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1. Introduction 

SIRT2(sirtuin 2) is one of the mammalian orthologs (sirtuins) of yeast silent information 
regulator 2 (Sir2) proteins that regulate cell differentiation and calorie restriction (Gan and 
Mucke, 2008; Nakagawa and Guarente, 2011 for review). In contrast to other family 
members of sirtuins, SIRT2 is mostly localized in the cytoplasm, and regulates post-
translational modifications of proteins such as microtubules via tubulin deacetylation 
(North et al., 2003)(Fig. 1). The enzyme catalyzes the hydrolysis of NAD+ and transfer of the 
acetyl moiety of acetylated alpha-tubulin to the resultant ADP-ribose, thus yielding free 
alpha-tubulin, 2'-O-acetylated ADP-ribose, and niconinamide. This stoichiometry indicates 
that its activities are modulated by the status of energy metabolism, and nicotinamide serves 
as an inhibitor. It has well been appreciated that SIRT2 plays a crucial role in cellular 
functions including oligodendrocyte differentiation (Li et al., 2007; Ji et al., 2011) and cell 
cycle (Dryden et al., 2003; Inoue et al., 2007) in non-neuronal cells. So far very few studies 
have ever addressed the question as to whether its expression in neurons shows any 
functional significance. We will briefly summarize our results on its functional involvement 
in axon degeneration, and discuss some of recent findings, highlighting an emerging role of 
SIRT2 in the regulation of neuronal degeneration and plasticity. 

2. Tubulin acetylation and axon stability 

2.1 Acetylation and deactylation of tubulin 

With long axons and elaborated dendrites, neurons establish the circuitry that receives, 
stores and transmits information to perform neuronal functions (Horton and Ehlers, 2003). 
The establishment and maintenance of this circuitry requires a coordinated and widespread 
regulation of the cytoskeleton and membrane trafficking system. Microtubles, whose 
building block is a heterodimer of alpha- and beta- tublins, play a pivotal role in this 
function (Fig. 1). There are multiple pathways through which microtubules are stabilized. 
For instance, acetylation is mostly observed in stable microtubules in neurons as revealed by 
their low sensitivity to drug-induced depolymerization (Black and Greene, 1982) or 
upregulation of acetylated alpha-tubulin in response to trophic factor (Black and Keyser, 
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1987). These findings support a correlate between axon stability and acetylation of alpha-
tubulin, but still pose a yet unresolved question regarding the causal relationship between 
the two (Westermann and Weber, 2003). Acetylation, the major post-translational 
modification of alpha-tubulin, occurs at the epsilon-amino moiety of Lys40 in the amino 
terminal region of alpha-tubulin (MacRae,1997). The level of acetylation will be regulated by 
a balance of tubulin acetyltransferase and tubulin deacetylase activities (Laurent and Fleury, 
1996). Although tubulin acetyltransferase (alpha-TAT/MEC-17) has recently been into 
focus, its regulation is still unknown. Both microtubles and, to a lesser extent, tublins may 
serve as the substrate for this enzyme (Maruta et al., 1986). The mechanism by which this 
enzyme works in the lumenal space of the microtubules remains a mystery. Recently, 
histone deacetylase 6 (HDAC6) (Hubbert et al., 2002; Matsuyama, 2002) and SIRT2 (North et 
al., 2003) have been identified as an enzyme that catalyzes deacetylation of acetylated alpha-
tubulin (Fig. 1). Each enzyme is likely to play an independent role in each compartment of 
axons. 

2.2 The Wld
s
 gene and axon stability 

In a mutant mouse strain (WldS :Wallerian degeneration resistance) axon degeneration, but 
not cell somal death, is delayed (Coleman, 2005 for review). Researchers found that 
transected axons from WldS mice are morphologically indistinguishable from intact axons 
and capable of conducting action potentials for more than 2 weeks, whereas transected 
axons from wild-type mice rapidly degenerate within 2 days (Lunn et al., 1989), suggesting 
that the axonal cytoskeleton is highly stabilized in these mutant WldS mice. This model 
provides evidence that axonal degeneration is an active process intrinsic to axon itself, 
which is consistent with the notion that axons often undergo degeneration, independently of 
cell somal apoptosis during development (Koike et al., 2008, for review). The responsible 
gene for this phenotype has been demonstrated to encode a chimeric protein (WldS) of the 
full-length of Nmnat1 and N-terminal 70 amino acids of Ufd2a (Conforti et al., 2000). 
Researchers have shown that the overexpression of the chimeric protein or Nmnat1, or NAD 
treatment delays axonal degeneration (Mack et al., 2001; Araki et al., 2004; Wang et al., 
2005). Nmnat1 is a key enzyme for NAD biosynthesis, and hence it has been postulated that 
NAD-dependent pathways are involved in the mechanisms underlying WldS-mediated 
axonal protection (Araki et al., 2004; Sasaki et al., 2006). However, both WldS and Nmnat1 
are localized in the nucleus, and NAD level remains unchanged irrespective of WldS or 
Nmnat1 overexpression (Mack et al., 2001; Araki et al., 2004). The precise mechanism of this 
neuroprotection is still not yet clear, but these findings suggest the involvement of putative 
downstream target(s) responding to WldS expression in cell soma. Moreover, WldS 
phenotype shows a substantial resistance to microtubule depolymerizing drugs (Wang et 
al., 2000; Ikegami and Koike, 2003), suggesting that this system provides a model to examine 
the correlation between axon stability and microtubule acetylation. 

2.3 Involvement of SIRT2 in axon stability 

2.3.1 Evidence for SIRT2 involvement in the axon stability in the Wlds model 

Based on our preliminary finding on the presence of SIRT2 in cerebellar granule neurons 
(CGNs), we have put forward our hypothesis that SIRT2 may be involved in microtubule 
stability by regulating the level of tubulin acetylation. If our hypothesis is correct, the level 
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of acetylated alpha-tubulin of CGN axons from WldS mice should be higher than those from 
wild-type mice, and lowering the levels should ameliorate the resistance of these mutant 
axons to degenerative stimuli including colchicine. Westernblot analysis showed that the 
basal levels of both acetyl microtubule and acetyl alpha-tubulin were indeed higher in 
cultured CGNs from WldS mice than those from wild-type mice (Suzuki, 2007; Suzuki and 
Koike, 2007a). This is also the case for in vivo; Fig. 2 shows that the level of acetylated alpha-
tubulin per total alpha-tubulin is significantly higher in the WldS cerebellum compared to 
the wild-type cerebellum at postnatal 21 days (P21).  

 

Fig. 1. Acetylation and microtubule dynamics of assembly and disassembly. Microtubules, 

whose building block is a heterodimer of alpha- and beta- tubulins, are in a dynamic 

equilibrium of assembly and disassembly. Major acetylation site is at Lys40 of alpha-tubulin. 

Both microtubles and tublins may serve as the substrate for acetyltransferase (Maruta et al., 

1986). Both SIRT2 (North et al., 2003) and histone deacetylase 6 (HDAC6) (Hubbert et al., 

2002; Matsuyama, 2002) are known to catalyze the deacetylation of acetylated alpha-tubulin. 

The level of acetylation will be regulated by a balance of tubulin acetyltransferase and 

tubulin deacetylase activities. 

To further test our hypothesis, CGNs from WldS mice were transfected with the expression 

vector for GFP or GFP-sirt2, and then immunostained with anti-acetylated alpha-tubulin 

(Suzuki, 2007; Suzuki and Koike, 2007a). The proximal region of the axons was clearly 

stained in CGNs expressing GFP alone, consistent with the previous reports (Baas and 

Black, 1990; Shea, 1999), whereas it was markedly reduced in those expressing active GFP-
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SIRT2. The results suggest that SIRT2 overexpression is sufficient to substantially reduce the 

hyperacetylation of CGN axons from WldS mice. Morphologically, changes in the number 

and length of CGN axons expressing GFP or GFP-sirt2 were measured overtime after 

treatment with colchicine: 50% of axons per GFP-positive CGNs from WldS mice still 

remained alive, whereas in WldS CGNs expressing active sirt2, only 10% of axons per GFP-

positive cell remained alive at 24 h after colchicine treatment. These results clearly indicate 

that SIRT2 overexpression downregulated the elevated level of tubulin aceylation and 

amiliorated the resistance of CGN axons from WldS mice to the degenerative stimulus 

(Suzuki and Koike, 2007a).  

 

Fig. 2. The level of alpha-tubulin acetylation in the molecular layer of the cerebellum from 

wild-type (WT) and WldS mice during postnatal development. Details of the procedures are 

previously described (Suzuki and Koike, 2007a). Staining intensities on the sections were 

measured by using Scion Image software. Relative intensities of total and acetylated alpha-

tubulins were calculated by normalizing staining intensities of total and acetylated alpha-

tubulins to those of phalloidin, respectively. Tubulin acetylation was determined as a ratio 

of the intensities of acetylated alpha-tubulin to those of total alpha-tubulin in adjacent 

sections. The data are shown as mean ± S.D. (n = 3 animals).  Statistical significance was 

detected by Student’s t-test (*p < 0.05 between groups at wild-type and WldS). Data from 

Suzuki (2007). 

2.3.2 Functional correlate between SIRT2 levels and axon resistance against 
degenerative stimuli 

If microtubule hyperacetylation is involved in acquiring resistance of CGN axons from 
mutant mice to degenerative stimuli, then similar resistance would be attainable for wild-
type CGN axons by the use of SIRT2 inhibitors or sirt2 silencing technology. By exposing 
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wild-type CGNs from wild-type mice to nicotinamide, the inhibitor of SIRT2, prior to 
colchicine application, we obtained evidence for enhanced tubulin acetylation and increased 
resistance to colchicine (Suzuki and Koike, 2007a). Immunoblot analysis shows that the level 
of alpha-tubulin acetylation increased following treatment with nicotinamide in a 
concentration- and time-dependent manner (Suzuki, 2007). However, treatment with 3-
aminobenzamide(3-AB), an inhibitor for PARP, failed to elevate the level, suggesting that 
the effect of nicotinamide on tubulin deacetylation is mediated by SIRT2 but not by PARP. 
On the other hand, trichostatin A (TSA), a specific inhibitor for HDAC6 tubulin deacetylase 
(Matsuyama et al., 2002), failed to enhance tubulin acetylation. Morphologically, more than 
70% of axons were viable, whereas 90% of cell somata were dead when CGNs were treated 
with 10 mM nicotinamide and then with colchicine for a further 24h. However, it should be 
noted that nicotinamide was neuroprotective only after its exposure to CGNs for more than 
2 days, and that this agent elevated the level of alpha-tubulin acetylation, but not the level of 
microtubule acetylation.  

To eliminate the possibility that nicotinamide acted through other pathways, CGNs were 
transfected with a lentiviral vector expressing SIRT2 small interfering RNA (siRNA). SIRT2 
silencing indeed caused an increase in the level of acetylated alpha-tubulin (Fig. 3). 
Morphologically, more than 50 % of axons were viable as revealed by calcein-AM staining, 
whereas more than 90% of cell bodies were dead as revealed by PI staining, after colchicine 
treatment for 48hr (Suzuki, 2007). These results show that CGN axons form wild-type mice 
acquired resistance to degenerative stimuli by downregulating sirt2 expression.  

2.3.3 Resveratrol-mediated modulation of axon degeneration  

Resveratrol, a natural polyphenol, shows a wide range of interesting biological and 
pharmacological activities. Besides acting as a general inhibitor against oxidative stress, this 
agent is known to activate SIRT1, thus providing a potential effect for longevity (Fulda and 
Debatin, 2006; Buer, 2010 for review). To asses the effect of resveratrol on SIRT2 HEK293 
cells were transfected with GFP alone, active GFP-SIRT2, or GFP-SIRT2 N168A, a 
catalytically inactive mutant (North et al., 2003), and then the cellular lysates were 
immunoprecipitated by anti-GFP antibody. The resultant immunoprecipitates were used as 
SIRT2 enzymes for tubulin deacetylation assay. We found that resveratrol decreased the 
level of acetylated alpha-tubulin in the immunoprecipitates from CGNs transfected with 
active GFP-SIRT2, but not inactive GFP-SIRT2 or GFP alone, suggesting that resveratrol 
indeed activates SIRT2 (Suzuki, 2007). 

Westernblot analysis showed that resveratrol decreased the level of acetylated alpha-tubulin 
in the CGN lysates from wild-type mice in a time- and dose-dependent manner (Suzuki, 
2007; Suzuki and Koike, 2007b). Moreover, resveratrol decreased the level of tubulin 
acetylation, and, as a result, reduced the resistance of CGN axons from WldS mice to the 
degenerative stimulus. The effect of resveratrol on cell body degeneration appeared to be 
minimal, which is consistent with the previous report (De Ruvo et al., 2000). These results 
suggest that resveratrol amiliorated the resistance of CGN axons from WldS mice to 
colchicine by enhancing tubulin deacetylation. However, it should be noted that resveratrol 
was neuroprotective after its treatment for more than 2days, suggesting that it may acts 
indirectly on SIRT2 or other targets including nuclear transcriptional factors that regulate 
the expression of a variety of genes (Fulda and Debatin, 2006). 
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Fig. 3. The enhancement of the level of acetylated alpha-tubulin in wild-type CGNs by 

silencing of sirt2. CGNs from wild-type mice were mock infected or infected with lentivirus 

expressing SIRT2 siRNA at 1 moi, and cultured for a further 48 h. Five micrograms of total 

proteins from the cytoskeletal fraction (microtubules fraction) of both cultures were applied 

on a gel, and analyzed by immunoblotting with anti-acetylated alpha-tubulin antibody. 

Equal loading was confirmed by reprobing the same blot with anti-alpha-tubulin antibody 

(upper 2 blots). For immunoblotting with anti-SIRT2 antibody, twenty micrograms of total 

proteins from the total cellular fraction were analyzed. Equal loading was confirmed by the 

same blot with anti-beta-actin antibody (lower 2 blots). Each experiment was repeated three 

times with similar results. Note that both long (43kDa) and short (39kDa) forms of the SIRT2 

proteins are detected. Data from Suzuki (2007). 

3. Evidence for neuronal distribution of acetyl alpha-tubulin and SIRT2: An 
immunoreactivity study during postnatal development of mouse cerebellum 

In the mouse brain, the expression of alpha-tubulin is high during early postnatal days, and 

subsequently decrease upon maturation (Burgoyne and Cambray-Deakin, 1988), whereas 

tubulin acetylation in vivo is known to occur concomitantly with maturation (Black and 

Keyser, 1987), indicative of its association with microtubule stability (Westermann and 

Weber, 2003). Immunohistochemistry using the monoclonal antibody specific for acetylated 

alpha-tubulin showed intense particulate staining in the molecular layer of postnatally 

developing and adult mouse cerebellum (Suzuki, 2007; Kawahara, 2007). Bergmann glial 

fibers and Purkinje cell dendrites were not stained, whereas Purkinje cell bodies were 

intensely stained in developing mouse cerebellum (Suzuki, 2007; Kawahara, 2007), 

consistent with the previous findings (Cambray-Deakin and Burgoyne, 1987). During 

postnatal development the external granular layer becomes thinner, while the molecular 

layer becomes enlarged (Burgoyne and Cambray-Deakin, 1988). Along with this, intense 

staining was observed in the molecular layer from wild-type and WldS mice. The level of 

www.intechopen.com



 
SIRT2 (Sirtuin2) – An Emerging Regulator of Neuronal Degeneration 

 

7 

microtubule acetylation in WldS cerebellum was increased at P14-21 (Suzuki, 2007; 

Kawahara, 2007), which corresponds to the stage when granule cells migrate into the 

internal granule layer (IGL) along extending parallel fiber axons, and form short dendrites 

(Burgoyne and Cambray-Deakin, 1988). These findings suggest that microtubule acetylation 

occurs in a manner that depends on developmental stages. In vitro, Wallerian degeneration 

of transected axons is further delayed by extending culture period of time prior to axotomy 

in cerebellar explant cultures from WldS mice (Buckmaster et al., 1995). 

Fig. 4 shows the immunostaining patterns of SIRT2 of wild-type and WldS mouse cerebella 

during development; intense immunostaining was observed in the EGL, the IGL and the 

Purkinje cell layer at P1, and the EGL and the Purkinje cell layer at P7, and then gradually 

declined in both cerebella, although the intensity was lower in the WldS cerebellum. At P21 

and, to a lesser extent, in adult, clear and distinct staining was observed for the Purkinje cell 

layer. Fig. 4 clearly shows that SIRT2 immunoreactivity is localized in the cytoplasm of 

Purkinje cells; though less clearly, the staining of CGNs were rather uniform. In the 

molecular layer of both adult wild-type and WldS cerebella immunostaining was far less 

intense, consistent with the recent report (Li et al., 2007). Our findings clearly show that both 

CGNs and Purkinje neurons are positively stained with the antibodies against SIRT2 at the 

critical period of time when these neurons are undergoing differentiation and migration 

(Suzuki and Koike, 1997; Powell et al., 1997). SIRT2 immostaining clearly showed the 

localization of SIRT2 in developing CGNs and Purkinje neurons in contrast to the previous 

finding on its distribution in non-neuronal cells. Recent study has revealed a widespread 

distribution of SIRT2 in CNS neurons (Maxsell et al., 2011).  

4. Possible roles of SIRT2 in neurodegeneration 

4.1 Acetylated alpha-tubulin as a marker of stable microtubules 

We have showed that alpha-tubulins and microtubules are hyperacetylated in CGNs from 

wlds mutant mice, and the resistance of these CGN axons to degenerative stimuli is 

ameliorated by downregulating the level of acetylation by multiple methods including 

silencing of sirt2. Similarly, CGN axons from wild-type mice acquired resistance to 

colchicine by sirt2 silencing, which was associated with reduced levels of tubulin 

deacetylation, but not enhanced levels of microtubule acetylation. The reason for this is 

unclear, since both acetylated and non-acetylated alpha-tubulins are known to be a good 

substrate for tubulin acetylatransferase in vitro. It is likely that the degeneration pathway 

may play a role in the regulation of axon stability given the fact that deacetylated tublin is 

rapidly degradated (Black et al., 1989; Ren et al., 2003) as shown in Fig. 5, and therefore, if 

this step is blocked, acetylated microtubules are metabolically stabilized (but not 

accumulated). Consistently, the level of acetylated alpha-tubulin is a signal for fine-tuning 

microtubule dynamics by modulating alpha-tubulin turnover (Solinger et. al., 2010). It has 

been shown that microtubules were stabilized and the level of acetylated alpha-tubulin was 

elevated in the cells transfected with microtubule-associated proteins tau or other associated 

proteins (Takemura et al., 1998), suggesting these microtubule associated proteins influence 

microtubule stability by modulating tubulin acetylase activities; Fig. 5 shows that the 

association of alpha-tubulin with tau stabilizes microtubules via a yet unknown mechanism. 
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Fig. 4. Immunohistochemical staining patterns of SIRT2 during postnatal development of 

the cerebellum from wild-type and WldS mutant mice. Coronal crysections from cerebella 

from each mouse were immunostained with anti-SIRT2 antibody (green). As a reference, 

nuclear stainings with PI (red) in wild-type cerebellum are shown. Details of this method 

have been described (Suzuki and Koike, 2007a). Note that oligodendrosites are intensely 

stained in the adult cerebellum (Li et al., 2007). EGL, the external granular layer; ML, the 

molecular layer; PL, the Purkinje cell layer; the IGL, internal granular layer. Scale bar 

represents 25 microm.  Data from Suzuki (2007) and Kawahara (2007). 
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Fig. 5. SIRT2 targets and its functions. Targets of SIRT2 include a number of transcription 
factors including p.53, p.300, 14-3-3, p.65, Foxo's, NFkappaB, SREBP-2 and others, only two 
of which are shown in this figure. Besides these transcription factors, SIRT2 is known to act 
on FOXO1 and tubulins. FOXO-1 in the cytoplasm plays a crucial role in autophagic 
mechanisms, although its neuronal distribution is not currently available. Alpha-tubulin is 
shown to bind to Parkin, and is thereby ubiquitinated and quickly degradated. On the other 
hand, acetylated-tubulin is able to bind to tau and is involved in microtubule stabilization.  
The plus ends of Microtubules are in a dynamic equilibrium of assembly and disassembly 
and their minus ends with extensive acetylation and association with tau  are relatively 
stable. 

4.2 Multiforms of SIRT2 

Previous reports have shown that SIRT2 is localized mainly in the cytoplasm (North et al., 
2003; Dryden et al., 2003). For CGNs, SIRT2 immunoreactivity was observed throughout the 
cells. Westernblot analysis shows two different isoforms of SIRT2 proteins. Interestingly, the 
long isoform (43 kDa) was barely detectable in the cytoplasmic fraction in both WT and WldS 
granule cells (Suzuki, 2007). The short form (39 kDa) lacks the corresponding N-terminal 37 
amino acids in the long isoform (Voelter-Mahlknecht et al., 2005) and may be located in the 
cytoplasm and the nucleus. Recent study shows that there is a sirt2 transcript expressed 
preferentially in aging CNS (Maxsell et al., 2011). Further experiments should be needed to 
delineate the precise roles of these nuclear, cytoplasmic, age-specific forms of the Sirt2 
transcripts.  
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4.3 Degradation pathways of SIRT2 

Dryden et al. (2003) reported that SIRT2 is dephosphorylated by the phosphatase CDC14B 

and then degradated via the ubiquitin-proteasome pathway. This finding suggests that the 

level of SIRT2 proteins could be regulated by phosphorylation in the nucleus where this 

phosphatase is located, and ubiquitination in the cytoplasm. CDC14B overexpression 

promotes microtubule acetylation and stabilization, indicative of the involvement of the 

nucleo-cytoplasmic shuttling in the degadation pathway of SIRT2 (Cho et al., 2005). Parkin, 

an ubiquitin E3 ligase linked to Parkinson’s disease, is also shown to bind to alpha- and 

beta-tubulins and enhance their ubiquitination and degradation (Ren et al., 2003)(Fig. 5). 

Regulation by phosphorylation has also been shown for HDAC6, another tubulin 

deacetylase.  

Recently, researchers have shown that FOXO (Forkhead box, class O) transcription factors 

are clearly involved in the degradation pathway in a number of important ways. SIRT2 

facilitates FOXO3 deacetylation, promotes its ubiquitination and subsequent proteosomal 

degradation (Wang et al., 2011). Fig. 5 shows various targets of SIRT2 in which there are 

number of transcription factors. including NFkappaB (Rothgieser at al., 2010). On the other 

hand, cytosolic FOXO1 acts independently of its capability as being a transcription factor 

and is shown to be essential for the induction of autophagy in response to stress (Zhao et al., 

2010). Fig. 5 shows that FOXO1 is acetylated by dissociation from SIRT2, and the acetylated 

FOXO1 forms a complex with Atg7, an E1-like protein, in the autophagy signaling pathway 

(Zhao et al., 2010). As shown previously, autophagic degradation processes play a key role 

in the survival and degeneration of axons and dendrites (Koike et al., 2008).  

4.4 SIRT2 versus HDAC6 

SIRT2 is shown to be localized in the proximal region of CGN axons (Suzuki, 2007), 

whereas HDAC6 tubulin deacetylate distributes in the distal region of axons of 

Hipocampal neurons (Black et al., 1998), suggesting each tubulin acetylase may have 

different regulatory roles in microtubule stability and the protein-protein interaction 

along axons. Previous studies have shown that HDAC6 inhibition or suppression 

regulates the interaction of ankyrinG or similar axonal domain-interacting proteins with 

voltage gated sodium channels that diffuse along the axon (Black et al., 1998). Thus, the 

distribution of SIRT2 in the proximal region of the axon and its absence from the distal 

region of the axon may regulate the formation of different microtubules domains in the 

axon. HDAC6 regulated activity at the distal axon can promote axonal growth (Tapia et 

al., 2010), while microtubules at the proximal region of the axon can be more acetylated 

and allow the maintenance of the axon initial segment, necessary for polarized axonal 

transport, tethering of ankyrin proteins and generation of neuronal action potentials. It is 

interesting to point out that both the protein-protein interactions along axons and the 

protein degradation pathway are regulated through the acetylation/deacetylation 

pathway. Therefore, its switching is a key event for the regulation of microtubule 

degradation and hence stability of various axonal domains. Further experiments will be 

necessary to understand how SIRT2 or HDAC6 deacetylase activities are locally regulated 

and involved in the axon stability and degeneration. 
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5. Conclusion & future issues 

SIRT2, a NAD-dependent protein deacetylase, is mostly localized in the cytoplasm and 
regulates post-translational modifications of proteins such as microtubules via tubulin 
deacetylation. We have shown evidence that SIRT2 could modulate hyperacetylation of 
alpha-tubulin in cerebellar granule axons and thereby abrogate their resistance to 
degenerative stimuli in a mutant mouse strain where axon degeneration, but not cell somal 
death, is markedly delayed. We have provided evidence for its functional involvement in 
axon stability, and discuss some of recent findings, highlighting the emergence of SIRT2 as a 
novel regulator of neuronal degeneration and plasticity. 

Recently, the suppression of SIRT2 effectively ameliorates neurotoxicity in a variety of 
neuronal disease models including Drosophila model of Huntington disease (Pallos et al., 
2008), mutant huntingtin neurotoxicity (Luthi-Cortea et al., 2010), alpha-synuclein-mediated 
toxicity in models of Parkinson's disease (Outeiro et al., 2007). It has been proposed that the 
SIRT2 inhibitors or SIRT2 suppression may function by promoting the formation of enlarged 
inclusion bodies, and thereby provide neuroprotection. Nicotinamide is also shown to 
increase the level of acetylated alpha-tubulin, tau stability, and restore memory loss in a 
transgenic mouse model of Alzheimer's disease (Green et al., 2008). The mechanisms of 
neuroprotection found in these disease models are still unknown. These findings should be 
discussed in the light of the functional diversity of SIRT2 subtypes and their localization in 
axonal domains. 
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