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1. Introduction 

Preservation of food has been a major anxiety of man over the centuries. Contamination 
with microorganisms and pests causes considerable losses of foods during storage, 
transportation and marketing (15% for cereals, 20% for fish and dairy products and up to 
40% for fruits and vegetables). Particularly, pathogenic bacteria are an important cause of 
human suffering and one of the most significant public health problems all over the world. 
The World Health Organization (WHO) stated, the infectious and parasitic diseases 
represented the most frequent cause of death worldwide (35%), the majority of which 
happened in developing countries in 1992 (Loaharanu, 1994). Numerous processing 
techniques have been developed to control food spoilage and raise safety. The traditional 
methods have been supplemented with pasteurization (by heat), canning, freezing, 
refrigeration and chemical preservatives (Agrios, 2005). Another technology that can be 
added to this list is irradiation. Food irradiation is the process of exposing amount of energy 
in the form of speed particles or rays for improving food safety, eliminating and reducing 
organisms that destroy the food products. This is a very mild treatment, because a radiation 
dose of 1 kGy represents the absorption of just enough energy to increase the temperature of 
the product by 0.36°C. It means that, heating, drying and cooking cause higher nutritional 
losses. Moreover, heterocyclic ring compounds and carcinogenic aromatic produced during 
thermal processing of food at high temperatures were not identified in irradiated foods 
(Tomlins, 2008). More than one century of research has gone into the understanding of the 
effective use of irradiation as a safety method. It has been repeatedly considered and judged 
suitable on available evidence. The international bodies including the Food and Agriculture 
Organization (FAO), the International Atomic Energy Agency (IAEA), WHO and Codex 
Alimentarius Commission (CAC) investigate projects on food irradiation to verify the safety 
and quality of different irradiated products. It has shown that irradiation used on alone or in 
combination with other methods could improve the microbiological safety and extend shelf-
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life (IAEA, 2009). Furthermore, people are very confused to distinguish irradiated foods 
from radioactive foods. At no time during the irradiation process does the food come into 
contact with the radiation source and, it is not possible to induce radioactivity in the food by 
using gamma rays or electron beams up to 10 MeV (Farkas, 2004). The differences in 
chemical and physical structure of organisms, environmental factors, moisture content, 
temperature during irradiation, presence or absence of oxygen and in their ability to recover 
from the radiation injury cause the distinctions in their sensitivity to radiation. According to 
long-term animal feeding studies, radiation-pasteurized or sterilized foods are safe and 
nutritious also for humans (Thayer & Boyd, 1999). Irradiation is used for a variety of 
reasons, such as disinfesting food, reducing or eliminating food borne pathogens, shelf life 
extending and may serve as a quarantine treatment for many fruits, vegetables, nuts, cut 
flowers and animal origin products to facilitating international trade of foods (Marcotte, 
2005). But, not all foods are appropriate for irradiation. For instance, some fruits (such as 
cucumbers, grapes, and some tomatoes) are sensitive to radiation. Nowadays, over 60 
countries use irradiation for one or more food products. But, the misconceptions and 
irrational fear of nuclear technologies mostly caused the lack of acceptance of food 
irradiation. It should be noted that if irradiated products offer clear advantages, and the 
science-based information on the process is readily available, consumers would be ready to 
accept more irradiated products. 

2. Effects of Ionizing radiation 

Irradiation can be effect direct, caused by reactive oxygen-centred (�OH) radicals 

originating from the radiolysis of water or indirect on organisms and food products. An 

indirect effect (the damage to the nucleic acids) occurs when radiation ionizes a neighboring 

molecule, which in turn reacts with the genetic material. Since, water is a major component 

of most foods and microbes; it is often ends up producing a lethal product (Hallman, 2001). 

The optimum dose is a balance between that what is needed and that what can be tolerated 

by the products (European Food Safety Authority [EFSA], 2011). 

2.1 Effects on bio-organisms (microorganisms and insects) and viruses 

The biological effects caused by irradiation are primarily the result of disruption of the DNA 

or RNA in the nuclei of cells. Since, the DNA is much larger than the other molecular 

structures and very long ladder twisted into a double helix in a cell, if it becomes injured, by 

either primary ionizing or through secondary free radical attack, the induced biological and 

chemical changes can prevent replication and destroy cells (Scott Smith & Suresh, 2004; The 

Institute of Food Science and Technology [IFST], 2006). Therefore microorganisms, insect 

gametes, and plant meristems are prevented from their reproduction, which consequently 

results in various preservative effects as a function of the absorbed radiation dose (Scott 

Smith & Suresh, 2004). 

Since, the size of the DNA molecule generally increases with the complexity of an organism, 

viruses are more radiation resistant than other organisms (Koopmans & Duizer, 2004). 

Viruses do not grow in food directly, but can contaminate host bacteria (Deeley, 2002). 

Poliomyelitis viruses and infectious hepatitis can be transmitted by means of infected raw 

milk and shellfish (DeWit et al., 2003; Frankhauser et al., 2002). More studies showed that 
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the combination of irradiation with heating can be used successfully to inactivation of 

viruses (Koopmans & Duizer, 2004). 

The spore-forming bacteria are resistant to irradiation and other treatments. Doses used 
below 10 kGy may only give a 2-3 log10 reduction in spore numbers, and this is not sufficient 
to foods shelf-life (Patterson et al., 2006). Yeasts are more radiation resistance than molds 
and vegetative bacteria. So, they are important in the spoilage of irradiated meat products 
(such as sausages) stored at refrigeration (Patterson et al., 2006; Scott Smith & Suresh, 2004).  

Insects, mites and other such pests are higher level, multicellular organisms responsible for 
considerable loss of fresh produce and grains. Also, they can provide as vectors for carrying 
pathogenic bacteria and parasites (Ahari et al., 2010). The best control of insects in 
agricultural products can be achieved by using fumigants (such as ethylene bromide). But, 
the use of these pesticides has been forbidden or severely restricted in most countries 
(World Health Organization, 2005). Consequently, radiation has been suggested as an 
alternative to them. Irradiation as direct control is one aimed primarily at reducing insects 
population. For the first time in the early 1957s irradiation as a commercial insect control 
technique was applied to spices in the Federal Republic of Germany (Diehl, 1995). Basis of 
practical experience, the necessary radiation dose to pests control according to different 
growth stages is in the range of 100-1000 Gy. A dose level of 250 Gy can be used for 
quarantine treatment of fruit flies, while a dose of 500-1000 Gy can control all stages of other 
pests (Landgraf, et al., 2006; Marcotte, 2005). Indirect control, on the other hand is the sterile 
insect technique (SIT). The principle of the technique is to introduce sterility by rearing great 
numbers of the pest and release them into the target area. When the released males mate 
with wild females, the females generate no viable offspring. With a constant releasing rate of 
sterile males over several generations, this results a rapid decline in the overall population. 
The sterilization process (in this method) is important in determining the quality of the 
released pests and their ability to compete with the wild population. SIT has been used 
against a number of pest species like as Mediterranean fruit fly Ceratitis capitata 
(Wiedemann), melon fly Bactrocera cucurbitae (Coquilett), pink bollworm Pectinophora 
gossypiella (Saunders), codling moth Cydia pomonella (L.) and tsetse fly Glossina austeni 
Newstead (Hendrichs et al. 2005; Klassen & Curtis, 2005).  

2.2 Mutagenic and toxin production effects  

Mutation in micro-organisms is a well known event. So, selection of spontaneous mutants 
and production of mutant strains by various mutagenic agents are practiced for scientific 
and industrial purposes. Ionizing radiation is able to induce mutations, as a number of 
physical or chemical antimicrobial agents. Some evidences showed that the pathogenicity of 
infectious organisms is diminished by irradiation (EFSA, 2011). Studies on transcriptional 
changes of S. Typhimurium and Vibrio spp., showed that, the expression of the virulence 
genes in Salmonella irradiated mutants was reduced, and expression of toxin genes of Vibrio 
irradiated mutants did not increase, compared with non-irradiated counterparts (Lim et al., 
2007). The wholesomeness (lack of teratogenicity, mutagenicity, and toxicity) of irradiated 
products has been studied expansively (IAEA, 2009). Multigenerational feeding studies did 
not show any confirmation of toxicological effects in mammals due to intake of irradiated 
foods. It means, multigenerational studies with animals have showed that the nutritive 
value remains essentially unchanged and that the ingestion of irradiated foods is completely 
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safe (Thayer & Boyd, 1999; IAEA, 2009). Food irradiation has not provided any evidence of 
increased threat of mycotoxin formation in irradiated food. Therefore these do not show any 
specific hazard in relation to mycotoxin production (Kottapalli et al., 2006).  

2.3 Radiation resistance 

Radiation resistance in organisms is different. For instance, Alternaria sp. and Fusarium sp. 

are more resistant than the penicillium sp. and Aspergillus sp. Fusarium and Alternaria 

Spores are multicellular. If only one cell survives, the spore may still have the ability to 

germinate. So, these spores are more radiation resistant (Patterson et al., 2006). The effect of 

repeated doses of γ-radiation indicated a progressive increase of the radiation resistance of 

the organisms when exposed at sublethal dose. But, under industrial conditions, no 

situation is conceivable whereby a population of organisms would be repeatedly 

resuscitated after sublethal irradiation (Levanduski & Jaczynski, 2008). Some studies on 

food irradiation facilities and many other radiation-emitting sources showed no evidence 

for increased occurrence of resistant strains in the environment of these facilities (Scientific 

Committee on Food [SCF], 2003). 

2.4 Selective effects on the microbial flora 

Vegetative food pathogens and non pathogenic microorganisms are sensitive to radiation. 

The medium-dose irradiation processes reduce their populations by several log10 cycles. 

The possibility that decrease of the competitive microflora could assist growth of food 

pathogens after irradiation was studied. The study did not show any significant difference 

in the bacterial growth in irradiated food compared to non-irradiated one. Results indicated 

that, the absence of the spoilage microflora in food did not provide a competitive advantage 

to the bacterial growth (Prendergast et al., 2009). 

3. Effects on food products 

Ionizing radiation produces chemical changes by primary and secondary radiolysis effects. 

The effect of chemical reactions depends on the absorbed dose, dose rate and facility type, 

presence or absence of oxygen and temperature. Generally, most food micronutrients 

(mainly water-soluble and fat-soluble vitamins) and macronutrients (carbohydrates, 

proteins, and lipids) are not affected by 10 kGy-range -range ionizing dose with regard to 

their nutrient contents. But, with radiation doses above 10 kGy, the properties of fibrous 

carbohydrates can be degraded structurally and lipids can become somewhat rancid (Miller, 

2005; Brewer, 2009). The physical status of food (frozen or fresh, solid, liquid or powder) 

and also its composition influence the reactions induced by the radiation (IAEA, 2009). 

Direct absorption of energy by the irradiated food can produce chemical changes via 

primary and secondary indirect radiolysis effects. Irradiation effects water molecule to free 

an electron producing HO+. This product reacts with other water molecules to create a 

quantity of compounds, including hydrogen and hydroxyl radicals (OH�), hydrogen 

peroxide (HO), molecular hydrogen and oxygen. Because the hydroxyl radical is an 

oxidizing agent, and the hydrated electron is a reducing agent, free radical attack can be 

expected to cause oxidizing and reducing reactions in food (Black & Jaczynski, 2008; Calucci 
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2003). Chemical reactions and the products generated from major food components like fat, 

proteins, carbohydrates and vitamins are described as fallow:  

3.1 Carbohydrates 

The use of gamma-irradiation (up to 6.2 kGy/h) to starches from maize, wheat, rice or potato, 
induced the aldehydes such as malonaldehyde, formaldehyde, and acetaldehyde, formic acid 
and hydrogen peroxide as main radiolytic products (Stefanova et al., 2010). Recent studies 
showed that, gamma irradiated solutions of fructose, glucose, sucrose and starch (at 3 kGy at 
5ºC) produced malonaldehyde, But, the accumulation of aldehydes formed after irradiation of 
fruit juices decreased by reducing the presence of oxygen and using low temperature (Fan, 
2003; Fan & Thayer, 2002). In general, irradiation modifies Mono and polysaccharides, but 
thermal treatment can produce more modifications (Fan, 2005). 

3.2 Proteins 

The study showed that, the irradiation of proteins could produce chemical reactions depend 

on the protein structure, state (native or denatured), physical status, amino acid composition, 

the presence of other substances and the radiation treatment. The most important changes 

include dissociation, aggregation, cross-linking and oxidation. For example gamma irradiation 

of hazelnuts at 10 kGy induced protein aggregation and denaturation (Dogan et al., 2007). 

Also, the reported decrease in pectinase activity (the most sensitive enzyme to irradiation) at 

20 kGy was in the range 20% to 50%, (Duliu et al., 2004). Indeed, low and medium doses 

induce only a small breakdown of food proteins into lower molecular weight protein parts and 

amino acids. As a result, experiments indicated that such treatments cause less chemical 

reactions than steam heat sterilization (Fan & Sommers, 2006). 

3.3 Lipids 

Due to free radicals formed during irradiation, it has been proven to increase lipid oxidation 

(Stewart, 2009). The chemical effects are more relevant in foods with larger fat content, 

physical status (liquid or solid), presence of antioxidants, environmental conditions (light, 

heat, oxygen, moisture, pH), the irradiation treatment, type of storage (vacuum, modified 

atmosphere, etc.), storage conditions (time, temperature, light, etc.) and high unsaturated 

fatty acids content (EFSA, 2011). The use of low temperatures, the presence of oxygen, 

antioxidants and suitable packaging type showed a great capacity to minimize lipid 

oxidation (Stefanova et al., 2010). Phytosterols (include sterols and stanols), which are 

naturally present in cereals, nuts, seeds, fruits and vegetables have a structure similar to 

cholesterol. These compounds can be oxidized by standard heating treatments and also by 

irradiation and produce oxyphytosterols (Da Trindade et al., 2009; Johnsson & Dutta, 2006). 

3.4 Vitamins 

The primary effects of radiation on vitamins at low and medium doses are not considerable. 

But, the combination of free radicals produced through irradiation with antioxidant 

vitamins can lose some of their influence (Stefanova et al., 2010). In the case of water soluble 

vitamins, Thiamine is the most sensitive and significant losses can occur in irradiated meats. 
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Irradiation of chicken meals with 1 kGy resulted in a 16% decrease in thiamine compared 

with non-irradiated meals (Stewart, 2009). Mitchell et al. (1992) showed that, irradiation of 

capsicums (green and red), cucumbers, apples, lemons, lychees, mandarins, mangoes, 

nectarines, papayas, peaches, persimmons, and zucchinis at doses of 75 - 300 Gy can induce 

small changes in some parameters, such as vitamin C and dehydroascorbic acid after 3 to 4 

weeks of storage at 1–7°C. However, storage effects were higher than irradiation effects. 

Dionísio et al. (2009) demonstrated that, Strawberries (Shasta variety, Fragaria sp.) submitted 

to 1.0-2.0 kGy doses did not show any significant decrease in vitamin C levels during two 

and 11 days of storage at 5°C. Folic acid levels decreased 20–30% following irradiation with 

a dose of 2 kGy, and no additional decrease was observed at the higher dose of 4 kGy (Galan 

et al., 2010). After gamma irradiation at a dose of 10 kGy, significant losses (10 to 34%) of 

total ascorbate and carotenoids (about 40-60%) have been reported for cinnamon, nutmeg, 

black pepper, oregano, parsley, rosemary, bird pepper, and sage. (Calucci et al., 2003). No 

transforms have been showed for Riboflavin, vitamin B6, vitamin B12 and niacin after 

gamma irradiation with up to 5 kGy in wheat, maize, mung beans and chick peas (Kilcast, 

1994). The different sensitivity levels of food vitamins to processing are shown in Table 1. 

More studies showed that after high dose gamma-irradiation, E-beam irradiation or heat 

sterilization treatments, vitamin losses in the food are within similar ranges in all cases 

(Galan et al., 2010; EFSA, 2011).  

 

Highly sensitive Moderatly sentitive Little sensitive 

A (retinol)  b-carotene Folic Acid 

B1(thiamin)  K (in meat) Pantothenic Acid 

C (ascorbic acid + dehydro-
ascorbic)  

 B2 (Riboflavin) 

E (a-tocopherol)   B3 (Niacin) 

  B6 (Pyridoxine) 

  B10 (Biotin) 

  B12 (Cobalamin) 

  Choline 

  D 

  K (in vegetables) 

Table 1. Different sensitivity levels of food vitamins to processing (Dionísio et al., 2009) 

3.5 Inorganic salts 

Primary radicals are moderately uncreative towards inorganic anions, excepting for nitrates 

which are reduced by solvated electrons to nitrites. In frozen muscle foods this is considered 

to be a rare event because of the competition for electrons by the other matrix ingredients 

(SCF, 2003). 

In summary, carbohydrates, proteins, lipids (the macronutrients), vitamins and inorganic 

salts are not significantly affected by low and medium range doses according to their 

nutrient content and digestibility. Indeed, traditional food preservation methods (heating, 

drying and cooking) may cause upper nutritional losses. 
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4. Main objectives and limitations of food irradiation 

The type of food being processed and the desired effects determine the radiation dose used 

in food processing. The examples of recommended dose ranges and the main purposes of 

food irradiation for different purposes are listed in Table 2. 

 

Purpose and effects 
Dose 
range 

(kGy)* 

Inhibition of sprouting of stored tubers, roots and bulbs 0.05-0.15 
Prevention of post-harvest losses by destruction of insects in stored cereals, 
fresh and dried fruits, nuts, oilseeds and pulses, or phytosanitary 
(quarantine) treatment for insect pests infesting fresh fruits and vegetables 

0.15-1 

Delay of ripening of fruits 0.2-1 
Shelf-life extension of fruit and vegetables, meat, poultry, fish and ready 
meals by reduction of micro-organisms that cause spoilage 

0.5-3 

Inactivation/destruction of various food-borne parasites 0.3-6 
Prevention of food-borne illness by destruction of non-sporeforming 
pathogenic bacteria (e.g. Salmonella, Campylobacter, Listeria) in fresh or 
frozen foods 

3-7 

Shorten drying and cooking times of vegetables and fruits 3-10 
Reduction in viable counts of microorganisms in spices and other dry 
ingredients to minimize contamination of food to which the ingredients are 
added 

5-10 

Production of microbiologically shelf-stable, vacuum-packaged meat, 
poultry and ready-to-eat meals by heat-inactivating of their tissue-enzymes 
and sterilizing them by irradiation in deep-frozen state 

up to 50 

*The maximum doses reported are intended for good irradiation practice and not for 
consumer safety purposes. 
Applications up to 1 kGy, between 1 and 10 kGy, and higher than 10 KGy are referred to 
as low-dose, medium-dose, and high-dose irradiation, respectively. 

Table 2. Main purposes of food irradiation and examples of recommended dose ranges 
(EFSA, 2011). 

4.1 Fruits and vegetables 

Several food-borne outbreaks have reported in fruit products such as fresh fruit salads and 
non pasteurized fruit juices (Lynch et al., 2009; Vojdani et al., 2008). Applicable doses on 
fruit products are limited by their impact on quality (Arvanitoyannis et al., 2009). Irradiation 
should anticipate 2 to more than 5 log10 reduction of pathogenic (non spore forming 
bacteria), in some fresh and many processed fruits. But, less than 1.5 log10 reductions 
should be expected for the most radiation sensitive fruits. In many cases, surface 
decontamination of fruits, pre-washed and packaged vegetables and ready-to-eat fresh 
processed products with chemical agents should be less efficient (by at most 2 log10 
reduction) than food irradiation (Arvanitoyannis et al., 2009). Most studies indicated that, 
the irradiation of fresh fruits led to a reduction in firmness. The maximum doses which can 
be applied on fruits and vegetables range between 1 and 2 kGy. However these maximum 
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values depend on the type of products and might modify with new, resistant cultivars (Zhu, 
et al., 2009). For example, some salad vegetables could resist up to 4000 Gy without 
physical-chemical damages and considerable quality loss (Nunes et al., 2008) whereas, for 
some products, such as lettuce leaves and apple fruit (Gala and Fuji variety) radiation doses 
should not exceed 600 Gy (Dionísio et al., 2009; Niemira et al., 2002).  

Some products have a very short shelf-life. For instance, within a day at 10°C the cap of 

mushroom opens, the stem elongates, and the gills darken. Research showed that 

mushroom irradiated at a dose of 1.5 to 2.0 kGy soon after harvest had a shelf-life at 5° C of 

11 days, and at 10°C, of 7 days. Most investigations show that sensory quality of mushroom 

is unaffected by irradiation (IAEA, 2001). For powdered dehydrated vegetables higher 

treatments (3-5 kGy) were suggested (Dong-Ho et al., 2002). Treatments for instance calcium 

chloride could decrease the effect of irradiation on fruit firmness (Prakash et al., 2007). Also, 

D10 values for various Salmonella strains in orange juice were between 0.6 and 0.8 KGy 

(Niemira & Lonczynski, 2006). Since, viruses are more resistant to irradiation, the doses 

applicable to most fresh fruits and fruit products will be of limited efficacy (Koopmans & 

Duizer, 2004).  

4.2 Cereal products 

Cereals, grains and dry legume seeds are usually consumed after a wide range of 

processing. Operations and irradiation (tested at doses between 1 and 10 kGy) can modify 

the quality and technological properties of cereals and cereal products positively or 

negatively (Lynch et al., 2009). Irradiation (as a pest control method) has some advantages 

include the absence of undesirable residues in the foods treated, no resistance development 

by pest insects and few significant changes in the physicochemical properties or the 

nutritive value of the treated products (Ahmed, 2001). Several studies had been done on the 

use of irradiation (as an approved method) to control stored-product pests in wheat, flour 

and dry legume seeds in many countries (Azelmat et al., 2005; Boshra & Mikhaiel, 2006). 

Lower radiation doses can not cause immediate death of adults but can prevent an increase 

in pest populations through lethal effects on the immature stages of adults (Hosseinzadeh & 

Shayesteh, 2011). The major safety concern since 1986 for cereals has been mycotoxin 

producing fungi. Some recent studies have shown irradiation up to 10 kGy can reduce the 

colonization of cereals with mycotoxin producing fungi. For instance, 6 to 8 kGy reduces the 

risk of mycotoxin accumulation during barley germination for malt production. However, 

such doses have no impact on toxins already present in the cereals (Kottapalli et al., 2006). 

4.3 Tubers 

Starchy tubers are an important source of starch used in the food industry. In order to 
provide consumers a year-round supply of various sprouting foods, storage durations of up 
to several months are often necessary. Sprouting can be inhibited by refrigeration and the 
application of various chemicals. But, refrigeration is expensive and particularly in the 
tropical and subtropical regions of the world. Whereas, the chemical treatments are 
relatively inexpensive and efficient, they do leave residues and many countries have banned 
their usage for health reasons (Ahari et al., 2010). In such instances, irradiation can be 
recommended as a reasonable alternative. The first use of food irradiation for a fresh 
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commodity was on potatoes in Canada in 1965 to inhibit sprouting (Diehl, 1995). Starchy 
tubers are also normally consumed after heat treatments and have rarely been the cause of 
food borne disease. Starch can be a significant source of spores of pathogenic bacteria such 
as Bacillus cereus in processed foods (Guinebretiere et al., 2003; Guinebretiere & Nguyen-
The, 2003). Irradiation can be recommended for sprouting inhibition (in the range of 50 -200 
Gy) and disinfestations purposes (at doses similar to those used for other dry foods) in 
sprouting foods such as potatoes, garlic, onions and yams (Marcotte, 2005).  

4.4 Spices and condiments 

Spices and condiments naturally, contain a great number of microorganisms. They often 
originate in developing countries where harvest and storage conditions are insufficiently 
controlled. Thus, Spices and condiments may have been contaminated by a high level of 
mesophylic, sporogenic,and asporogenic bacteria, hyphomycetes, and faecal coliforms. Also, 
the public health significance microorganisms such as Salmonella, Escherichia coli, 
Clostridium perfringens, Bacillus cereus, can be present. (Bendini et al., 1998). Since moist heat 
treatment is not generally suitable for such dry products, many commercial food processors 
fumigate spices and condiments with methyl bromide and ethylene oxide to eliminate insects 
or bacteria and moulds. Nowadays it has been appeared that, methyl bromide and ethylene 
oxide are high toxic compounds because of safety and environmental concerns. So, ethylene 
oxide has been banned in many countries and methyl bromide is being phased out globally 
(Marcotte, 2005). Based on the scientific evidence, irradiation of spices and condiments with a 
dose in the range of 5-10 kGy permits successful reduction of food-borne pathogens. The 
accurate dose applied would depend on the desired inactivation factor and the contamination 
(Farkas, 2006). Producers are now increasingly turning to ionizing radiation. Considering its 
antimicrobial activity and relatively minor effects on quality, irradiation is a feasible method 
for reducing the microbial load on spices and condiments (Sádecká et al., 2005). It is confirmed 
that the treatment with ionizing energy is more effective against bacteria than the thermal 
treatment and it is also less harmful to the spices than heat sterilization, which implicates the 
loss of thermo labile aromatic volatiles and/or causes additional thermally induced changes 
(e.g. thermal decomposition or production of thermally induced radicals). (Loaharanu, 1994; 
Olson, 1998; Alam Khan, 2010).  

4.5 Sea foods and fresh meats 

Several diseases originated by pathogenic Vibrios, Listeria monocytogenes, parasites and 
viruses are generally related to consumption of raw products (Venugopal, 2005). Irradiation 
of sea foods and fresh meats is proposed to extend shelf-life, inactivate parasites and 
decrease pathogen load (Norhana et al., 2010). Many studies indicated that irradiation at 
doses of 3 kGy, should yield 2 to 5 log10 reduction of pathogenic, non spore forming 
bacteria (Guinebretiere et al., 2003; Lim et al., 2007). The applicable dose to fresh meats and 
sea foods should be adapted to the pathogen reduction and the product (O'Bryan et al., 
2008; Norhana et al., 2010). For example, Shrimp is separate from fish and shellfish given 
that certain pathogens (i.e Listeria monocytogenes) for several log10 reductions need doses in 
excess of 3 kGy. In frozen shrimp the dose required to reduce Aeromonas hydrophila and 
Vibrio by 10-4 per gram was about 3 kGy, while 3.5 kGy was needed for L. monocytogenes 
and 1.0 kGy for Salmonella (Hatha et al., 2003; Pinu et al., 2007). Irradiation of fresh meat 
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can change colour, odour and taste. Some recent studies have shown, irradiation imparts 
undesirable organoleptic attributes to high-fat products. So, content of fat in the fresh meats 
and sea foods is a limiting factor (Norhana et al., 2010). These changes can be reduced by 
adapted atmosphere packaging and minimized fat levels and mainly prevented by 
irradiating in the frozen state. In frozen poultry products, the average dose of 7 kGy would 
be adequate to provide at least a 5-log10 reduction in the number of vegetative pathogens. 
There is no evidence that treatment by ionizing radiation made induce allergenicity. But, 
some studies showed that application of moderate radiation doses can make foods (which 
have some natural allergenic factors) less allergenic (EFSA, 2011). For instance, irradiation of 
eggs and products containing eggs has been used for the reduction of allergenicity and 
improving egg white foaming ability (Song et al., 2009).  

4.6 Other food classes/commodities 

Ready-to-eat foods are very various and their consumption has increased. These foods may 

cause a specific danger to consumers when they do not endure a process pathogen 

reduction (Sommers & Boyd, 2006). To improve microbiological safety of ready-to-eat foods 

by irradiation, extensive research has been devoted, specifically to eliminate non spore-

forming pathogens from ready-to-eat meat products. Irradiation is an effective treatment 

that can be used in many of these products after packaging (Romero et al., 2005). Also, 

Sommers and Boyd (2006) demonstrated that doses of 2 to 4 kGy inactivate food-borne 

pathogens including Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Escherichia 

coli O157:H7 and Yersinia enterocolitica in a variety of ready-to-eat food products.  

Cheeses are also included in ready-to-eat foods. The pathogenic and toxin-producing 

microorganisms (considered in studies on irradiation of cheeses) are L. monocytogenes, 

pathogenic E. coli, Salmonella, Clostridium, Staphylococcus (mycotoxins), Brucella and 

Mycobacterium (Tsiotsias et al., 2002). The treatment of Camembert cheeses with gamma 

irradiation at doses up to 2.5 kGy (from a health point of view) was acceptable (SCF, 2003). 

Tsiotsias et al. (2002) showed the feasibility of gamma irradiation at doses of 2-4 kGy for 

reducing L. monocytogenes inoculated into the freshly produced soft whey cheese. Also, Ju-

Woon et al. (2005) studied irradiation of fried-frozen cheese balls and demonstrated that 

irradiation at dose of 3 kGy is a successful treatment to make sure microbiological safety.  

4.7 Quarantine treatments 

The amount of transportation in all types of food product reaches millions of tons, annually. 

While world economic markets shrunk substantially, the cost of all traded agricultural 

products increased 19% in 2008 (WTO, 2010). During transportation, some invasive species 

that may cause economic and environmental damage (especially in areas of the world where 

they do not currently exist) can be transmitted. However, plant pests are not only 

transported through agricultural goods; they can be found in any commodity. For instance, 

important tree-infesting beetles (Bostrichid beetles) have been transported in solid wood 

packing material and pallets arriving from other countries to U.S. states (Haack, 2006). A 

number of techniques have been investigated as quarantine treatments, and those most 

commonly used for commercial purposes involve extreme temperatures and fumigants 

(Heather & Hallman, 2008; IPPC, 2009). Until the late 1920s, phytosanitary treatments were 
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based on fumigation or nonsynthetic pesticide applications. The chemicals used then were 

largely not safe enough to be used on food but were used on nursery stock and other 

nonfood items that could carry invasive species. In 1929, nonchemical treatments (heated air 

and cold) were used as quarantine treatments against the fruit flies. The first international 

use of Phytosanitary irradiation was in December, 2004, when Australia sent one-half ton of 

irradiated mangoes to New Zealand. For a phytosanitary treatment to be commercially 

possible, the treated commodities must tolerate it. Most food products can tolerate radiation 

at the doses used for quarantine treatments (150 to 400 Gy) and spice disinfection is the chief 

use of food irradiation worldwide today with over 185600 tons irradiated each year 

(Heather & Hallman, 2008; Kume et al., 2009). Phytosanitary irradiation differs from other 

commercial treatments. The end point of the treatment is not acute mortality but it prevents 

further biological development and reproduction (Table 3).  

 

Treatment End point 
Commodity 
tolerance 

Cost 
Certified 
organic?

Speed Logistics 
Commonly 
treated 
commodity 

Cold Mortality Moderate Low Yes 
Very 
slow

Easy 
Citrus, 
apple 

Heated air Mortality Moderate Moderate Yes Moderate Moderate 
Mango, 
papaya 

Hot water 
immersion 

Mortality Moderate Low Yes Fast Moderate Mango 

Methyl 
bromide 
fumigation 

Mortality Moderate Low No Fast Easy Citrus 

Irradiation 
Stop 
development

High Moderate No Fast Moderate 
Mango, 
guava 

Table 3. Subjective comparison of major phytosanitary treatments (Hallman, 2011). 

5. Association with other preservation methods 

Irradiation in combination with other treatments may suppress the growth of surviving 
microorganisms during storage (Fan et al., 2006; Caillet et al., 2006). For example, the effect 
of irradiation was increased by packaging vegetables in atmospheres enriched with carbon 
dioxide or containing essential oils (Thayer & Boyd, 1999). Sensory changes on high-fat 
products can be reduced by vacuum packaging associated to refrigeration and depend on 
the type of products (Zhu et al., 2009). Ahari et al. (2011) demonstrated that the combination 
of gamma irradiation and antagonist treatment (Pseudomonas fluorescens) was more effective 
in reducing Penicillium expansum growth, than either treatment alone and that integration of 
irradiation. Whereas, there is a dose rate limitation for application of gamma irradiation to 
control of postharvest disease on fruits and vegetables, the combination of irradiation and 
biocontrol agent increase applied range of irradiation for postharvest control by decreasing 
of dose rate (Ahari et al., 2011). Lee et al. (2005) demonstrated that the combined treatment 
of gamma irradiation and rosemary extract powder (genus Rosmarinus) improve the quality 
of a ready-to-eat hamburger steak by changing the storage condition from frozen (−20°C) to 
a chilled temperature (4°C). Fan et al. (2006) applied dose of 0.5 kGy in combination with 
mild heat treatment for Shelf-life extension of fresh-cut cantaloupe. Also, Niemira et al. 
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(2003) used freezing orange juice concentrates after irradiation, to reduction of Salmonella 
populations. The effect of irradiation on vegetables and sprouted seeds could be completed 
by washing with water (Rajkowski & Fan, 2008). Chiasson et al. (2005) studied the effect of 
the combination of irradiation and different atmosphere conditions (CO2, air, MAP with 
10% N2, 30% CO2 and 60% O2, and vacuum), a mix of tetrasodium pyrophosphate (TSP) 
and carvacrol on the reduction of E. coli and Salmonella typhi in minced beef. 

6. Packaging for irradiated foods 

The radiation treatment can be applied after packaging, so re-contamination or re-
infestation of the products is avoided. In 2001, the FDA illustrated gamma rays, E-beam and 
X-ray to be equal in conditions of levels and types of radiolysis products formed in the 
packaging materials (Deeley, 2002; Goulash et al., 2004). Polymers such as polyethylene, 
polypropylene, poly vinyl chloride, polystyrene, polyethylene terepthalate and polyamide 
are some of the most common plastic packaging materials presently available. They all 
contain additives that vary in nature and quantity for obtaining certain useful properties. 
Some studies have shown, Irradiation can change some physical and chemical properties of 
polymeric packaging materials and the changes depend on the type of polymer, irradiation 
conditions and processing exposure (Ozen & Floros, 2001; Hammad et al., 2006). For this 
reason any packaging materials must be confirmed by FDA before use in food irradiation 
(Crook & Boylston, 2004; Pentimalli et al., 2000). Nowadays, flexible packages have been 
developed which tend to be multi-layer films with different barrier properties because, no 
single flexible material has all the chemical, physical and protective characteristics needed 
for packaging radiation-processed food (Chytiri et al., 2005; Twaroski et al., 2006). 

6.1 Physical effects 

Physical effects include changes in crystallinity, permeability, surface structures and post 
irradiation aging effects. Radiation changes in the physical properties of a packaging 
material should not delay its function (Han et al., 2004). Since the Permeability is measure of 
the ease with which gases or vapors can penetrate through the polymer materials, it is a 
major consideration in the selection of a polymeric material for food packaging (Han, 2007 ). 
Kale ( 1994) showed that, physical properties such as permeability, crystallinity, mechanical 
strength and IR spectra of irradiated polymers were unaffected at high doses carried out on 
the effect of radiation on polymeric films both single such as polypropylene, low density 
polyethylene (LDPE), PET and laminates (BOPP/LDPE, PET/LDPE, PET/PET/LDPE, 
PET/metalized PE/LDPE, PET/HDPE-LDPE, Polyolefin-Tie layer-Nylon-Tielayer-LDPE 
and 5 layer nylon coextruded film/Metalized PET). Study on different packaging films, 
permeating gases and analytical techniques have confirmed that, there is no modification in 
the permeability, crystallinity and shrinkage in regularly used packaging materials such as 
low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene, 
polyethylene terephthalate (PET), poly vinyl chloride and poly vinylidene chloride in the 
dose range of 0-8 kGy (Goulas et al., 2002). Some researches have shown that, changes in 
mechanical properties of certain polymers e.g. polyethylene can be minimized (when 
subjected to higher doses of radiation) using suitable stabilizers (Buchalla et al., 1997; Han, 
2007). Also deterioration with respect to dosage was reduced after laminating of some 
polymers (e.g. polypropylene) with LDPE.  
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6.2 Chemical effects 

Most food packaging materials are originated from polymers. They may be susceptible to 
chemical changes (after ionizing radiation) that are the result of two reactions, cross-linking 
(polymerization) and chain scission (degradation). Both reactions are generally relative to 
dose, and depend on dose rate and the oxygen content of the atmosphere in which the 
polymer is irradiated (Ahn et al., 2003). Unique chemical markers present in irradiated 
packaging have not been recognized (Ahari et al., 2010). Chemical effects include evolution 
of radiolysis products, migration of radiolytic products of the polymers and degradation of 
antioxidants (Twaroski et al., 2006). Radiolytic degradation should neither be toxic nor affect 
the sensory qualities of the packed product. The vacuum condition or an inert atmosphere 
prevents radiation cross-linking of polymers. Also in the presence of oxygen (during 
irradiation of polymers) chain scission dominates. It is important because it has served as 
the basis for recent approvals under 21 CFR 170.39 (table 4) for packaging materials 
irradiated under non-oxygen atmospheres in contact with food (FDA, 2006a). During 
irradiation, ions and free radicals are produced. These highly reactive materials are 
responsible for the colour changes in irradiated polymers and could migrate into food and 
affect taste, odor and safety (Welle et al., 2002; Franz & Welle, 2004; Stoffers et al., 2004). 
Also post irradiation aging effects could be the result of trapped radicals in crystalline 
regions of polymers (Buchalla et al., 1993a, 1993b). It must be noted that the radiation-
induced changes depend on the polymer composition (additives), processing history of the 
plastic and the irradiation conditions (presence of oxygen, temperature, dose and dose rate). 
For example, plastic films containing a phenyl group or an amide linkage (are known to 
stabilize the polymer) are the most radiation resistant, due to their increased resonance 
energy (Variyar et al., 2000). Therefore, radiation resistant of polystyrene, polyester and 
polyamide is due to the high energy requirement to form cross-links (Crook & Boylston, 
2004).  

 

21 CFR Citation  Packaging Materials Max Dose [kGy] 

 Nitrocellulose-coated cellophane 10 
 Glassine paper 10 
 Wax-coated paperboard 10 
 Polyolefin film 10 
Section 179.45(b) Kraft paper 0.5 
 Polyethylene terephthalate film (basic polymer) 10 
 Polystyrene film 10 
 Rubber hydrochloride film 10 
 Vinylidene chloride-vinyl chloride copolymer film 10 
 Nylon 11 [polyamide-11] 10 
Section 179.45(c) Ethylene-vinyl acetate copolymer 30 
 Vegetable parchment 60 
 Polyethylene film (basic polymer) 60 
Section 179.45(d) Polyethylene terephthalate film 60 
 Nylon 6 [polyamide-6] 60 
 Vinyl chloride-vinyl acetate copolymer film 60 

Table 4. Packaging materials listed in 21 CFR 179.45 for use during irradiation of 
prepackaged foods (FDA, 2006a). 
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Any new packaging material not yet listed in 21 CFR 179.45 is subject to a pre-market safety 
evaluation by FDA prior to irradiation. FDA (2006b) suggests that information be generated 
in accordance with the available guidance documents  
(http://www.cfsan.fda.gov/~dms/guidance.html). Nowadays, most of the food packaging 
materials are normally resistant to doses used in food irradiation practice (EFSA, 2011).  

7. Irradiation facilities 

Ionizing radiation for food processing is limited to high energy photons (gamma rays) of 
radio nuclides 60Co or 137Cs, X-rays from machine sources with energies up to 5 MeV and 
accelerated electrons with energies up to 10 MeV generated by electron accelerating 
machines (Hvizdzak et al., 2010). These kinds of Ionizing radiation are preferred due to: i) 
the suitable food preservative effects; ii) do not generate radioactivity in foods or packaging 
materials; iii) available at costs as commercial use of the irradiation process (Farkas, 2004). 
The strength of the source and the length of time the food is exposed to the ionizing energy 
determine the irradiation dose, measured in grays (Gy) or kilo grays (1kGy = 1,000 Gy). One 
gray is equal with one joule of energy absorbed in a mass of one kilogram (EFSA, 2011). 

7.1 Gamma irradiation facilities 

Gamma rays with energies of 1.17 and 1.33 MeV are emitted by the cobalt-60 or energy of 
0.66 MeV is emitted by caesium-137. The Co-60 is a radioactive metal that decays with a 
half-life of around 5.3 years. Although Cs-137 has a longer half-life of around 30.1 years, few 
commercial gamma facilities use Cs-137 as a gamma ray source. Because, Cs-137 emits 
gamma rays that are approximately half the energy of those emitted by Co-60 (Suresh et al., 
2005). Gamma irradiation has higher penetration than Electron beams. Therefore, it is as 
suitable for treating large bulk packages of food. Gamma facilities are the majority of food 
irradiation facilities worldwide (Fig. 1). For instance, 27 of the 33 food irradiation facilities 
(23 in the EU) approved in 2010 are Co-60 gamma facilities and six are E-beam (EFSA, 2011). 
The gamma radiation can not be switched off and when not being used to treat food, must 
be stored in a water pool to absorb the radiation energy and protect workers from exposure 
if they must enter the irradiation room (Hvizdzak et al., 2010). 

 

Fig. 1. Schematic diagram of a commercial gamma irradiator. The sealed sources are stored 
in water and raised into the air to irradiate a product that may be moved into the irradiation 
room on a conveyor system. 
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It should be noted that, all radioactive irradiators must be licensed and meet all applicable 

safety requirements under the Atomic Energy Act of 1954. A license must be obtained from 

the Nuclear Regulation Commission (NRC) or an Agreement State prior to beginning 

construction of a new irradiator (NRC, 2009). 

7.2 E-beam facilities 

E-beams are produced by machines and not by radioactive material. They are generated by 

accelerating a stream of electrons, which are focused into a narrow beam-spot (Fig. 2b). As 

food is travels perpendicular to the beam direction, this spot of incident electrons is scanned 

across food (Suresh et al., 2005). E-beam radiation offers three distinct advantages compared 

with gamma: first, the need to carry radioactive materials around the country is eliminated. 

Second, it can be turned off when not in use and the last; E-beam characterized by its low 

penetration and high dosage rates. It performs best when used on low-density, uniformly 

packaged products. Therefore, it can effectively inactivate foodborne pathogens on the surface 

of the slices, with the least negative effect (Jeong-Ok et al., 2008; Hvizdzak et al., 2010). 

7.3 X-ray facilities 

X-rays are generated by machines and can be switched off. In this case, electrons are 
accelerated at a metallic target (e.g., tungsten or gold) to generate a stream of X-rays (Fig. 
2a). In this process much of the E-beam energy is lost as heat; however the X-ray efficiency 
can be increased with atomic number of the target material and also with increasing E-beam 
energy (Kume et al., 2009). Nevertheless, X-ray facilities can process large bulk packages 
without the need for radioactive material. Nowadays, very few food products are irradiated 
by X-rays (Follett, 2004). As the technology advances, X-ray irradiation will become more 
extensive in future. But, it seems that, the commercial food irradiation facilities will continue 
to be gamma cells for a long period (Kume et al., 2009).  

 

Fig. 2. Schematic diagram of a typical x-ray (a) and E-beam (b) irradiators 

8. General aspects of dosimetry 

Radiation dosimetry is the measurement of the absorbed dose in matter and products 
resulting from the exposure to radiation (Codex Alimentarius Commission [CAC], 2003). 
The estimated range of absorbed dose used in food processing is from 0.01 to 100 kGy. The 
irradiation dose absorbed by a product is not uniform due to the limits in penetration 
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capacity of ionising radiations. This can reduce the overall efficacy of the food irradiation in 
practice (EFSA, 2011). It is necessary to determine the ability of an irradiation facility to 
deliver the absorbed dose, prior to the irradiation of the food product. Also, it is essential to 
monitor and document the absorbed dose during each production run (Moreno et al., 2008).  

Dosimetry provides important functions in radiation processing, where large absorbed 
doses and dose rates have to be measured with practical accuracy. When dosimeters are 
exposed to radiation, they undergo a physical or chemical change in properties that can be 
recorded. This change is related to dose and dose rate, and it can be calibrated to a standard 
dose. For example, the basis of a common dosimetry system is plastic film containing a dye 
that changes color in proportion to dose. The color change can be calculated using a 
spectrophotometer and the degree color change can be calibrated to a dose standard. 
Verified dosimetry systems are extensively used to perform radiation measurements, 
quality control and validation of processes (Moreno et al., 2008). 

The success of food irradiation depends on: 

1. Calculations of the absorbed dose delivered to the food product;  

In radiation processing, the absorbed dose is a key quantity in the processing of food. 
Therefore, dosimetry is a fundamental affair in radiation processing. Since the radiation 
absorbed dose is related to the desired effect in a particular food, the need for appropriate 
and precise dose measurement techniques must not be underestimated (IAEA, 2002). For 
instance, the dose received by every part of the product must be between Dmax (limit) and 
Dmin (Fig. 3). 

2. Determination of the dose distribution patterns in the product package (process 
qualification);  

Process load geometries are commonly limited to conventional shapes and sizes (e.g., 
rectangular cartons containing cylindrical, spherical or rectangular unit packages) of 
commercial food packaging. The importance of dosimetry in process qualification is to ensure 
that the absorbed dose requirements for a specific product can be satisfied. This process (dose 
mapping) verifies the scale and regions of the maximum and minimum doses (Fig. 3), and 
helps set up all the parameters required to achieve the absorbed dose (Mehta, 1992). 

 

Fig. 3. Regions of Dmin and Dmax (indicated by hatching) for a rectangular process load for 
tow pass, tow sided electron beam irradiation (IAEA, 2002). 
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3. Control of the routine radiation process (control procedures); 

In order to ensure that the irradiation process is under control and the correct irradiation 
dose is being received by a specific product, routine dosimeters are used in radiation 
processing facilities. The routine dosimeters, traceable to national or international standards, 
are important and necessary in process control of food irradiation (Miller et al., 1989). 
Theses should be made during operation and records kept of such measurements can be 
used as supporting evidence (IAEA, 2002). 

9. Acceptance and trade 

The use of the treatment as a commercial food process depends on its acceptance by 
consumers. Frequently, consumers are conservative and they are reluctant to accept 
products processed by new technologies like as food irradiation method. This is often 
related to the fear and confusion about radiation itself and the lack of understanding of the 
process. The main worries of consumer organizations included safety, nutrition, detection, 
and labeling of irradiated products (P. Junqueira-Gonc-alves et al., 2011). The concern about 
the food irradiation appears to centre on the safety of the process. Giving science-based 
information on food irradiation leads to positive consumer approaches (Fox, 2002). Many 
consumers are primarily hostile to irradiation. By other means, "People think the irradiated 
product is radioactive," but when the process is made clear to them they will become more 
in favor (Landgraf et al. 2006; Marcotte, 2005). Fox (2002) reported that, consumer awareness 
of food irradiation was 29%. Also, 80% of consumers were unsure about the safety of 
irradiated foods. Only 11% of the interviewers expressed that irradiated foods are safe. It 
should be noted that upon hearing a benefit statement of food irradiation, level of positive 
attitude increased significantly (62%) towards irradiated foods. On the other hand, 
unfavorable description of irradiation has a great negative effect on consumer acceptance of 
irradiated foods. Recent study showed a low level of awareness among consumers about the 
food irradiation processing. 76.5% of the interviewed people did not know that irradiation 
could be used as a method for food preservation. 46% of them expressed that irradiated 
food means the same as radioactive food. Nevertheless, 91% stated that if they knew that 
‘‘irradiated’’ is not ‘‘radioactive’’ and that proper irradiation enhances food safety they 
would become consumers of irradiated food. 95.8% of the interviewers were not familiar 
with the ‘‘Radura’’ symbol (Fig. 4). However, 55.8% of people expressed that they would 
buy irradiated food because of the Radura symbol (Junqueira-Gonc-alves et al., 2011). It 
shows that the labeling of irradiated products (the Radura symbol coupled with either 
“treated with ionizing radiation” or “irradiated”) is the key issue with the consumers. 
Similar result was observed by Stephen et al. (2009). Because the words "radiation" and 
"irradiation" may have negative connotations, the labeling requirement has been viewed as 
an obstacle to consumer acceptance. Some researchers believe that an alternative wording, 
e.g. "electronically pasteurized," would be helpful (Morehouse & Komolprasert, 2004). These 
results confirm the importance of training the public on the controversy, technology, and the 
benefits of irradiation. 

Several countries have regulatory approvals in place for irradiation of one or more food 
products. But all these countries are not practically using the technology for a restricted 
number of food products (Johnson & Reynolds, 2004; Marcotte, 2005). China, USA and 
Ukraine make up about three quarters of the whole food irradiated in the world. China is 
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the most important country in the use of food irradiators. More than 200 facilities are 
reported from China and has about 100 irradiators with designed capacity of >300 kCi and 
more than 40 irradiators with designed capacity >1000 kCi. During 2006-2010 China 
established 20 new irradiators (EFSA, 2011). The number of radiation processing facilities 
and commercial food irradiation is showing an increasing trend around the world.  

 

Fig. 4. The ‘‘Radura’’symbol (in general it is presented in green color). The plant-like 
structure represents agricultural products in a closed package (the circle) broken in the 
upper half by penetrating ionizing rays or particles. 

10. Conclusions 

Food irradiation is approved for use in over 60 countries worldwide for different products, 
such as grains, herbs and spices, poultry, seafood, and ground beef (Kume et al. 2009). 
Irradiation does not cause any significant loss of macronutrients. Proteins, fats and 
carbohydrates undergo little modify in nutritional value through irradiation even with 
doses over 10 kGy, though there may be sensory changes. In the same way, the essential 
amino acids, essential fatty acids, minerals and trace elements are also unchanged. There 
can be a decrease in certain vitamins (mostly thiamin) but these are of the same order of 
magnitude as occurs in other manufacturing processes such as drying or canning (thermal 
sterilization) (Ahari et al., 2010). In the world today, 500000 tons of foods are irradiated 
every year among spices, meat, fresh fruits and vegetables. Despite the clear benefits of the 
food irradiation, this method remains under estimated in the food trade. It has not been 
commonly accepted and approved yet (Guy, 2011; Kume et al., 2009). The main factor in the 
way of commercial application of the food irradiation process is consumer acceptance. From 
our point of view, as consumer safety questions are discussed, food preservation throughout 
radiation contribution to food safety will reach the same recognition as the sterilization of 
medical products has in terms of preventing the spread infectious disease. For this reason, 
scientists have the responsibility to help the consumer understand the radiation process and 
it's potential to improve our lives and protect our health. 
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