cosine window coefficients A, that
give analytic IpDFT solutions, and it turns out that by this procedure RVCI windows are
found. For example, for M=2 grouping coefficient by the powers of ¢ gives

(AY +2AF —2A¥Y* =0 |AY =6AY
(—4AY +8AY —8AY)S> =0, AV =4AY, (40)
(AY +4AF —10AY)6? =0 |AY

which are RVC1 M=2 coefficients listed in Tab. I.

For the signal analyzed with RVCI window for two-point interpolation we get

§:(M+1)|Vk+1|_M|Vk|
Vil +1 Vi |

, M=0,1,2,.... (41)

For M=0 and M=1 (41) agrees with previously derived formulas (24) and (37) for rectangular
and Hanning window. Signal’s frequency is next computed from (13). Signal’s amplitude is

W(0 2z |V,
Vo) HV, | O o 27 [ )
|W(62z / N)| sin(dr) S,
For three-point interpolation from (20) we get
S=(M+1) Vi [ =1V | M=1,23,... (43)

2|Vk|+|vk—l|+|vk+1|,

For three-point interpolation and rectangular window frequency correction ¢ is computed
from (30) and not (43). Equation (43) does not hold for rectangular window, i.e. M=0,
because the spectrum of rectangular window contains only one nonzero DFT bin.

Signal’s amplitude for three-point interpolation may be computed from the proportion

| V(g =27 / N)[+2| V() |+ V(e +27 / N)| _
[ Vi |21V [+ Vi |

44
_ |W(27 /N)|+2|W(0)|+|W (27 /N)| “
|W(-627 / N =27 / N)|+2|W(=627 / N)|+|W(-627 / N + 27 / N)|
as
V(@) = 27 | Via [ 2|Vl +1 Vi | (45)

Sln(é‘ﬂ') Sk—l + Zsk + Sk+1

The phase of the frequency bin @y for two-point and three-point interpolation is estimated
the same way as for rectangular window (28) and Hanning window (39)

arg(V(ay)} = arg{V (e, )} targle /NN (46)
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For higher order RVCI windows better accuracy in phase estimation may be obtained by
replacing angle correction, that is second term in (46), by the angle of the following
frequency bin

W(e') =

M .
~ o jo(N-1)/2 VA ) sin(wN / 2)
=] (m:Z_M( 2 A[|m|](1+]m7[/N)sin(a)/2+m7z/N)j' (47)

form=0A",=A4Ay,
form=0A", = Ay, /2.

For known frequency o amplitude and phase of the signal may also be computed from the
definition of Fourier transform (4) or in the least squares (LS) sense.

3.2 Sinusoidal signal — arbitrary windows

IpDFT formulas (41), (43) are only valid for RVCI windows, which have wide main lobe that
deteriorates frequency resolution and noise performance. In practice it is often desired to
analyze the signal with the window having better properties. It is known from literature,
e.g. (Harris, 1978), that optimal parametric non cosine Kaiser-Bessel and Dolph-Chebyshev
windows often perform superior over other windows including RVCI windows. In the
following part IpDFT algorithm for arbitrary, even non cosine, windows is described for
two- and three-point interpolation. The algorithm is based on polynomial approximation of
the ratio R(0) (15), (17) for the window of interest.

First, the ratio R(6) (15), (17) is computed numerically for the selected window based on
window spectrum, and then the dependence 6=f5(R) is approximated by polynomial. During
analysis the ratio R(6) (15), (17) is evaluated from DFT bins, and frequency correction is
estimated from previously computed 6=f5(R).

From the LS polynomial approximation we get
L
6~ Fy(R), Fy(R)= Zale ’ (48)
1=0
where P; denotes L degree polynomial, and R is computed from window’s spectrum.
Signal’s frequency is given by
oy =[k+ Py(R)|(27 / N, (49)

but this time R is computed from DFT bins of the analyzed signal.

Signal’s amplitude is determined from the dependence Xn=fx(0), where for two-point
interpolation

~
~

MUVl T IW(s27 / N)|

_ | V()| |W(0)] (50)

and for three-point interpolation
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_ | V()] ~

NV 421 Ve [+ Vi |

N |W(=27 / N)|+2| W(0)| +| W(27 / N) | ;6
|W (=627 / N=27 / N)|+2|W(-527 / N)|+|W(~627 / N+ 27 / N)|

/2+2|WQ2x /N)[/IW(O)]).
Ratios (50), (51) are next approximated by polynomial P,
Xy = P,(6). (52)
Signal’s amplitude for two-point interpolation is
| V(@) [= Pe(6) [ Vil (53)
and signal’s amplitude for three-point interpolation is
| V(@) = P (O)(| Viea [ 42 Vi |+ Vi) - (54)

Signal’s phase is computed the same way for two-point and three-point interpolation based
on the dependence Pn=fp(0)

Py =arg{W(o2z / N)} . (55)
Signal’s phase is
arg{V(ap)} =arg{Vi} £ F,(9) , (56)

where P, is polynomial approximating Px=fp(0), i.e. Pn=P,(0).

Fig. 6 shows the dependence 6=f5(R) for RVCI windows for two-point and three-point
interpolation. Fig. 7 presents systematic errors of frequency estimation in dependence of the
order of approximation polynomial for selected RVCI, Kaiser-Bessel and Dolph-Chebyshev
windows for signal’s frequencies wo=0.05 rad and wo=1 rad and signal’s length N=512.

(@) (b)
Fig. 6. Dependence 6=f5R) for RVCI windows for: a) two-point and b) three-point interpolation
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Approximation polynomial was fitted to 64 points of window spectrum computed
numerically via Fourier transform (4) in the frequency range from 0 to 2/ N rad, i.e. W(e7®)
was computed by (4) for the set of frequencies from ®=0 to ®=2r/N rad with the increment
(2r/N)/63 rad. Systematic errors were defined similar to (Schoukens et al., 1992), for each
frequency o, test signals were generated with the phase from the interval <-r/2, /2>
changed with the step 7/20 and the maximum absolute value of differences between
estimated and true frequency was selected. It is seen from Fig.7 that approximation
polynomial of order 5 may give acceptable small systematic errors, nevertheless, in results
shown in section 4 approximation polynomial of order 10 is used. For that order systematic
errors, in Matlab 64 bit precision, for RVCI windows are practically the same for analytic
IpDFT formulas (41), (43) and described approximation based IpDFT (49).

, N=512, 3p, ©=0.05 (rad) N=512, 3p, =1 (rad)
10
™ N —~RVCI-1
N -5 TNy
€ }‘\131':'.-8'"'it"":%""E""‘E""‘it"--- £%) 10 \%-:ﬁ L LIRS M RVCI-G
8 8|S S | = N“:.}‘;iij;n_ =K, p=3.86
=N T ] = Ry T K, B=15.80
=2 L ot
= e H 10 "?.::t\, +C,40dB
i au 10 N\ gy | -+-C, 120 dB
4.;, 'B '-L ke e -+ +*+ *r * f— T
3 10 n =3 T iy
B 7 || el pacsres S
£ £
-15
1 0-10 10
2 4 6 8 10 2 4 6 8 10
Polynomial order Polynomial order
(@) (b)

Fig. 7. Systematic errors of frequency estimation for 3p IpDFT for selected RVCI, Kaiser-
Bessel and Dolph-Chebyshev windows for: a) @wo=0.05 rad, and b) oo=1 rad

3.3 Damped sinusoidal signal — Bertocco-Yoshida algorithms

We start this section with derivation of DFT for damped sinusoidal signal (2). Let us rewrite
signal (2) in the complex form

A . .
v, = Acos(a)on n ¢)efdn — E(e—dne](a)onﬂﬂ) + e*dne ](a)(ln+(ﬂ)) . (57)

From the definition (5) DFT of the first term in the sum (57) is

N-1 N-1
DFT{e- e/ +0)y = 3 gngilanto)=i2e/N)kn _ pio S ljon=jor—dyr 58)
n=0 n=0

where w=(2r/N)k. Using the formula for the sum of the geometric series (58) becomes

. 1 _ plia-jo—d)N
DFT{e‘d”ef(“’o”“”)}zer e (59)
1- e]a’o —jox—d
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Going the same way for the second term in (57) we finally obtain the DFT of the damped
sinusoidal signal (2)

1 — plim—jeor-d)N 1 _ pmjm—jer-d)N
Vi :é{eml ¢ y +e_]¢1 ¢ y J/ (60)
2 1=/ %™ 1= /%7 ]%~

which may be rewritten considering that ¢ /N =1 and 1=¢™"/* in the form

N *N
v Ao 124 e 124 | (61)
2 1—Ae /™ 1-21¢e /%

In the following derivation of Bertocco-Yoshida IpDFT algorithms it is assumed that

N
vorllge 124 | gcmen. (62)
2 1—Ae /™

3.3.1 Bertocco (BY-0) algorithm

Let us define the following ratio of complex DFT bins

. _N . _N _ 2o i
R:hzé e]‘/’L /é el? 1 /1‘ = 1 ’13_ , (63)
Vk 2 1= e /%n 2 1=e /% 1= Ae /%%n

where V; is the DFT bin with the highest magnitude. From (63) we get

i 1-R
el —— = . 04
A=e kl—Re_jz”/N (64)
Considering 4 =e "/ damping and frequency are given by
d=-Refln(1)}, @y =Im{In(4)} . (65)
3.3.2 BY-1 algorithm
Let us define the ratio of the first order differences of the complex DFT bins in the form
RV =V (66)
Vk - Vk+1
where Vi is the DFT bin with the highest magnitude. Substituting (62) into (66) we get
- _ ) O _pTio —jox
R:Vk_l Vk:1 ﬂe'k ror= e}k+e k ) (67)
Vk — Vk+1 1= Ae /%% —e %1 o7 %%
_ el r-R . 68
A=e o 27N _ R 2 /N (68)

Damping and frequency are given by (65).
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3.3.3 Yoshida (BY-2) algorithm

Let us define the ratio of the second order differences of the complex DFT bins in the form

Vi, =2V 4V 1-AeT %

R — 7
Vier =2V +Vir 1-4e779%2

(69)

where

r=r/n
1 =(1- A1) (1= Ae7%) = 2(1 - Ae 12) (1= Ae T ) + (1 = Ae /%2 )(1 = Ae /1)
1y = (1= Ae71) (1 = Ae7 1) = 2(1 = Ae 1) (1 = Ae %) + (1 = Ae /% 1)(1 = e /)

and A is evaluated from (68). From (69) we get

1-R
o 127/N _ R j2Cx/N) *

A= el (70)

Damping and frequency are given by (65).
Second order differences may also be defined as
Ve =2V + Vi 1-Ae %

= —7, (71)
Vi=2Vii1 + Vo 1-4e7/%

R

where
r=1/1n
1= (1-Ae7%) (1= 2711 ) = 2(1 = Ae U1 )(1 = A% ) 4 (1= A 1™1)(1 - e /™)
1y = (1= Ae7/ 1) (1= 2e7 72 ) = 2(1 = Ae /™ )(1 = Ae 12 ) + (1= Ae 1) (1 — e 1)

and A is evaluated from (68). From (71) we get

1-R

_ o
A=e 1202 /N) _ poi2a/N ¢

(72)

Damping and frequency are given by (65).

Fig. 8 illustrates cases for definitions of the ratio (69) and (71). Four successive DFT bins are
always taken for interpolation and the DFT bin V; has the highest magnitude. For (69) DFT
bins with the highest magnitudes are k-2, k-1, k, k+1 (Fig. 8a) and for (71) k-1, k, k+1, k+2 (Fig.
8b).

In the original derivation of Yoshida algorithm the ratio (69) is used and damping and
frequency are given by

d:%lm{—S/(R—l)}, a):%Re{k—S/(R—l)}. (73)
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d=0.001, N=512, »=9.8*(2*n/N)=0.12026 (rad) d=0.001, N=512, »=10.2*(2*n/N)=0.12517 (rad)
200 v, 200 Vi
L ] L]
150 150
K100 k- 100
o] =]
Vv vV
50 PR S 50 Vol T
<2 * . . l-_I'c+2! .
0 | | - 9 0 | ] T 9
5 10 15 5 10 15
k k
(a) (b)

Fig. 8. DFT of the damped sinusoidal signal. Solid circles denote DFT bins taken for Yoshida
(BY-2) algorithm: a) ratio defined by (69), b) ratio defined by (71)

3.3.4 BY-3 algorithm

Let us define the ratio of the third order differences of the complex DFT bins in the form

_ Vk_2 - 3Vk—1 + 3Vk — Vk+1 B 1 — ieijwarZ .
Vk—l - 3Vk + 3Vk+] - Vk+2 1 - ie_ja)k—Z

(74)
where
r=n/n
== 271 (1 = Ae77% ) (1= 2e711) = 3(1 = Ae %2 )(1 - A 1™ ) (1 — Le /%)
+3(1—Ae 7 %2) (1= 2e 7% ) (1 = Ae %) — (1= Ae %) (1= Ae 71 ) (1 - Ae /™)
r=(1- de 1% )(1- Qe 1%n )(1- Qe 1Pk )—3(1- Qe 1% )(1- Qe 1% )(1- Qe 1Pk )
+3(1 -7 ) (1= 2e %) (1= Ae 2 ) = (1= 2eT%1) (1 = Ae 1) (1 = Ae T %)
and 1 is evaluated from (68). From (74) we get

r—R
o J227/N) _ R pi227/N)

A= el (75)

Damping and frequency are given by (65).

3.4 Damped sinusoidal signhal — RVCI windows
In the derivation of IpDFT algorithms for RVCI windows we treat damped signal with RVCI
window as sinusoidal signal with damped window i.e.

v, =w,X, =w,Acos(ayhn +p)e ™" =, Acos(wyn + @), (76)

n

where @, =w,e™™" is damped time window.
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3.4.1 Rectangular window (RVCI M=0)

Based on the spectrum of rectangular window (12) the spectrum of the damped rectangular
window is

_ ] N-1 , N-1 - <= _ B
WR(e]“’,d) — Z o dnpmion _ Z o i (@=jd)n _ e—]@W—Dﬂw — WR(eJW) , (77)
n=0 n=0 Sln(a) / 2)

where @=w-jd. Let us define following ratios of the squares of frequency bins of the
damped rectangular window spectrum

R, =V @E IV @) 78)
(W (@) W (@)
where |WX(@,)| is a frequency bin with the highest modulus, see Fig. 5. Using (77) the
ratios (78) are
W@ P Ve B 184D 524D 79)
IWH@) P IVilF 16-1+DF (5-1)*+D?

1

WR@)P _[Viu P 16+DP _ 8+D? (80)
POWR@)P T IVP |6+1+DP  (5+1)%+D?

where D=dN/(2r). In derivation of (79-80) sine functions were approximated by theirs
arguments and it was assumed that (N-1)/N~1.
By comparing D2 in (79) and (80) we get desired frequency correction defined by (13)

s=_1_ Ri-Ry (81)
22R,R, — R, - R,

The damping computed from (79) is

2 1\2
q=27 |9 Ry(6-1) . 5205, (82)
N R, -1

and damping computed from (80) is

2 2
g=27 |97 -R (1) sl 5. (83)
N R, -1

For 6=0.5 (82) must not be used. In implementation if 6=0.5 then zero sample should be
appended at the end of the signal to change 0. Equation (83) may always be used, as from
definition (13) frequency correction is never equal -0.5.

Modulus of the frequency bin wy may be computed from the proportion

V()| _ IWH)] | WR (jd)| (84)

Vel [WR@)| [WR(=627/N-jd)|
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From (84) we get
V6% +D*  |sin(jdN /2
Ve HV = oy 40 )
sin(or + jdN / 2)|
and signal’s amplitude is
A= V()] e O (86)

Signal’s phase may be computed as in case of sinusoidal signals (27)

arg{V(a)} = arg{V (@)} £ arg{W (527 / N = jd)} . (87)

Sign '+' or '-' in (87) is taken the same way as in (13).

3.4.2 Hanning (Hann, RVCI M=1) window

H H —dn

The spectrum of damped Hanning window w,’ =w,’e

is given by
WH (£77) = 20.25WR (/@)Y 4 0.5WR (e/?) - 0.25WR(e/@*)), w, =27 /N,  (88)

where WR(e/”) is the spectrum of damyed rectangular window (77) and o=w-jd.
Inserting (77) into (88) and assuming el (7/N ~-1+jz /N and /N<<1 the spectrum of
damped Hanning window is further approximated by

0.25 0.5 0.25 ]
— e - (89)
sin(@/2-n/N) sin(w/2) sin(w/2+7/N)

WH (£1?) x e/ @N-1/ sm(a)N/Z)(

The ratios of the squares of frequency bins of the damped Hanning window spectrum are

:|W_(5k+1)| | Vit (5+1) +D?
W@)P WP (6-22+D"’

(90)

:|Vv_(5k—1)|2 Vi 5 [ (6-1)°+D?
W@ |V (+2°+D*’

1)

where D=dN/(2rr). From (90) and (91) we get desired frequency correction defined by (13)

5= Ri =K . (92)
24RR, — R, —R, -2

The damping computed from (90) and (91) are

2 92 2
4227 |OF) RGO 5 oo g 27 (G-I R0+ 5 o5 (g
N R -1 N R,—1

Signal’s amplitude and phase are next computed as
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|V (@) H Vi [ TWH )/ IWH (@), A= V(ay)| /e VD2, (94)
arg{V(ay)} = arg{V (e, )} + arg{W" (627 / N - jd)} . (95)

3.4.3 Higher order RVCI windows

In general, the spectrum of the damped @, =w,e™™ RVCI window order M is a sum of
rescaled and moved in frequency spectra of damped rectangular window

w w

(—1)meWR(ef<@-wm)) +(-1)" ATmWR(eﬂw*wm)) . (96)

|
Mz

Wn(e”) =
0

3
I

For damped RVCI window the ratios of the squares of frequency bins are

R Wu@1) P [Vin P (6+M)*+D?
W@ IV (6-M-1)*+D?

©7)

:|I/T/_z\/1(67)k—1)|2 o | Via P ~ (6-M)*+D?
|(Wu(@) P VP (+M+1)*+D*’

2 (98)

where D=dN/ (2r) and M is the order of RVCI window. For M=0 (rectangular window) (97-
98) becomes (79-80), and for M=1 (Hanning window) (97-98) is (90-91).

By comparing D2 in (97) and (98) we get general formula for frequency correction defined by
(13) for damped RVCI order M window

2 2(M+1)RR,—R,-R,-2M

5= (99)

The damping computed from (97) and (98) are

2 _ _1\2 _ 2 2
g2 JOAMy RO =M-1) 55, g2 27 [O=MP=Ry(0+MHL)” . 45 (100)
N R, -1 N R,—1

Signal’s amplitude and phase are next computed as

V(@) H Vil IWO)| /W (@), A=l V()] /e 2, (101)

arg{V(ay)) = arg{V(e,)} +arg{W (627 / N - jd)} . (102)

4. Some properties of IpDFT algorithms

In this section we present results of simulations that describe systematic errors and noise
immunity of IpDFT methods. Because of space constrains, only the results of frequency or
frequency and damping estimation are presented. Including results for amplitude and phase
estimation would multiply the number of figures by three. Furthermore, in practice
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estimation of frequency and damping is of primary importance, and once having frequency
and damping the amplitude and phase may be estimated by LS or FT. It is also true that
amplitude and phase estimation errors, not shown in this section, behave similarly to
frequency estimation errors.

First, systematic errors of IpDFT algorithms for sinusoidal and damped sinusoidal signals
are presented, and then robustness against additive, zero-mean, Gaussian noise is shown. In
all simulations number of samples N=512 was chosen.

Simulations were conducted in Matlab 64-bit floating point precision. Accuracy of this
precision determined by the function eps (Matlab) is on the level 10-15-10-1¢, and estimation
errors cannot be lower than this accuracy.

4.1 Systematic errors

In this section systematic errors of frequency estimation for sinusoidal signals and frequency
and damping estimation for damped sinusoidal signals are presented. For each frequency wo
or damping d, test signals were generated with the phase from the interval <-7/2, /2>
changed with the step /20 and the maximum absolute difference between estimated and
true value was selected.

For obtaining general conclusions the frequency of the test signals was swept in the whole
range from O to i rad. For easier interpretation the frequency of the test signal is also given
in DFT index k.

Fig. 9 shows two sinusoidal test signals with N=512 samples. The signal in Fig. 9a with
frequency wo=1.5+(21/N) contains 1.5 periods, whereas signal in Fig. 9b with frequency
®0=249.5 (2r/ N) rad contains 249.5 periods. Frequencies of those signals scaled in DFT index
k are 1.5 and 249.5 and it means, that in the frequency spectrum those signals lie in the half
way between DFT bins k=1 and k=2 and bins k=249 and k=250, respectively, and in both
cases frequency correction 0 (13) equals 0.5. The first signal is sampled approx 341 times per
period and the second only approx 2.05 times per period.

N=512, o=1.5*(2*7/N)=0.018408 (rad) N=512, ©=249.5*(2*7/N)=3.0618 (rad)

1 1

0.5 0.5
> 0 >
-0.5 -0.5
-10 100 200 300 400 500 -10 100 200 300 400 500
n n

(@) (b)
Fig. 9. Sinusoidal test signals N=512, a) signal with frequency wo=1.5 (27/N) rad containing
1.5 periods, b) signal with frequency wo=249.5 (2r/N) rad containing 249.5 periods
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Fig. 10 depicts damped sinusoidal test signals with frequency wp=10.2(27/N) rad, i.e. 6=0.2.
In simulations the range of damping from d4=0.0001 (Fig.10a) to 4=0.01 (Fig.10b) is
considered.

d=0.0001, N=512, ©=10.2%(2*n/N)=0.12517 (rad) d=0.01, N=512, ©®=10.2%(2*n/N)=0.12517 (rad)
1 A 1
L O O T T O 1
IR I -
I 1 1 1 | It AR R | 1
ost VIV e s
VO LA p
IHATRIRIRIRIRIAIN iV
IR RIRIRIRIRIR IRl s ij ¥
IR/ A O A ¢
1 i i !.* ¥ ",I I Vo ¥ A
0 100 200 300 400 500 0 100 200 300 400 500
n n
(a) (b)

Fig. 10. Damped sinusoidal test signals N=512, w=10.2 (2r/N) rad, a) d=0.0001, b) d=0.01

Figs. 11-12 present systematic errors of sinusoidal signal frequency estimation for selected
RVCI, Kaiser-Bessel and Dolph-Chebyshev windows for two-point and three-point
interpolation. The frequency of the test signals in Fig. 11 was changed from wo=1.5 (27/N) to
@0=249.5 (2r/ N) with the step 8 (2r/N), and the frequency of the test signals in Fig. 12 was
changed from wo=2(271/N) to wo=6(2r/N) with the step (2r/N)/5. In the first case test
signal was newer coherently sampled (i.e. signal never contained integer number of
periods), whereas in the second case coherent sampling occurred for test signals containing
exactly 2, 3, 4, 5, 6 periods.

It is seen from Figs.11-12 that 3p interpolation gives smaller systematic errors than 2p
interpolation. Increasing the order of RVCI window results in significant reduction of
systematic errors. High order RVCI M=6 window may give negligible small estimation
errors as visible in Fig. 11 which is the effect of the fastest decay of the sidelobes. Still, due to
wide main lobe of RVCI M=6 window, the signal has to contain sufficient number of
periods. Systematic errors for Kaiser-Bessel and Dolph-Chebyshev windows are significantly
higher then for RVCI M=6 window because sidelobes of those windows does not decay so
fast. However, it is seen from Fig. 12 that for analysis of the short signal containing 2-4
periods it is advantageous to use, narrow main lobe, Dolph-Chebyshev 120 dB and Kaiser-
Bessel p=15.8 windows over RVCI windows. Local minima for integer values of k in Fig. 12
occur for coherent sampling and cosine windows. For the case of coherent sampling
frequency correction is =0, DFT analysis is correct and there is no need to use IpDFT
algorithms.

Figs. 13-14 present systematic errors of damped sinusoidal signal frequency and damping
estimation for BY algorithms and IpDFT with RVCI windows. The frequency of the test
signals in Fig. 13 was changed from wo=1.5(21/N) to @=249.5(2r/N) with the step
8+(2r/N), and damping was set to d=0.01 (compare Fig. 10b). In Fig. 14 the damping was
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swept from d=10-4 to 102 with equidistant steps in logarithmic scale, and the frequency
was set to wp=10.2(21/N) (i.e. 6=0.2). It is seen from Figs. 13-14 that by choosing high
order RVCI windows significant reduction of systematic errors may be obtained,
however, the price for this gain is the need for longer signal (in the sense of number of

cycles) as explain previously for sinusoidal signals, and higher noise sensitivity as shown
in the next section.

N=512, 2p N=512, 3p

k k
10° © 50 100 150 200 250 10° 0 50 100 150 200 250

o T
g £
3 L
A4 | e
m 15 I". 1 E \ II|
E 107 Seoo0 r,.,e-;%;h%g%ee}e%}ej 71 10T\ oot o990000009900000008 04
Gl W [ o f |
107 U . 1\ 107, 1 — . L 1L)
0 06136 1.2272 1.8408 24544 3.068 0 06136 12272 1.8408 24544 3.068
w (rad) o (rad)
-e~-RVCI-0 ~%-RVCI-6 K p=4.86 —&-C, 120dB|
RVCI-1 K, p=4.86 —+ K p=158
@ (b)

Fig. 11. Systematic errors of sinusoidal signal frequency estimation for selected RVCI,
Kaiser-Bessel and Dolph-Chebyshev windows: a) 2p interpolation, b) 3p interpolation

N=512, 2p N=512, 3p

max]uJE-ml (rad)
max|mE—m| (rad)

‘20 - A I . J -zu 77777 e N—— — v W — E— | — —
Wo245s 00368 00491 00614 00736 | 00245 0.0368 00491 00614 00736
© (rad)  (rad)

-=-RVCI-0 —+RVCI-6 K p=4.86 -&-C,120dB
| = RVCH ~Kp=486 *Kp=158 |
(a) (b)

Fig. 12. Systematic errors of sinusoidal signal frequency estimation for selected RVCI,
Kaiser-Bessel and Dolph-Chebyshev windows: a) 2p interpolation, b) 3p interpolation
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d=0.01, N=512 d=0.01, N=512

k k
00 50 100 150 200 250

max}mE«mi (rad)

107" 1 Tl
il
W

0 06136 1.2272 1.8408 24544 3.068 ] 06136 1.2272 1.8408 24544 3.068
w (rad) w (rad)
-+-BY-0 —+BY-2 4-RVCI-0 2RVCI-6
| -+ BY-1 BY-3 -+RVCI-1

(@) (b)
Fig. 13. Systematic errors of damped sinusoidal signal frequency and damping estimation
for BY algorithms and RVCI windows

o N=512,0=10.2°(2"/N)=0.12517 (rad) o N=512,0=10.2°(2"1/N)=0.12517 (rad)
10 10

5 5'H &—o—o &
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w o [
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i e 107 -
-4 T g -4 PR oy
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d d

--BY-0 +BY2 - RVCI0 -+RVCI6
BY-1 BY-3 -+ RVCI-1
@) (b)
Fig. 14. Systematic errors of damped sinusoidal signal frequency and damping estimation
for BY algorithms and RVCI windows

4.2 Noise

Noise performance is typically illustrated by comparison with Cramér-Rao Lower Bound
(CRLB). Unbiased estimator that reaches CRLB is optimal Minimum Variance Unbiased
(MVU) estimator. CRLB for sinusoidal signal (1) disturbed by zero-mean Gaussian noise
with variance 0?2 is given by (Kay, 1993)
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var(opg) 2 ———— 103
()2 s (109
and for damped sinusoidal signal (2) by (Yao & Pandit, 1995)
_.2\3¢1 _ 2N ‘
var(a ;) = var(d,) ~ A-z) oz ) g, (104)

ﬂ[—NZZZN(l _ ZZ )2 + 22(1 N ZZN) ]
where E in subscripts stands for estimated value, and 7 is signal to noise ratio defined as

n=A%/(20%), S/ N =10logy,(n) (dB). (105)

It is seen from (103-104) that the variance of frequency estimator is inverse proportional to
the third power of signal length N. This strong dependence suggests high number of
samples for frequency estimation, i.e. high sampling frequency or/and long observation
time.

Fig. 15 shows exemplary realization of the sinusoidal signal disturbed by the zero-mean
Gaussian noise with S/N=10 dB (105) and its DFT spectrum. Mean value and standard
deviation of estimation errors, shown in Figs. 16-18, were computed from 1000 realizations
of the test signal. Signal’s phase was generated as a random variable with uniform
distribution on the interval <-7/2, 1/2>.

Fig. 16 presents results of frequency estimation of sinusoidal signal analyzed with different
windows for three-point interpolation. It is seen from Fig. 16 that for S/N from approx 15
dB to 40 dB rectangular window (RVCI M=0) has the best noise immunity. For the lower
disturbance (higher S/N) systematic errors become more significant than noise for
rectangular window and better results are obtained with RVCI M=1 (Hanning) window,
Kaiser-Bessel p=4.86 window, and Dolph-Chebyshev 50 dB window. RVCI M=6 has the
highest noise sensitivity due to the widest main lobe.

S/N=10(dB), N=512, ©=10.2*(2*1/N)=0.12517 (rad)  S/N=10(dB), N=512, ©=10.2*(2*1/N)=0.12517 (rad)
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(a) (b)
Fig. 15. a) Exemplary realization of sinusoidal test signal disturbed by 10 dB noise, N=512,
@0=10.2 (2r/ N) rad; b) DFT spectrum
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N=512, 3p, ©=10.2*(2*7/N)=0.12517 (rad) N=512, 3p, ©=10.2*(2*n/N)=0.12517 (rad)
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Fig. 16. a) Mean value and b) standard deviation of frequency estimation error for sinusoidal
signal for different time windows

Figs. 17-18 present results of frequency and damping estimation for damped sinusoidal
signal. It is seen that for high S/N systematic error is dominant for BY-0, and RVCI M=0
window. BY-1 algorithm gives the best results in the wide range of S/N. It is seen from

Fig. 18b that BY methods are better estimators of damping than IpDFT with RVCI
windows.

N=512, ©=10.2*(2*n/N), d=0.01 N=512, ©®=10.2*(2*n/N), d=0.01
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|~ BY-1  BY-3 +RVCl-1 -—CRLB
(a) (b)

Fig. 17. a) Mean value and b) standard deviation of frequency estimation error for damped
sinusoidal signal for different [pDFT algorithms
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Fig. 18. a) Mean value and b) standard deviation of damping estimation error for damped
sinusoidal signal for different [pDFT algorithms

5. Conclusion

This chapter describes DFT interpolation algorithms for parameters estimation of sinusoidal
and damped sinusoidal signals. IpDFT algorithms have two main advantages:

1. Low computational complexity attributed to fast algorithms of DFT computation.
2. No need for the signal model (as opposed to parametric methods).

IpDFT methods may be used as fully functional estimators, especially when noise
disturbance is not very strong. If the signal model is known IpDFT may be used for

providing starting point for LS optimization that is optimal for Gaussian zero-mean noise
disturbance.

For the signals with disturbances not possible to include in the signal model, as e.g.

unknown drift, [pDFT with adequate time window may offer better performance than
optimization.
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