
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Doppler Radar Tracking Using Moments

Mohammad Hossein Gholizadeh and Hamidreza Amindavar
Amirkabir University of Technology, Tehran

Iran

1. Introduction

A Doppler radar is a specialized radar that makes use of the Doppler effect to estimate targets
velocity. It does this by beaming a microwave signal towards a desired target and listening for
its reflection, then analyzing how the frequency of the returned signal has been altered by the
object’s motion. This variation gives direct and highly accurate measurements of the radial
component of a target’s velocity relative to the radar. Doppler radars are used in aviation,
sounding satellites, meteorology, police speed guns, radiology, and bistatic radar (surface to
air missile).

Partly because of its common use by television meteorologists in on-air weather reporting, the
specific term "Doppler Radar" has erroneously become popularly synonymous with the type
of radar used in meteorology.

The Doppler effect is the difference between the observed frequency and the emitted
frequency of a wave for an observer moving relative to the source of the waves. It is commonly
heard when a vehicle sounding a siren approaches, passes and recedes from an observer. The
received frequency is higher (compared to the emitted frequency) during the approach, it
is identical at the instant of passing by, and it is lower during the recession. This variation
of frequency also depends on the direction the wave source is moving with respect to the
observer; it is maximum when the source is moving directly toward or away from the observer
and diminishes with increasing angle between the direction of motion and the direction of
the waves, until when the source is moving at right angles to the observer, there is no shift.
Since with electromagnetic radiation like microwaves frequency is inversely proportional to
wavelength, the wavelength of the waves is also affected. Thus, the relative difference in
velocity between a source and an observer is what gives rise to the Doppler effect.

Now, suppose that we have received an unknown waveform from the target. This waveform
is a result of reflection from a fluctuating target in presence of clutter and noise. The received
signal is often modeled as delayed and Doppler-shifted version of the transmitted signal. So
not only the Doppler estimation, but the joint estimation of the time delay and Doppler shift
provides information about the position and velocity of the target. So we should focus on
the joint estimation of both parameters. There are many works for estimating the joint time
delay and Doppler shift, with advantages and disadvantages apiece. Among these methods,
Wigner Ville (WV) method has proven to be a valuable tool in estimating the time delay and
Doppler shift. WV method is a time-frequency processing. It possesses a high resolution
in the time-frequency plane and satisfies a large number of desirable theoretical properties
[Chassande-Mottin & Pai, 2005]. In fact, these properties are the fundamental motivation
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for the use of the narrowband(wideband) WV transformation for detecting a deterministic
signal with unknown delay-Doppler(-scale) parameters. WV’s practical usage is limited
by the presence of non-negligible cross-terms, resulting from interactions between signal
components. Alternative approaches are proposed for eliminating or at least suppressing the
cross-terms [Chassande-Mottin & Pai, 2005; Orr et al., 1992; Tan & Sha’ameri, 2008]. Generally
speaking, cross-term suppression may be divided into two categories: signal-independent and
signal-dependent paradigm. Coupling the Gabor transformation with the WV distribution
is a signal-independent procedure that reveals a cross-term suppression approach through
exploitation of partial knowledge about signals to be encountered [Orr et al., 1992]. For
signal-dependent method, it is possible to apply an adaptive window over WV distribution
where the kernel parameters are determined automatically from the parameters of the
input signal. This kernel is capable of suppressing the cross-terms and maintain accurate
time-frequency resolution [Tan & Sha’ameri, 2008]. Besides the WV method, there are other
time-frequency techniques such as wavelet transform. Wavelet approach combines the noise
filtering and scaling together, yielding a reduction in complexity [Niu et al., 1999]. There
is also another procedure using the fractional lower order ambiguity function (FLOAF)
for joint time delay and Doppler estimation [Ma & Nikias, 1996]. Now another view is
presented. It is assumed that the transmitted signal follows an N-mode Gaussian mixture
model (GMM). GMM can be used for different transmitted signals. Especially, it presents
an accurate modeling for actual signals transmitted in the sonar and radar systems [Bilik
et al., 2006]. The received signal is affected by the noise, time delay and Doppler where
the conglomerate effects on the signal cause peculiar changes on the moments of received
signal. Using moments is a powerful procedure which is used for different applications,
specially in parameter estimation. Some people use the moment method to estimate the
parameters of a Gaussian mixture in an environment without noise [Fukunaga et al., 1983].
Some apply the method for better parameter estimation in a faded signal transmitted through
a communication channel which is suffered from multipath. The method can be implemented
using a non-linear least-squares algorithm to represent a parameterized fading model for
the instantaneous received path power which accounts for both wide-sense stationary
shadowing and small-scale fading [Bouchereau & Brady, 2008]. The most prominent and
novel models for the envelope of a faded signal are Rician and Nakagami. There are
estimators for the Nakagami-m parameter based on real sample moments. The estimators
present an asymptotic expansion which provides a generalized closed-form expression for
the Nakagami-m parameter without the need for coefficient optimization for different ratios
of real moments [Gaeddert & Annamalai, 2005]. There are also approaches that show the
K-factor in Rician model is an exact function of moments estimated from time-series data
[Greenstein et al., 1999].

In this chapter, we analyze the effect of noise, time delay, and Doppler on the moments of
received signal and exploit them for estimating the position and velocity of the target. We note
that in the new method, the noise power is assumed unknown which is estimated along with
the time delay and Doppler shift. The new approach exhibits accurate results compared to the
existing methods even in very low SNR and long tailed noise. Then, the estimated parameters
are used for tracking a maneuvering target’s position and velocity. There exist other practical
methods for tracking targets such as Kalman filtering [Park & Lee, 2001]. However, when
the target motion is nonlinear and/or clutter and/or noise are non-Gaussian, this approach
fails to be effective. Instead, unscented Kalman filter (UKF) and extended Kalman filter (EKF)
come into use [Jian et al., 2007]. However, in long tailed noise, Kalman filtering results are
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Doppler Radar Tracking Using Moments 3

unsatisfactory. To overcome these difficulties, particle filtering (PF) is utilized [Jian et al.,
2007].

Although particle filtering performs better than Kalman filtering in noisy environment, but
it also diverges in low SNRs and cannot be trustable in this range of SNR. In addition, this
method requires much more processing. We note that Kalman filtering, extended Kalman,
unscented Kalman and particle filtering are recursive in nature. The new procedure proposed
in this chapter is not recursive and can be used in the non-Gaussian, non-stationary noise,
and nonlinear target motion. In here, the target tracking is performed based on the estimated
time delay and Doppler. Since the accuracy of the time delay and Doppler estimation are high
enough even in the severe noise, the results in tracking are acceptable compared to other rival
approaches.

In section II the moment concept is reviewed and moment method is described as the base
item in our estimations. Section III provides a model for the received signal. This signal
has been influenced by unknown noise, delay and Doppler. It is shown in Section IV that
it is possible to estimate Doppler by using the moments of the received random signal. The
method is also useful for delay estimation. The noise power and its behavior play a prominent
role in our work. So some analysis in this field is presented in this section too. After the
parameter estimation, section V is devoted to explain about how the tracking a target is
done based on the estimated delay and Doppler. And finally, section VI contains results that
illustrate the effectiveness of the proposed method.

2. Moment concept

In probability theory, the moment method is a way in which the moments of a discrete
sequence are used to determine its distribution.

Suppose that X is a random variable, and fX(x) is the probability density function (PDF) of
this random variable. The moments of the random variable X is calculated from the following
equation:

mn = E (Xn) =
∫ ∞

−∞
xn fX (x) dx =

∫ ∞

−∞
xn dFX (x) dx, (1)

which FX (x) is the cumulative distribution function (CDF) of the random variable X, and E(.)
is the expectation value.

On the other hand, the moment generating function (MGF) of this random variable is
calculated as follows:

MX (u) = E
(

euX
)

, u ∈ C. (2)

Note that the equation will be hold if the expectation value exists.

In here, to obtain the moments of a random variable, the relation between the moment and
the moment generating function is use instead of using equation (1). This relation can be
demonstrated as follows:

MX (u) = E
(

euX
)

=
∫ ∞

−∞
eux fX (x) dx =

∫ ∞

−∞
(1 + ux +

u2x2

2!
+ · · · ) fX(x)dx = 1 + um1 +

u2m2

2!
+ · · · . (3)
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This equation is hold when the moments mn are finite, i.e. |mn| < ∞.

The moment method claims that using the moment of the random variable X, the PDF of X is
completely determined. So if we have:

lim
n→∞

E
(

Xk
n

)

= E
(

Xk
)

, ∀k (4)

then, the sequence {Xn} has the same distribution as the X. we use (4) for parameter
estimation, i.e. The left side of the equation is obtained statically, and the right side is
calculated analytically. These two sides should be equal.

To begin our discussion, a model should be considered for our signals. Next section is focused
on finding the suitable model.

3. Signal model

We consider the baseband representation of the received signal, which can be expressed as
the sum of the desired signal component and non-stationary background noise. The signal
component is represented by the linear sum of many non-coherent waveforms whose arrivals
at the receiver are governed by a Poisson process [Zabin & Wright, 1994]. The receiver includes
two sensors to measure the received signal in presence of background noise:

y1 (t) = s (t) + ω1 (t) ,

y2 (t) = s (t − τ) exp (j2πtε) + ω2 (t) , (5)

where τ and ε denote the time delay and Doppler respectively, and s(t) is the desired received
signal modeled at any time instance t to follow a real N-mode Gaussian mixture distribution
[Isaksson et al., 2001]:

s (t) ∼
N

∑
i=1

pi N
(

µsi , σ2
si

)

. (6)

The processes ω1(t) and ω2(t) are real zero-mean additive white Gaussian noises (AWGN)
with powers of σ2

ω1
and σ2

ω2
respectively. These powers are not constant in practice due to

nonhomogeneous environment, but are assumed as random variates which are estimated
subsequently. The signal and noise are supposed to be uncorrelated, but the noises ω1(t)
and ω2(t) are possibly correlated.

4. Parameter estimation

In this section, for a random variable X, the moment generating function (MGF), Mx(u), and
its asymptotic series are used to determine the moments mxi:

Mx(u) = E(euX) = 1 + umx1 +
u2mx2

2!
+ · · · , u → 0. (7)

4.1 Time delay estimation

The statistical properties of the signal and noise which are represented in (5) are known.
Therefore, their MGF is available, by assuming finite moments of signal and noise. Although
the signal follows a Gaussian mixture distribution, the conglomerate effect of the time delay
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n Moment Central moment Cumulant

0 1 1 −

1 µ 0 µ

2 µ2 + σ2 σ2 σ2

3 µ3 + 3µσ2 0 0

4 µ4 + 6µ2σ2 + 3σ4 3σ4 0

Table 1. Normal distribution moments

and Doppler creates a non-stationary signal, as seen in (5). At first, by using both sensors in
the receiver, the time delay is predicted, then this estimated delay facilitates determination of
the Doppler shift subsequently. The time delay estimation is described here and discussions
about the Doppler estimation are provided in the sequel. It is required to consider the MGF
of the normal distributed variate as the starting ground for the next steps:

M(u) = exp
(

µu + 0.5σ2u2
)

, (8)

where µ and σ are the mean and variance of normal distribution. The related moments are
depicted in table (I). We suppose the received noise-free signal in the second sensor is denoted
by:

r(t) = s(t − τ) exp(j2πtε). (9)

First, we assume there is no Doppler i.e. r(t) = s(t − τ), and the noise variances, σ2
ω1

and

σ2
ω2

, are constant. As mentioned above, we utilize the MGF for the estimation purposes. The
noise terms in both sensors have normal distributions. Since the noise terms in (5) and signal
s(t) are independent, the difference between MGF of two received signals y1(t) and y2(t) in
(5) is derived from the noise-free terms s(t) and r(t). Since r(t) is the delayed replica of s(t),
it includes two blocks. When the second sensor has not sensed the received signal yet, r(t)
merely contains the noise ω2(t) and its MGF can be calculated by (8), but, as soon as the
transmitted signal arrives at this sensor, y2(t) shows a similar behavior to y1(t). This suitable
observation could be used for the time delay estimation.

So, MGF of signal detected at the first sensor is considered as a reference for our estimation
in the second sensor. Indeed, the moments of y1(t) are extractable from this known MGF
by using (7). These moments are employed as the reference for comparing among results
retrieved from the second sensor. In the second sensor, a rectangular running window is
implemented on y2(t) and this window helps to extract different segments of y2(t) step by
step. The window length depends on two parameters. First, it must be long enough to be
trustable in calculating the estimated moments, on the other hand, it should not be so long
that damages the real-time characteristics of estimator. Anyway, there is a trade-off between
these two factors. The window length is considered constant and moves from the beginning
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of the signal to the end. Besides the length, the overlap between adjacent frames is another
item that is determined according to the required accuracy and tolerable complexity in the
time delay estimation. At the beginning of signal block, the windowed signal includes only
the noise part of y2(t), because of delay τ, so it exhibits different moments in comparison
with y1(t). While the first point of window reaches the onset of delayed signal s(t − τ),
the estimated moments become similar to the moments of y1(t). Mean square error (MSE)
criterion is applied for observing the measure of this similarity. At first, we observe large MSE
values, but, the window progression leads to a decrease in MSE and after the τ seconds delay
point, we get a small amount for MSE nearly equal to zero and will remain constant up to the
end of observation time.

Now, Doppler is considered and r(t) is obtained from (9). Doppler changes the constant
amount of MSE which had happened after τ seconds. It means that after the delay point,
Doppler increases MSE gradually, but this phenomenon is not an annoying event in time
delay estimation, even it helps to find the time delay, because this increasing in MSE takes
place from the delay point, so it causes the delay point to be the point which has minimum
value for MSE.

In figure (1), the Doppler effect on the MSE behavior is showed for three different SNRs. Time
delay is equal to 300 microseconds. In SNR=+10dB, the result is clear. In two other SNRs, the
minimum point is almost matched well with the actual amount of delay, i.e. 300.

We assume the windowed signal in the k-th step of window moving is denoted by y2k and the
i-th moment of this windowed signal is presented as m̂y2k ,i. Therefore, the k-th window whose
related moments m̂y2k ,i are the most similar to those of y1(t), my1,i, can be estimated by:

k̂ = arg min
k

L

∑
i=1

∣

∣

∣
my1,i − m̂y2k ,i

∣

∣

∣

2
, (10)

where in here, L is considered 4, and it would reveal a desirable result [Fukunaga et al., 1983].
In fact, when L=4, we use 4 moments of signal. So we have 4 equations that are applied to
determine the unknown parameter. Although there is only one unknown parameter, but the
noise signal does not let us find the parameter by only one equation. But the use of four
equations is enough. Note that if more accuracy is needed, L can be considered larger. So, the
delay point, τ̂, is the first point of k̂-th window.

Despite the presence of Doppler, the proposed moment method estimates the time delay
precisely. Consequently, this method can consider the time delay and Doppler simultaneously,
and thus, is able to estimate the joint time delay and Doppler accurately.

4.2 Doppler estimation

In this section, we can consider the estimated delay τ̂ as the time origin for the received signal
in the second sensor:

y2(t + τ̂) = r(t + τ̂) + ω2(t + τ̂), t ≥ 0. (11)

According to (9) and (11), we have:

y2(t + τ̂) = s(t) exp(j2π(t + τ̂)ε) + ω2(t + τ̂), t ≥ 0. (12)
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a)  SNR=+10 dB

c)  SNR=-10 dB

b)  SNR= 0 dB

Fig. 1. MSE between the signal y1(t) moments and the windowed parts of signal y2(t)
moments. a) SNR=+10dB, b) SNR=0dB, c) SNR=-10dB
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Doppler and noise effect on the moments of y2(t + τ̂) should be noticed. Instead of y2(t + τ̂),
we work on the real part:

y2r(t + τ̂) = s(t) cos(2π(t + τ̂)ε) + ω2(t + τ̂), t ≥ 0. (13)

y2r(t + τ̂) includes the noise and signal, and the signal is also affected by Doppler which
changes the moments of the signal. Therefore, we prefer to obtain MGF of y2r(t + τ̂) firstly,
then, the moments are obtained from this MGF by (7). The noise-free signal in (13) is
independent from the noise ω2(t + τ̂), so MGF of y2r(t + τ̂) is:

My2r (u) = Mr(u)Mω2 (u), (14)

where Mr(u) is MGF of the first term in right side of (13), and:

Mω2 (u) = exp
(

0.5σ2
ω2

u2
)

. (15)

The time varying variance will be comprehensively discussed in the sequel. Here, the problem
is to estimate Mr(u). s(t) follows a Gaussian mixture distribution in (6). The presence of
the cosine term changes the first term in the right side of (13) to a non-stationary process.
Although the cosine term is time variant, fortunately, it is deterministic.

Now, we obtain Mr(u):

Ms(u) =
N

∑
i=1

pi exp
(

µsi u + 0.5σ2
si

u2
)

⇒

Mr(u; t) =
N

∑
i=1

pi exp
(

µsi u + 0.5σ2
si

cos2(2π(t + τ̂)ε)u2
)

. (16)

Both Mr(u) and Mω2 (u) are expressed as the series for u → 0, then by multiplying these two
series and ordering their terms, MGF of y2r(t + τ̂) is asymptotically obtained in the context of
(7):

My2r (u) = Mr (u) Mω2 (u)

= (1 + umr1 +
u2mr2

2!
+

u3mr3

3!
+

u4mr4

4!
+ · · · )

× (1 + umω21 +
u2mω22

2!
+

u3mω23

3!
+

u4mω24

4!
+ · · · )

= 1 + u(mr1 + mω21) +
u2(mr2 + mω22 + 2mr1mω21)

2!

+
u3(mr3 + mω23 + 3mr1mω22 + 3mr2mω21)

3!

+
u4(mr4 + mω24 + 6mr2mω22 + 4mr1mω23 + 4mr3mω21)

4!
+ · · · . (17)

The moments extracted from Mr(u) are shown in Table (II). There exists also another problem.
The resulting moments of y2r(t+ τ̂) are time dependent. Since the cosine term is deterministic,
the time average of the moments can be substituted instead. Let’s define:

ζi(ε) =
1

T

∫ T

0
cosi(2π(t + τ̂)ε)dt, (18)
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n Moment

0 1

1 ∑
N
i=1 piµsi

2 ∑
N
i=1 pi(µ

2
si
+ σ2

si
cos2(2π(t + τ̂)ε))

3 ∑
N
i=1 pi(µ

3
si
+ 3µsi σ

2
si

cos2(2π(t + τ̂)ε))

4 ∑
N
i=1 pi(µ

4
si
+ 6µ2

si
σ2

si
cos2(2π(t + τ̂)ε) + 3σ4

si
cos4(2π(t + τ̂)ε))

Table 2. Moments extracted from Mr(u; t)

where T is the observation time. Note that for dependency of ζi(ε) on ε, the moments of
y2r(t + τ̂) are dependent on ε too. Finally, for obtaining the time-independent moments of
y2r(t + τ̂), my2r ,i, it suffices that all “cosi(2π(t + τ̂)ε)” terms in the time-dependent moments
to be substituted by ζi(ε). The final moments are depicted in table (III).

Since now, the moments were obtained analytically, it means we only calculated the right side
of equation (4). On the other hand, the moments of the observed signal in the second receiver
can be calculated statistically by:

m̃i =
1

T

∫ T

0
yi

2r(t + τ̂)dt. (19)

Now the left side of the equation (4) is also obtained. Both of these two procedures must yield
same results. Thus, ε should be selected in such a way that this equality holds. To do this,
MSE criterion is used again:

MSE =
L

∑
i=1

∣

∣

∣
my2r ,i − m̃i

∣

∣

∣

2
. (20)

Similar to the previous section, L is considered as 4. So Doppler of the received signal y2r(t +
τ̂) is estimated:

ε̂ = arg min
ε

L

∑
i=1

∣

∣

∣my2r ,i − m̃i

∣

∣

∣

2
. (21)

4.3 Noise power estimation

The noise power estimation is similar to Doppler estimation. Indeed, these two estimations
are done simultaneously. It could be seen that the moments do not merely depend on Doppler.
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n Moment

0 1

1 ∑
N
i=1 piµsi

2 ∑
N
i=1 pi(µ

2
si
+ σ2

si
ζ2(ε)) + σ2

ω

3
N
∑

i=1
pi

(

µ3
si
+ 3µsi σ

2
si

ζ2 (ε)
)

+ 3σ2
ω

N
∑

i=1
piµsi

4
N

∑
i=1

pi

(

µ4
si
+ 6µ2

si
σ2

si
ζ2 (ε) + 3σ4

si
ζ4 (ε)

)

+ 3σ4
ω + 6σ2

ω

N

∑
i=1

pi(µ
2
si
+ σ2

si
ζ2 (ε))

Table 3. Final moments extracted from My2r (t + τ̂)

They depend onto the noise power as well. So, in (20), MSE includes two parameters, the
noise power and Doppler of the received signal, and should be minimized according to both
of them:

(ε̂, σ̂2
ω2
) = arg min

ε,σ2
ω2

L

∑
i=1

∣

∣

∣my2r ,i − m̃i

∣

∣

∣

2
. (22)

Now it is the time to discuss about the variable variance of the noise. This means that in
(14) the noise variance is considered unknown. We can estimate the noise variance given
N1 signal-free samples which are at hand occasionally. So, σ2

ω2
becomes a random variate.

Since the noise ω2(t + τ̂) is assumed Gaussian, the N1-sample based estimated variance is
chi-square distributed with N1 degrees of freedom:

σ̂2
ω2

=
1

N1

N1

∑
i=1

ω2
2i

, σ̂2
ω2

∼ χ2
N1

. (23)

Hence, the average MGF of the noise over σ2 is obtained in (14) as:

M̄ω2 (u) =
1

√

(1 − σ̂2
ω2

u2/N1)N1

= 1 + 0.5σ̂2
ω2

u2 + (0.125 + 1/4N1)σ̂
4
ω2

u4 + · · · . (24)

In this non-stationary noise scenario due to σ̂2
ω2

, the procedure presented for Doppler
estimation in the previous part does not change, only MGF and the moments of the normal
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Doppler Radar Tracking Using Moments 11

distribution considered previously for the noise should be substituted by the ones determined
in (24).

5. Radar tracking

In the basic section, we said that the proposed parameter estimation can be useful for the
tracking of a target. As mentioned, there are various methods for the target tracking which
present specific mathematical algorithms. These methods have different performance levels,
but most of them are recursive, so that at any time, the data is obtained by using previous
data and improving them. Now, some of the most common procedures and their problems
are expressed and then, the proposed moment method are described in detail.

5.1 Kalman filter

The Kalman filter is the central algorithm to the majority of all modern radar tracking systems.
The role of the filter is to take the current known state (i.e. position, heading, speed and
possibly acceleration) of the target and predict the new state of the target at the time of
the most recent radar measurement. In making this prediction, it also updates its estimate
of its own uncertainty (i.e. errors) in this prediction. It then forms a weighted average of
this prediction of state and the latest measurement of state, taking account of the known
measurement errors of the radar and its own uncertainty in the target motion models. Finally,
it updates its estimate of its uncertainty of the state estimate. A key assumption in the
mathematics of the Kalman filter is that measurement equations (i.e. the relationship between
the radar measurements and the target state) and the state equations (i.e. the equations for
predicting a future state based on the current state) are linear, i.e. can be expressed in the form
y = A.x (where A is a constant), rather than y = f (x). The Kalman filter assumes that the
measurement errors of the radar, and the errors in its target motion model, and the errors in
its state estimate are all zero-mean Gaussian distributed. This means that all of these sources
of errors can be represented by a covariance matrix. The mathematics of the Kalman filter is
therefore concerned with propagating these covariance matrices and using them to form the
weighted sum of prediction and measurement [Ristic et al., 2004].

In situations where the target motion conforms well to the underlying model, there is a
tendency of the Kalman filter to become "over confident" of its own predictions and to start
to ignore the radar measurements. If the target then manoeuvres, the filter will fail to follow
the manoeuvre. It is therefore common practice when implementing the filter to arbitrarily
increase the magnitude of the state estimate covariance matrix slightly at each update to
prevent this.

5.2 Extended Kalman Filter (EKF)

This method is a class of nonlinear tracking algorithms that provides much better results than
the Kalman filter.

Nonlinear tracking algorithms use a nonlinear filter to cope with the following cases:

• The relationship between the radar measurements and the track coordinates is nonlinear.

• The errors are nonlinear.

• The motion model, is non-linear.
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In this case, the relationship between the measurements and the state is of the form h =
f (x) (where h is the vector of measurements, x is the target state and f (.) is the function
relating the two). Similarly, the relationship between the future state and the current state
is of the form x(t + 1) = g(x(t)) (where x(t) is the state at time t and g(.) is the function
that predicts the future state). To handle these non-linearities, the EKF linearizes the two
non-linear equations using the first term of the Taylor series and then treats the problem as
the standard linear Kalman filter problem. Although conceptually simple, the filter can easily
diverge (i.e. gradually perform more and more badly) if the state estimate about which the
equations are linearized is poor. The unscented Kalman filter and particle filters are attempts
to overcome the problem of linearizing the equations.

5.3 Particle Filtering (PF)

Another example of nonlinear methods is particle filtering. This method makes no
assumptions about the distributions of the errors in the filter and neither does it require
the equations to be linear. Instead it generates a large number of random potential states
("particles") and then propagates this "cloud of particles" through the equations, resulting in a
different distribution of particles at the output. The resulting distribution of particles can then
be used to calculate a mean or variance, or whatever other statistical measure is required. The
resulting statistics are used to generate the random sample of particles for the next iteration.
However, this method also has some problems that restrict the use. This method requires
large computational operations and face severe difficulties for real-time applications. On the
other hand, this method is also not able to have suitable results in very low SNRs. In these
SNRs, PF is not able to bring us to a reasonable particle, and even using Sampling Importance
Re-sampling (SIR) method can not lead us to better results [Ristic et al., 2004]. In SIR method,
a weighted set of particles is used. These new weighted particles can face and eliminate the
noise more powerfully and present better estimation in low SNRs.

5.4 The proposed moment method

In this section, we are going to solve the problems we are faced in PF. This is done based on
the time delay and Doppler estimated in the previous section. Three sensors are used. They
are located on the vertices of an equilateral triangle. One of the sensors is a transmitter and
receiver, the other two sensors only serve as the receiver. The arrangement of the sensors and
their positions relative to the target is depicted in figure (2). The target is in the far field of the
sensors.

A signal is emitted from the first sensor to the target. When this signal comes into contact
with the target, generally speaking, it is scattered in many directions. The signal is thus
partly reflected back, hence, all three sensors receive this reflected signal. According to the
earlier discussions, the time delay and Doppler of the received signal in each sensor could be
estimated.

First, the target position is determined. Suppose the time interval between sending the signal
from the transmitter and receiving it in each sensor is shown by Ti f or i = 1, 2, 3, which i
denotes the sensor number. We also use Ri as the distance between the target and the i-th
receiver. Since the transmitter is beside the first receiver, we have:

R1 =
1

2
T1 × Ce, (25)

458 Doppler Radar Observations – 
Weather Radar, Wind Profiler, Ionospheric Radar, and Other Advanced Applications

www.intechopen.com



Doppler Radar Tracking Using Moments 13

Fig. 2. The arrangement of the three sensors and their positions relative to the target

which Ce is the velocity of the emitted signal that is equal to the light speed. For two other
receivers that are not near the transmitter, the distance is calculated as:

Ri = (Ti −
T1

2
)× Ce, i = 2, 3. (26)

Each sensor provides the locus of the target on a sphere of radius Ri centered at that sensor.
As mentioned before, these sensors are located on the vertices of an equilateral triangle.

It can be shown mathematically that the intersection of these three spheres is at two points.
To prove this, the equations for the three spheres are considered, and then the intersection
of them is obtained. Without losing the generality, we assume that the three points where
the sensors are located in, are showed by A, B and C. The points are respectively in (x0, 0, 0),
(−x0, 0, 0) and (0, y0, 0) in Cartesian coordinates and are showed in figure (3).

At first, the equations of two spheres with centers A and B and radii R1 and R2 are obtained:

(x − x0)
2 + y2 + z2 = R2

1,

(x + x0)
2 + y2 + z2 = R2

2. (27)

The first equation is subtracted from the second one:

2xx0 − (−2xx0) = R2
2 − R2

1 ⇒

4xx0 = R2
2 − R2

1 ⇒ x =
R2

2 − R2
1

4x0
. (28)
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Fig. 3. The position of the three sensors and the intersection of three spheres related to the
sensors

Now, the obtained value x is put in the one of the equations (27). We select the first one:

(

R2
2 − R2

1

4x0
− x0

)2

+ y2 + z2 = R2
1 ⇒

y2 + z2 = R2
1 −

(

R2
2 − R2

1

4x0
− x0

)2

. (29)

For convenience, the right side of the second equality of (29) is showed by R2
cir. Thus, the

intersection of the two spheres is a circle with the following equation:

y2 + z2 = R2
cir, (30)

Which is located in the plane x =
R2

2−R2
1

4x0
.

Then the intersection of this circle and the third sphere should be obtained. The third sphere
has the center C and radius R3. So its equation is:

x2 + (y − y0)
2 + z2 = R2

3. (31)

The left side of the equation (31) is extended, and the circle equation is used in it:

x2 + (y − y0)
2 + z2 = −2yy0 + y2

0 + x2 + y2 + z2

= −2yy0 + y2
0 +

(

R2
2 − R2

1

4x0

)2

+ R2
cir ⇒

y =
y2

0 +
(

R2
2−R2

1
4x0

)2
+ R2

cir

2y0
. (32)
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So, x and y coordinates of the intersection point is:

x =
R2

2 − R2
1

4x0

y =
y2

0 +
(

R2
2−R2

1
4x0

)2
+ R2

cir

2y0
. (33)

Using this two values and the equation (31), the third coordinates is also calculated:

z = ±

√

√

√

√

√

√
R2

3 −

(

R2
2 − R2

1

4x0

)2

−

⎛

⎜

⎝

y2
0 +

(

R2
2−R2

1
4x0

)2
+ R2

cir

2y0
− y0

⎞

⎟

⎠

2

. (34)

As mentioned, this intersection contains only two points which are located in the two sides of
the plane xy and in front of each other. But in reality, only one of these points has a positive
height and coincides with the coordinate of a target in sky.

After this proof, we continue our discussion about the tracking. On the one hand, the target
position is achievable by using Ris, and on the other hand, the equations (25) and (26) inform
about the relation between Ris and Tis. Therefore, the target position can be determined if Ti

is known. For calculating this parameter, it should be considered as the signal’s time delay
to reach to the i-th receiver. Let’s assume the first sensor in the section (IV), is the transmitter
now, and the second sensor in there is one of the three receivers in here. By using the proposed
moment method three times, the time delay can be estimated for all the three receivers. Ti is
denoted as the estimated time delay for i-th receiver. Now, all unknowns are obtained, so the
position is easily predicted.

Finally, the target velocity should be obtained. The receivers compute three values for
Doppler, ε̂i, by the proposed moment technique. Since the transmitter and the first receiver
are at the same sensor, the velocity component along the connecting line between the target
and the first sensor is:

υ1 =
d

dt
‖R1‖ =

C

2 ft
ε̂1, (35)

where ‖.‖ represents Euclidean norm, and R1 is the vector connecting the first sensor to the
target. C is the speed of light and ft is the frequency of the emitted signal. Using υ1, we
determine the velocity components along the connecting line between the target and two other
sensors (receivers):

υi =
C

ft
ε̂i − υ1, i = 2, 3. (36)

In the next section, there are results that compare the different methods available for
estimating the time delay and Doppler. There are also some results about tracking a target
which has a nonlinear motion. In the parameter estimation results, the proposed moment
method is compared with the methods Wigner-Ville (WV), fractional lower order ambiguity
function (FLOAF) and wavelet, and in the tracking part, there is a comparison between the
proposed method and EKF and PF ones.
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6. The results

To prove the procedures were presented in this Chapter, several different tests have been
conducted. The results are divided into two categories. At first, the proposed method
for estimating the joint time delay and Doppler is examined and compared with other
conventional methods. Then, the efficiency of this method in the tracking of the maneuver
target is also investigated.

6.1 Parameter estimation results

To estimate the time delay and Doppler parameters, the following assumptions are
considered:

• The transmitted desired signal follows a trimodal Gaussian mixture distribution presented
in equation (6) with the following mean and standard deviation related to the three modes:
σs1 = σs2 = σs3 = 1,
µs1 = 2, µs2 = 5, µs3 = 8,

And the probability distribution of the modes is considered as below:
p1 = 0.3, p2 = 0.3, p3 = 0.4 .

• The observation time of the signal is considered 1 millisecond.

• The time delay can be within the observation time of the signal, and in here, it is assumed
300 microseconds.

• Doppler value, ωε = 2πε, is a number between 0 and 2π that provides a 2π rotation for
the frequency shift. Now, Doppler is assumed 0.8π.

The test is done for different SNR values from -10dB to +10dB, and for each SNR, the operation
is performed 1000 times. The figure (4) depicts the error existed in the estimation of the time
delay for the conventional methods and the proposed moment one. This error is depicted as
MSE, calculated from 1000 times of simulation implementation, versus SNR. We have used
normalized MSE in our results:

MSE (τ̂) = E

[

(

τ̂ − τ

τ

)2
]

, (37)

where τ is the actual time delay, and τ̂ is the estimated value of this parameter. The
conventional methods are WV [Chassande-Mottin & Pai, 2005], wavelet method [Niu et al.,
1999] and FLOAF [Ma & Nikias, 1996].

As shown in Figure (4), all methods are convincing in high SNRs, but in low SNRs, especially
negative ones, WV and FLOAF methods are completely unable to estimate the time delay.
Wavelet method also has relatively unsuitable results, so that it presents very little reduction
in MSE value from SNR=-10dB to SNR=0dB. But the moment method in the both high and
low SNRs provides precise answers.
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Fig. 4. MSE of estimated time delay in the conventional and proposed methods.

There is a similar observation for Doppler that is showed in figure (5). The error is also as
MSE versus SNR. In this figure, the conventional methods are WV [Chassande-Mottin & Pai,
2005] and FLOAF [Ma & Nikias, 1996].

As portrayed in figure (5), WV offers very good results in high SNRs which is expectable. But
in the low SNRs, the interaction terms are relatively large and this method fails. So in low
SNRs, FLOAF presents more suitable results in comparison with WV. Again in this figure, the
power of moment method is absolutely visible.

It is worth mentioning that the obtained results are in an unknown noise power scenario.
The moment method also can estimate the noise power. It is important that in addition
to parameter estimation, our method can also predict the noise power. This capability
helps to recognize the noise environment, and ameliorates noise encountering. To judge the
performance of the proposed moment method for estimating the unknown noise power, MSE
between the actual and the estimated noise power is portrayed in figure (6). For instance, MSE
is 10−5 in SNR 8. It means that in this SNR, we have an error between the actual noise power
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Fig. 5. MSE of estimated Doppler in the conventional and proposed methods.

and the value which our method has estimated for it, and the normalized mean square value
of this error is equal to 10−5.

6.2 Radar tracking results

In the following, radar tracking results are presented based on the time delay and Doppler
estimations. The original frequency of the signal emitted from the radar, ft, is considered
10GHz. A target is at cartesian coordinate (10000m, 10000m, 10000m). It moves with the
velocity vx = 10m/s, vy = 10m/s. In the first 25 sec, vz = −10 m/s and in the following
75 sec, vz=+20 m/s. At first, for SNR=+10dB, test is done for the non-recursive proposed
moment method and two recursive conventional methods: EKF [Park & Lee, 2001] and PF
[Jian et al., 2007]. The results have been traced for 100 epochs with one second interval and
can be seen in figures (7) and (8) as MSE of the estimated position and velocity.

Two points are worth noting in this figures. EKF and PF methods are recursive, so the related
curves are decreasing and at first, have not acceptable results. We need some time to have
suitable results. In vital application like military, less needed time leads us to a better real-time
system and gives the opportunity to react faster. So, a non-recursive method can be valuable.
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Fig. 6. MSE of estimated noise power in the proposed method

In addition to have a high precision, the moment method is non-recursive, trustable from the
beginning, and provides a rapid reaction.

The second point in figures (7) and (8) is the existence of a bulge around the time 25 seconds,
where the third component of the speed has changed and made a nonlinear motion. There is
no bulge in the curves relating to the moment method, because in this method, the estimation
at any time is independent from the other times, so it has no problem in nonlinear motions.
In the figures we magnify the results around time 25 seconds and show them in linear scale
to depict the bulge obviously. We cannot present all results together in linear scale, because
moment results are too small in comparison with EKF and PF results.

To further examine the ability of the proposed method, the test is done at different SNRs. The
results of this experiment is showed in figures (9) and (10). In the figures, MSE of the position
and velocity estimation is portrayed for our moment method.

In figures (7) and (8), MSE is versus time , and SNR is constant and equal to +10dB. Thus the
figures (7) and (8) show the superiority of the proposed method on the two other ones. But
in figures (9) and (10), MSE is versus SNR. The power of moment method in the low SNR is
quite satisfactory, while the other methods, the EKF and PF, either do not respond or provide
answers that are not reliable.

Finally, a necessary point should be noted. We see that our method has much better results
in comparison with other ones. The better results are not only because of using moments.
Moment method helps us as a tool to encounter the undesired signals logically. In fact, in the
first step, we recognize the environment more precisely by a suitable model of noise. Then
after the modelling, although the noise is unknown, but the moments of its model are known
and used for our estimations. So we can control the noise behaviour. This procedure cannot
be found in other methods.
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Fig. 7. MSE of estimated position in the conventional and proposed methods for SNR=+10
dB.
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Fig. 8. MSE of estimated velocity in the conventional and proposed methods for SNR=+10
dB.
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Fig. 9. MSE of estimated position in the proposed method.

Fig. 10. MSE of estimated velocity in the proposed method.
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7. Conclusion

In this chapter, we review different novel methods in joint time delay and Doppler estimation.
Each of them has some advantages and disadvantages. The disadvantages are studied and
we find a new method which can almost obviate the most of these disadvantages. The new
method is based on moment. It exploits the time delay, Doppler, and noise effects exerted onto
the moments of the received data. The insight on the moments of the received signal is the
criteria for joint estimation of time delay and Doppler. Since the moments of the noise could
be obtained, these moments can facilitate separating the main signal from the noise even in a
severe noisy environment. So, our estimation in low SNR has suitable results. In addition, we
do not encounter with undesirable cross-terms discussed in WV method. After introducing
our estimation method, its application in Doppler radar is declared.

The estimated delay and Doppler are used in the target tracking and predicting the position
and velocity of the target in a noisy background. So it is applicable in the radar trackers. Test
results provide a plausibility of the both estimations and tracking. The estimated position
and velocity are completely accurate even in very low SNRs. The tracking can be extended
to multiple targets. Based on the features described for mono-target tracking, it is expected to
have acceptable results in multiple targets tracking. Multi tracking in low SNRs is one of the
most important roles of a Doppler radar which is reachable based on the presented method.
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