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1. Introduction 

The tendency to make progressively smaller and increasingly complex products is no longer 
an exclusive demand of the electronics industry. Many fields such as medicine, 
biomechanical technology, the automotive, and the aviation industries are searching for 
tools and methods to realize micro- and nanostructures in various materials. The micro-
structuring of very hard materials, like carbides or brittle-hard materials, pose a particularly 
major challenge for manufacturing technology in the near future. For these reasons the 
Institute for Production Engineering and Laser Technology (IFT) of the Vienna University of 
Technology is working in the field of electrochemical micromachining with ultra short 
voltage pulses (µPECM) in nanosecond duration. With the theoretical resolution of 10 nm, 
this technology enables high precision manufacturing. [Kock M.]. A question, which can 
illustrate the motivation to do this research work in this field, is: “Which parameters have to 
be set at a production machine and which framework conditions have to be managed to 
reach a desired result?” To answer this question for the materials nickel and steel (1.4301), 
the IFT has done experimental work. 

2. Electrochemical micromachining 

Basically, the term machining stands for the removal of material. Furthermore, 
micromachining is the production of very small scaled shapes and parts in the range of 100 
µm – 0,1 µm. DIN 8580 is the classification of all manufacturing processes. Figure 1 
illustrates DIN 8590 for ablation, which is a part of DIN 8580. 
Ablation is a non-mechanical separation of material. It can be divided into chemical, thermal 
and electrochemical methods. For example water jet cutting is not yet assigned to either 
ablation methods or to cutting methods. Electrochemical micromachining (ECM) uses 
electrochemical reactions to treat a metal work piece. These reactions are for example 
processes in an electrolyser or a battery. In electrolysers the chemical reaction is driven by 
an externally applied voltage, whereas in a battery a voltage is created by a chemical 
reaction. As depicted in figure 1, the group of electrochemical processes are assigned to 
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ablation, which is a non-cutting technology. Cutting technologies for the realization of 
microstructures, like high speed cutting, induce mechanical stress, and thermal 
technologies, like laser ablation, induce thermal stress upon the work piece. Due to the fact 
that electrochemical technologies have none of these disadvantages, they are of interest to 
many industrial cases. No stress is induced in the work piece, therefore the structure of the 
work piece remains unchanged. Another advantage is that there is no machining force 
necessary and thus it is possible to machine areas which are difficult to reach. Pulsed 
electrochemical micromachining (PECM) as well as electrochemical micromachining with 
ultra short pulses (µPECM) belong to the electrochemical micromachining methods. Figure 
2 shows the voltage-current curve of metal dissolution. This curve is segmented in active 
dissolution, passivity and trans-passive dissolution. PECM is positioned in the trans-passive 
section of the curve (2) whereas µPECM is positioned in the active metal dissolution area (1). 
Once a voltage of εP is reached, the current slopes down rapidly. The current remains low 
until the end of the passive section. At further increase of the voltage the current rises again 
to the trans-passive section. Machines, which are working with technologies in the range of 
active metal dissolution are more precise but obtain lower removal rates as others working 
in the trans-passive range. 
 

 

Fig. 1. Classification of ablation (DIN 8590) 

 

 

Fig. 2. Schematic illustration of current-voltage curve for metals: The three characteristic 
sections are: active dissolution, passivity and trans-passive dissolution  

Figure 3 shows the main differences of the electrochemical micromachining methods. The 
conventional ECM uses direct current as energy source. Whereas both PECM and µPECM, 
use pulsed energy sources, the major difference between these technologies is the pulse 
width. While the PECM uses pulse widths from milli- to microseconds, the electrochemical 
micromachining with ultra short pulses uses pulse widths from micro- to picoseconds. 
For PECM the removal rate is dependent on the current density distribution. µPECM 
directly controls the working gap by locally charging and discharging the so called 
electrochemical double layers. This leads to the advantage of µPECM, that the spatial 
confinement of electrochemical reactions and the thereby produced resolution is very high.  
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Fig. 3. Comparison of the electrochemical micromachining methods in the field of resolution 

3. Electrochemical micromachining with ultra short voltage pulses (µPECM) 

3.1 Method and procedure 
Electrochemical micromachining with ultra short voltage pulses was developed at the Fritz-

Haber-Institute of the Max-Planck-Corporation. Furthermore this innovative method for 

micromachining was published for the first time in the beginning of 2000. Other universities 

and companies working on similar topics can be found in Germany, Poland, Korea, and 

Austria. Since late 2010 the Institute for Production Engineering and Laser Technology (IFT) 

at the Vienna University of Technology has been working with this method as well. The IFT 

is striving to deliver machining strategies, new material–electrolyte combinations and 

production parameters for the industrial applicability. The machining technology of µPECM 

is based on the already well-established fundamentals of common electrochemical 

manufacturing technologies. The major advantage of the highest manufacturing precision is 

derived from the extremely small working gaps that are achievable through ultra short 

voltage pulses. This describes the main difference to common electrochemical technologies. 

As previously stated general advantage of electrochemical machining technologies is that 

the treatment of the work piece takes place without any mechanical forces or thermal 

influences. Therefore, no abrasive wear of the tool occurs and aspect ratios of >100 are 

possible which sets the basis for extremely sharp-edged geometries. There is no 

unintentional rounding of edges and no burring on the part. 

These days appropriate electrolytes have already been found for several nonferrous metals 

such as nickel, tungsten, gold etc., as well as alloys like non-corroding steel 1.4301. 

Nevertheless, a main research focus for the Institute will be the search for new material-

electrolyte combinations to expand the field of application for this technology and to 

enhance its manufacturing productivity. This needs to be accomplished in order to fulfil the 

requirements of industrial production because in industries such as the automotive sector 

the production rate is very important. At the Nano-/Micro-Machining-Center of the IFT, an 

assortment of high quality measuring devices is available. Based on the technology of 

µPECM and on the use of high end measuring devices, specimens and parts in the 

micrometer range are to be manufactured and analyzed in order to investigate material 

removal rates and the accuracy of resulting work piece geometries. 
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Due to the multidisciplinary nature of this technology, intensive cooperation with other 
institutes of the Vienna University of Technology in the fields of electro-technical engineering, 
high frequency technology and electrochemistry is established. The goal of this research will 
be to elevate this technology to an appropriate level of possible industrial usage by enhancing 
the manufacturing accuracy and the process efficiency for current components. Therefore a 
profound knowledge of material science, electrochemistry, and production technology for 
extremely small dimensions will be required. The necessary expertise in these fields will be 
provided by the cooperating institutes and interested companies. 
To accomplish these improvements in the technology of electrochemical micromachining 
with ultra short pulses it will be necessary to merge several research projects which are 
currently dealing with the topics of piezo-driven nano-positioning devices and the 
development of high precision machine structures for different types of machines. Table 1 
shows all the relevant adjustable parameters for µPECM. In addition to the proper choice of 
the electrical process parameters like the amplitude of the pulses, the pulse width, the 
voltages at the tool, and the work piece, the right choice of electrolyte is probably the most 
important aspect for this process.  
 

Adjustable parameters for the process abbraviations 

amplitude of the pulses 
pulse width 
voltage at the tool 
current through the backing electrode 
pulse–pause ratio 
diameter of the tool 
electrolyte solution 

A 
p 
T 
I 
ppr 
D 
E 

Table 1. Adjustable parameters which have an influence on the process 

In figure 4, the relevant parameters of the applied voltage pulses are illustrated. The duty 
cycle is the sum of the pulse width and the pause time. A pulse width of 100 ns and a pause 
time of 800 ns conforms a pulse–pause ratio of 1/8.  
 

 

Fig. 4. Pulse-pause ratio of the applied voltage pulse, with pulse width p, length of pause, 
amplitude A, tool voltage T, applied pulsed voltage signal U(t) 

Due to the fact that µPECM is one of the latest elaborated removal technologies, there are no 
fully developed machines available in the market. All the institutes and companies, which 
investigate these fields, work with machines in laboratory stage. The machine at the IFT is 
simple constructed and very easy to maintain, consequently it is adequate for industrial 

www.intechopen.com



Some Contributions at the Technology  
of Electrochemical Micromachining with Ultra Short Voltage Pulses 

 

7 

usage. However, a more complex machine structure would give the possibility to reach the 
highest precision requirement. Figure 5 shows a view inside the IFT´s machine. The whole 
machining process takes place in a basin filled with an electrolyte solution that has to be 
adequately adapted to the work piece material used. At the bottom of this electrolyte basin a 
hole for the connection of work piece and machine can be found. It is important that the 
basin is well sealed, so that no leakage can occur. The basin is made of Teflon, which has 
resistance against the electrolytes used in the experiments. Even when filling the basin, 
caution is required due to the fact that once in contact with the electrolyte, the surface of the 
material could begin to react. To protect the work piece surface from the influence of the 
electrolyte-solution, a cathodic protection-current is applied by the backing electrode which 
is immersed in the electrolyte. At the IFT, a tungsten wire is the preferred tool for the 
electrochemical micromachining with ultra short voltage pulses. With the basin filled as 
needed, the process of work piece calibration can be performed.  
 

Fig. 5. View inside the electrochemical machine with all important parts for the 
manufacturing process labelled 

The measurement process for finding the work piece surface coordinate is executed 

automatically by the machine. Therefore a tool potential is necessary to detect the electrical 

short circuit thru a contact between work piece and tool. Another possible measurement 

process is to match the local coordinate systems of the work piece with the global coordinate 

system of the machine structure. With the result of this measurement process and three 

positioning screws on the plate, whereon the electrolyte basin is mounted, it is now possible 

to get the necessary congruence between these two coordinate systems. Then the 

manufacturing program, which conforms to a standard CNC-program, is started. The tool 

moves along the pre-programmed paths and selectively ablates material due to the 

principle, that is based on the finite time constant for double layer charging, which varies 

linearly with the local separation between the electrodes. During nanosecond pulses, the 

electrochemical reactions are confined to electrode regions in close proximity. [Schuster R.]. 

To view the manufacturing process and get optical magnification, a USB–camera is used.  

Similar to conventional electrochemical manufacturing methods the µPECM process uses an 

oppositional electric voltage for the work piece and the tool. At the phase boundaries 

between the tool and the electrolyte and also between the work piece and the electrolyte, an 

electrochemical double layer is formed. [Schuster R.]  
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Figure 6 shows the detailed structure of the double layer. The double layer consists of a 

rigid, outer Helmholtz layer (OHL) and a diffuse area. The inner Helmholtz layer (IHL) is a 

part of the OHL. In the diffuse area the hydrated metal ions are versatile. The functionality 

of the OHL can be understood basically as a kind of a plate capacitor, with a plate 

separation of half of the atom radius. [Hamann C.H.] 

 

 

Fig. 6. Simplified Stern-Graham-Model of the electrochemical double layer [Hamann C.H.] 

 

 

Fig. 7. Schematic illustration of the electrochemical double layers as capacitors and the 
electrolyte as electrical resistor between tool and work piece (left) and the equivalent circuit 
diagram (right) with U(t) as energy source, CDL as capacitance of the double layers and 
Relectrolyte as the ohmic resistor of the electrolyte. 

The left section of figure 7 shows the schematic illustration of the tool, the work piece in the 

electrolyte basin, and the electrochemical double layers illustrated as plate capacitors. The 

electrolyte has comparable characteristics to a linear ohmic resistor with a value that is 

dependent on the length of the current path. The length of the current path is equal to the 

distance between the tool and the work piece. The right section of figure 7 shows the 

equivalent circuit diagram in a simplified version of the left illustration in figure 7. Through 

charging and discharging the electrochemical double layer, metal ions are solvated out of 
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the metal surface. If the voltage pulse width is very short, the erosion takes place very 

closely to the tool (Rshort), since the ohmic resistance of the electrolyte prevents ablation at 

areas further away from the tool (Rlong) due to the double layer capacitor not being able to be 

sufficiently recharged. [Zemann R.] 

The right illustration in figure 8 shows schematically the two different charging curves of 

the double layers at the work piece for Rshort and Rlong. At smaller distances between the tool 

and the work piece, the charging curve is steeper; this leads to the formulas (1) and (2).  

 

 

Fig. 8. Applied voltage pulse (left) and time variable voltage curve in the electrochemical 
double layer (right) 

 electrolyte DLR � C   (1) 

τ time constant for double capacitor charging 
Relektrolyte resistance of the electrolyte  
CDL capacitance of the electrochemical double layer 

    ( t / )
DLU  U t � 1  e    (2) 

UDL charging voltage of the electrochemical double layer 
U(t) applied voltage with dependence on time 
τ time constant for double capacitor charging 
Another important influence on the charge of the double layers has the pulse width and the 

choice of the electrolyte. Small working gaps between the tool and the work piece of less 

than 1 µm are produced with pulse widths of less than 100 nanoseconds and lead to a very 

high resolution of the machined structure. Even more accurate machining can be achieved 

with pulse widths of less than 1 nanosecond and by separating the processing pulse into a 

pre-pulse and a main pulse, which is a future research topic for the IFT. In order to elaborate 

on the research work concerning the technology of using ultra short voltage pulses, the 

relevant demands of industry, basically increasing the material removal rate, has to be 

considered as a main goal. Subsequently, an increase in the already high machining 

accuracy is regarded as a principal target. 

Another major advantage of this technology is the possibility to reverse the process 

electrically. This means that not only the work piece can be machined, but also the tool itself 

can be defined as the work piece and be machined to its ideal geometry without any further 

set-up. Regarding all these functionalities, the requirements for precise micromachining are 
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met. Possible tasks that can be performed with this machining centre include: tooling, 

milling, turning, sinking, and measuring.  

Characteristics of the µPECM process with ultra short voltage pulses: 

 High precision (theoretical resolution of 10 nm) 

 No thermal load 

 No mechanical process forces 

 High aspect-ratio >100 (only limited thru the young’s modulus of the material) 

 No tool wear 

 Small working gaps between tool and work piece (< 1 µm) 

 Manufacturing of hard materials 

 Very small edge-rounding 

 No burring 

 Adjustable roughness of the work piece surface 

 High quality measuring function 
Table 2 shows that electrochemical micromachining with ultra short voltage pulses has 

several advantages compared to other nano- and micromachining technologies. For example 

the theoretical dissolution range and the aspect ratio are outstanding, whereas in case of the 

removal rate, µPECM is not competitive against technologies like high speed cutting. For 

material removal, µPECM is mainly used for post-processing and for producing surfaces 

with hydrophobic and hydrophilic characteristics at the moment.  

 

 
theoretical 
dissolution 

range 

aspect 
ratio 

treatable 
materials 

category 
removal 

rate 

µPECM limit: 10 nm > 100 
electrochem. 

active materials 

electrochem. 
micro- 

machining 
* 

Lithography >10 nm ~ 1 
etch-able, 

evaporable 
materials 

chemical 
method 

** 

LIGA ~ 100 nm ~100 
galvanic 

removable 
materials 

mechanical/ 
thermal 
method 

** 

Laser ablation ~ µm ~ 1 
metals and 
dielectrics 

thermal 
method 

** 

high speed 
cutting 

~ µm ~1 
metals and 
polymers 

cutting method *** 

FIB ~ 30 nm ~ 10 
conducting 
materials 

thermal 
method 

** 

EDM ~ µm ~ 10 metals 
thermal 
method 

** 

LIGA is the acronym for lithography (LI), electroforming (G) and molding (A)  
FIB focussed ion beam milling 
EDM electric discharge machining 

Table 2. Comparison of nano- and micromachining methods [Kock M.] 
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3.2 Tooling 
The favoured material used for the tool is tungsten. Tungsten can be easily treated with 

NaOH as electrolyte and has preferable mechanical properties like a Mohs hardness of 7,5 

and a Young´s modulus of 410 GPa. For the experimental work wires with a diameter of 75 

and 150 µm were used. The first tooling step is, to cut the tungsten wire manually to a 

length of 15 – 20 mm. The wire is fixed with a collet in the toolholder and should protrude 

far enough to produce the necessary geometries, mostly that is about 4 – 5 mm. The 

toolholder has to be protected from the acid to prevent corrosion, which is performed by a 

layer of Lacomit. It is a dark red fluid, once hardened it isolates the toolholder against the 

electrolyte. This red fluid functions as a barrier between the electrolyte and the toolholder. 

Only the top of the upper part of the tungsten wire is free of Lacomit to treat the work piece. 

Figure 9 shows two toolholders with the different diameters of tool wire. 

 

Fig. 9. Tools ready for manufacturing. The left tool has a diameter of 75 µm and the right 
tool a diameter of 150 µm, both with Lacomit layer. 

As mentioned before the tool/wire is cut off manually. Due to the mechanical characteristics 

of tungsten it is possible that the cut end splits. If that happens the split section and the 

usual cut end of the tool (figure 10, left) has to be removed. 

 

 

Fig. 10. Tungsten wire with a diameter of 150 µm, untreated with the end after manual 
cutting (left) and the finished end after electrochemical flattening (right). 
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The flattening process is performed directly in the µPECM machine. Due to the fact that the 

spatial resolution and pulse width are linearly related: the higher the pulse width, the 

higher the spatial resolution [Kock M.], the flattening process is split into two parts to 

produce a tool with high quality. Another advantage of this sequential machining is that the 

machining time is reduced. At first a large pulse width (i.e. 400 ns) is used to increase the 

removal speed of the cut end. Afterwards a smaller pulse width (i.e. 80 ns) is used to create 

a sharp edged tool with a glossy surface. Only with such tools it is possible to produce 

geometries with sharp edges on the work piece. Figure 11 illustrates the difference of the 

radius on the tool´s top for small and large pulse widths.  

 

 

Fig. 11. Influence of the pulse width on the radius on the top of the tool 

3.3 Manufacturing of nickel 
Nickel is a hard (Mohs hardness: 3,8) and ductile metal with a silvery-white and slightly 

golden shine. Nickel is apart from chrome and molybdenum an important element for the 

refinement of steel. The ferromagnetic metal is corrosion-resistant. Nickels protective oxide 

surface resists most acids and alkalis. The corrosion-resistance is one of the most important 

characteristics of parts in laboratory environments or health care, therefore nickel is the 

common material in those branches. For the electrochemical manufacturing of nickel the 

electrolyte hydrochloride acid (HCl) is used. HCl deactivates the passive surface of nickel 

and renders the material processable. The following experiments were done to find the 

optimal processing parameters for the manufacturing of products and special surfaces made 

of nickel. To evaluate the outcome of the experiments, the produced structures were 

measured with a high-end optical measuring device. Also optical considerations through a 

light microscope helped to evaluate the following characteristics of the produced surfaces: 

 shape / geometry  

 topology (smoothness of the bottom surface) 

 shine of the surface 

 edge rounding 

3.3.1 Pulse width (p) and amplitude (A) 
In the first experiment the pulse width and the amplitude of the pulse were varied in order 

to see which effects the adjustment of these parameters cause. The experimental setup is a 

block with five parallel grooves. Every groove is made with different pulse widths from 400 

ns to 80 ns. A sketch of the groove geometry is illustrated in figure 12. Overall four of these 

blocks with different amplitudes were manufactured. The range of the amplitudes was from 
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3000 mV to 2100 mV in 300 mV steps. After measuring the width of every groove, the 

working gap can be calculated via formula (3).  

 D  2a  B   (3) 

D tool diameter in µm 
a working gap in µm 
B measured width of the groove in µm 
 

 

Fig. 12. Sketch of the produced groove 

The diagram in figure 13 shows that a smaller pulse width reduces the working gap. The 

optical estimation shows that grooves made with lower pulse widths have much better 

optical qualities (figure 13, left). This outcome can be explained by the localization of the 

manufacturing reactions. Smaller voltage pulses lead to a spatial confinement of the 

electrochemical reactions so that the working gap shrinks and the geometry gets more 

precise which is confirmed in figure 13, right. As a consequence, the pulse width is the most 

important parameter for the machining precision. Dependent on the machine, the minimal 

pulse width of p = 80 ns is further used in the experiments to produce grooves in high 

quality. The adjusted electrochemical parameters for this experiment are indicated in table 3. 

 

 

Fig. 13. Illustration of grooves (left) - from top downwards different pulse widths were used. 
Diagram of the appurtenant working gaps over pulse widths (right). 
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A = 3000 mV p = varied T = 200 mV 
E = 1M HCl 

I = 1000 µA ppr = 1/8 D = 150 µm 

Table 3. Adjustments for the experiment of figure 13 

Figure 14 shows that similar to the pulse width the reduction of the amplitude causes a 
reduction of the working gap. At a pulse width of p = 80 ns an amplitude of less than 3000 
mV does not lead to a removal of material, due to the fact that the double layers cannot be 
sufficiently charged with the provided energy. Equally the provided energy of 2400 mV 
amplitude and 100 ns pulse width is not sufficiently for production. The overview of the 
production parameters for these experiments is mentioned in table 4. 
 

 

Fig. 14.Working gaps over amplitude at different pulse widths. 

A = varied p = varied T = 200 mV 
E = 0,2M HCl 

I = 1000 µA ppr = 1/8 D = 75 µm 

Table 4. Adjustments for the experiment of figure 14 

3.3.2 Electrolyte-concentration 
The concentration of the electrolyte is a very important parameter for the electrochemical 
processing. In the equivalent circuit diagram of the electrochemical cell, the electrolyte is 
equal to an ohmic resistor. For this experiment hydrochloric acid (HCl) in three different 
concentrations was used to explore the correlation between the electrolyte-concentration 
and the working gap. The diagram in figure 15 shows that the reduction of the electrolyte 
concentration leads to smaller working gaps. This outcome can be explained by the reduced 
conductivity of the electrolyte and the following localization of the reactions. 
A reduction of the concentration increases the resistance because of the lack of ions in the 
aqueous solution. In such solutions ions are the charge carriers and therefore responsible for 
the electric conductivity. The illustration in figure 15 shows the optical differences of 
changed electrolyte concentrations. The processing parameters for this experiment are 
indicated in table 5. 
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Fig. 15. Image of grooves made with 0,5M HCl and 1M HCl for A = 2400 mV (left). Working 
gap over pulse width at different electrolyte concentrations for A = 3000 mV (right) 

 

A = varied p = varied T = 200 mV 
E = varied 

I = 1000 µA ppr = 1/8 D = 75 µm 

Table 5. Adjustments for the experiment of figure 15 

3.3.3 Current through the backing electrode (I) 
To investigate the influence of the current through the backing electrode, the current was 

varied between 500 µA and 4000 µA. The results in figure 16 (left) show an increased 

processing time at higher currents. The minimal working gaps are in the range of 2000 to 

3000 µA, as illustrated in figure 16 (right). Because of the optical criteria and the working 

gap a current of I = 2000 µA was used for further experiments. The illustration in figure 17 

shows the difference between a high-quality and a low-quality groove. The electrochemical 

parameters for this experiment are shown in table 6. 

 
 

 

Fig. 16. Processing time at different currents (left) and working gap at different currents (right) 
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Fig. 17. Image of grooves with I = 2000 µA (above) and I = 500 µA (below) 

 

A = 3000 mV p = 80 ns T = 200 mV 

E = 0,5M HCl 

I = varied ppr = 1/8 D = 75 µm 

Table 6. Adjustments for the experiment of figure 17. 

3.3.4 Tool voltage (T) 
For successful application of ultra short voltage pulses for electrochemical machining, the 

electrochemical conditions, e.g. the average electric potentials of the tool (T) and the work 

piece have to be precisely controlled. These potentials are independently adjusted by a low-

frequency bipotentiostat and a platinium backing electrode. [Kock M.] 

To investigate the influence of T, seven grooves with different tool voltages were produced. 

The production parameters for this manufacturing are indicated in table 7. After the 

measurement and evaluation of the working gap via formula (3), the results show that 

between -100 mV and + 100 mV the working gap reaches a minimum (figure 18, left). The 

optical appearance of these grooves has also the highest quality (figure 18, right). Another 

advantage is that the processing time decreases with lower tool voltages. For the further 

experimental work a tool voltage of +100 mV was used. 

 

 

Fig. 18. Working gap at different tool voltages (left), image of grooves with T = 600 mV, 0 
mV and -600 mV 
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A = 3000 mV p = 80 ns T = varied 
E = 0,5M HCl 

I = 2000 µA ppr = 1/8 D = 75 µm 

Table 7. Adjustments for the experiment of figure 18 

3.3.5 Pulse-pause ratio 
The pulse-pause ratio is an important parameter that influences the electrochemical 

reactions. To ensure a precise and fast dissolution of the material, the ratio of pulse time to 

pause time should be correctly chosen. Every single pulse that charges the electrochemical 

double layer dissolves a monolayer of atoms from the material into the electrolyte solution. 

Due to the fact, that one monolayer of atoms is a very small amount of material the pulses 

must be applied with very high frequency to solvate the material in a reasonable rate. If the 

ratio is too high, the process time is unnecessarily lengthened as these rates obey an 

exponential law (Butler-Volmer equation). To find an appropriate pulse-pause ratio, five 

grooves with a different ppr-parameter were produced. Figure 19 shows a decreased 

removal rate at higher pulse-pause ratios for the drilling and milling processes. All of these 

grooves have the same working gap with negligible deviations in the range of maximal 5 

µm. There is great potential to speed up the process by reducing the pulse-pause ratio 

without losing much precision. The used parameters for the experiment are specified in 

table 8. Considering the optical estimations, a pulse-pause ratio between 1/6 and 1/8 is 

recommended. 

 

 

Fig. 19. Removal rate over pulse-pause ratio 

 

A = 3000 mV p = 80 ns T = 100 mV 
E = 0,5M HCl 

I = 2000 µA ppr = 1/8 D = 75 µm 

Table 8. Adjustments for the experiment of figure 19 

3.3.6 Drilling with µPECM 
In this experiment the maximum possible drilling depth should be found. The drilling 

process works without any problems to a depth of 140 µm. All over the removal speed slows 

down slightly. At a depth of 140 µm the drilling speed slows down rapidly and the 

experiment has to be stopped. An explanation is that in this depth the exchange of 
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electrolyte is not sufficient, so the dissolved metal ions saturate the electrolyte in the drilled 

hole and prevent any further metal dissolution. This can be disabled by an alternately up 

and down movement of the tool to realize a kind of flushing (pulsed mechanical 

movement). In figure 20 the removal speed over drilling depth is shown. Table 9 indicates 

the drilling parameters for the process.  

 

 

Fig. 20. Removal speed over drilling depth 

 

A = 3000 mV p = 80 ns T = 100 mV 
E = 0,5M HCl 

I = 2000 µA ppr = 1/8 D = 75 µm 

Table 9. Adjustments for the experiment of figure 20 

3.3.7 Dwelling time 
For this experiment the tool was positioned 4 µm above the nickel surface and remained 

at this position for different time periods. At the first position the dwelling time was 0 

seconds. On each position the dwelling time was doubled to finally 640 seconds. The 

longer the pulses are applied, the more material is removed (figure 21). At 0 seconds only 

a scratch was produced. At higher dwelling times the holes are deeper. Finally, the 

removal rate decreases and a maximum gap will be developed. The electrical resistance 

between tool and work piece grows with the distance of them, until finally no more 

reaction/dissolution is possible. A referential groove was produced for the measurement. 

It is very important to adjust an optimized machine feed rate, because longer dwelling 

times lead to enlarged working gaps. The Adjustments for this experiment are illustrated 

in the table 10. 

 

A = 3000 mV p = 80 ns T = 100 mV 
E = 0,5M HCl 

I = 2000 µA ppr = 1/8 D = 75 µm 

Table 10. Adjustments for the experiment of figure 21 
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Fig. 21. Averaged groove depth over dwelling time 

 

 

 

Fig. 22. Images of the microstructure, photographed with a scanning electron microscope 
(SEM) at different resolutions 
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3.3.8 Part production (micro injection mould) 
The manufactured microstructure in figure 22 has an overall diameter of less than 50 µm, is 
15 µm deep, and approximately shaped like a gearwheel. This microstructure was 
manufactured in 4 hours, with an electrolyte concentration of 0,2M HCl. The tool for this 
experiment (figure 23) was made out of a tungsten wire with diameter D = 150 µm by 
successively reducing the diameter in the tooling basin to < 5 µm. The magnification of 45 in 
a light microscope was not sufficient to examine the structure; therefore, a scanning electron 
microscope has to be used. The experiment shows that the production of a micro injection 
mould in a range < 100 µm is possible with the IFT´s machine. 
 

Fig. 23. Image of the tool to produce the micro injection mould with a top of D < 5µm. 

 

A = 3000 mV p = 80 ns T = 100 mV 
E = 0,2M HCl 

I = 2000 µA ppr = 1/8 D < 5 µm 

Table 11. Adjustments for the experiment to produce a micro injection mould 

3.4 Manufacturing of steel (1.4301) 
1.4301 steel is the most widely used non corroding steel and it has a very broad scope of 
application. The need of micro-structuring of such a standard material is continually 
growing. A solution of hydrofluoric acid and hydrochloric acid was used as electrolyte. The 
exact designation of this electrolyte solution is 3% HF/3M HCl. As previously mentioned, 
four criteria were used for the optical consideration of the grooves. These are: 

 shape/ geometry 

 topology/ smoothness of the bottom surface 

 shine of the surface 

 edge rounding 
The experiments on 1.4301 were the same as on nickel with the difference that the electrolyte 

was not changed. 

3.4.1 Pulse width (p) and amplitude (A) 
Grooves with a length of 200 µm and a depth of 20 µm were manufactured. Thereon the 

amplitudes and the pulse widths were varied and the optical consideration of the grooves 

was performed to classify the results. The spatial resolution is almost linearly related to the 

pulse width. [Kock M.]. Figure 24 confirms this as the working gap shrinks with the 

reduction of the pulse width. The combination with the highest manufacturing precision 
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was A = 2800 mV and p = 100 ns. The production with shorter pulse widths with the tool 

diameter of 150 µm was not possible. The energy applied by shorter pulse widths or lower 

amplitudes was not sufficient to recharge the double layer in order to realize material 

removal. By increasing the amplitude it was possible to finish grooves made with a pulse 

width of 80 ns, but the overall result was not favorable. The overview of the used 

parameters for the experiment shown in figure 24 is illustrated in table 12. 

 

 

Fig. 24. Working gap over pulse width for A = 2800 mV 

A = varied p = varied T = 100 mV 

E = 3% HF/3M HCl 

I = 1500 µA ppr = 1/8 D = 150 µm 

Table 12. Adjustments for the experiment of figure 24 

3.4.2 Current through the backing electrode (I) 
This experiment was performed to show the influence of the cathodic protection-current on 

the process. The applied current protects the work piece in the electrolyte from corrosion or 

any other reactions. Eight grooves with the same dimensions as in the experiment before 

were made with I from 4000 to 500 µA. An obvious trend of how the cathodic protection-

current influences the process could not be observed from the series of grooves. The results 

show that I from 3000 to 4000 µA achieves the smallest working gap and the best surface 

condition. Figure 25 shows two grooves with an obvious optical difference. Topology of the 

ground, sharpness of the edges, and form of the groove is much better with I = 3000 µA. 

Therefore, I has to be fixed at 3000 µA for the next attempts. All other electrochemical 

parameters for this experiment are indicated in table 13. During this phase of the 

experiments, the choice of which of the parameters to fix was dedicated by the optical 

assessment and the working gap measurement and not yet by the removal rate. 
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Fig. 25. Image of grooves made with I = 3000 µA above, respectively I = 500 µA below 

 

A = 2800 mV p = 100 ns T = 100 mV 
E = 3% HF/3M HCl 

I = varied ppr = 1/8 D = 150 µm 

Table 13. Adjustments for the experiment of figure 25 

3.4.3 Pulse-pause ratio 
The idea of this experiment was a variation of the pulse–pause ratio from 1/5 to 1/11. 
Figure 26 shows the manufactured grooves of the ppr experiment. The manufacturing 
parameters of this process are illustrated in table 14. For this experiment the voltage at the 
tool was zero. An experiment with the potential at the tool has shown that a very low 
voltage leads to the best results in case of the optical considerations. But these low tool 
voltage could bring up some problems.  
When the drilling depth is higher, it can happen that the positive ions from the work piece 
treatment deposit at the tool. This deposition starts with a slight change of the tool geometry 
and can lead to a kind of ion based short circuit bridge between tool and work piece. Such a 
short circuit disrupt the manufacturing process. For the further experimental work the tool 
voltage was set at 100 mV to avoid any unwanted occurances.  
 

 

Fig. 26. Grooves produced for the pulse–pause ratio experiment  

Figure 27 shows that the higher the pulse–pause ratio, the lower the removal rate. If within a 
period of time fewer pulses are applied, the charging and discharging of the electrochemical 
double layer also occurs less frequently. This is the obvious explanation for the low 
manufacturing speed of the groove made with a ppr of 1/11. For this ratio the manufacturing 
process was stopped because economic material removal could not be realized.  
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The best combination of the optical quality of the surface and the removal rate was detected 

from a pulse–pause ratio of 1/7. The consequence was to fix this parameter for the next 

experiments. Based on the optical result, the pulse–pause ratio of 1/5 was not viewed in the 

evaluation.  

 
 

 
 
 

Fig. 27. Removal rate over pulse–pause ratio 

 

A = 2800 mV p = 100 ns T = 0 mV 

E = 3% HF/3M HCl 

I = 3000 µA ppr = varied D = 150 µm 

Table 14. Adjustments for the experiment of figure 26 and 27 

3.4.4 Drilling with µPECM 
To this point in the series of experiments all grooves were manufactured with an adjusted 
depth of 20 µm. This experiment was done to show how the manufacturing depth influences 

the process. Figure 28 shows that at a depth between 125 – 175 µm the speed of removal 
rapidly reduces from above 35 to less than 10 µm per minute. A possible explanation is that 
the electrolyte is not sufficiently available in the drilled hole. The electrolyte is sated in such 

depth, so the transport of new solved ions out of the bore slows down and the removal 
speed reduces. After the depth of around 425 µm was reached, the process was stopped, 
because it was no longer possible to manufacture the work piece. To prepare sufficient 
electrolyte solution in such depth and thus realize better transport of the solved ions out of 

the bore, the mechanical movement of the tool inside the drilled hole could be pulsed to get 
a kind of flushing and reach higher depths. The manufacturing parameters of this 
experiment are illustrated in table 15. 
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Fig. 28. Removal speed over drilling depth 

 

A = 2800 mV p = 100 ns T = 100 mV 
E = 3% HF/3M HCl 

I = 3000 µA ppr = 1/7 D = 75 µm 

Table 15. Adjustments for the experiment of figure 28  

3.4.5 Dwelling time 
Figure 29 shows the effect of the dwelling time during the process. In this experiment a tool 
with a diameter of 150 μm was positioned 4 μm above the work piece´s surface. The 
parameters of the experiment are shown in table 16. The tool was stopped at eight different 
positions. On the first position the dwelling time was about 0 s, and afterwards it was 
doubled on each position from 5 s to 640 s. With the maximum depth of around -10 μm at 
the longest dwelling time this experiment confirmed the relevance of the dwelling time for 
the manufactured geometry. If the manufacturing feed rate is chosen too low, the precision 
of the manufactured geometry shrinks - caused by the time-dependent development of the 
working gap. This is one of the effects, which has to be controlled in industrial usage of the 
µPECM technology. Table 16 gives a overview of the process parameters for the dwelling 
time experiment. 
 

 

Fig. 29. Averaged groove depth over dwelling time 
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A = 2800 mV p = 100 ns T = 100 mV 
E = 3% HF/3M HCl 

I = 3000 µA ppr = 1/7 D = 150 µm 

Table 16. Adjustments for the experiment of figure 29 

3.4.6 Manufacturing of the Institute´s logo with µPECM 
The goal of the last experiment was to produce a micro structure with the knowledge of the 

described experimental work. So, the emblem of the Institute for Production Engineering 

and Laser Technology was chosen to be machined in a small steel plate. The first step, as in 

all other experiments, was to provide an appropriate tool to produce a high quality result. 

To manufacture grooves with a maximum width of 30 µm a tool diameter of about 20 µm is 

necessary. In a special tooling basin the diameter reduction from 150 µm to 20 µm was 

realised. Figure 30 shows the result of the tooling process. 

 
 
 

 

 
 
 

Fig. 30. Tool before (diameter 150 µm - left) and after the tooling process (diameter ≈20 µm - 
right) 

Figure 31 shows the result seen through a light microscope with forty-five-fold 

magnification and table 17 illustrates the used processing parameters. To get an idea of the 

dimensions of the emblem, a human hair was attached for comparison. The total removal 

time to produce this logo was 03:04:44 (hh:mm:ss). The groove 0-1 has an adjusted length of 

322,5 µm and an adjusted depth of 30 µm. The manufacturing time was 11,02 minutes and 

the width is 26,3 µm. This leads to a removal rate of 0,027 106 µm³/min. 

 

 

A = 2300 mV p = 80 ns T = 100 mV 

E = 3% HF/3M HCl 

I = 3000 µA ppr = 1/7 D ≈ 20 µm 

Table 17. Adjustments for the manufacturing of the Institute’s logo 
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Fig. 31. Logo of the Institute in comparison to a human hair (diameter ≈ 50 µm)  

 

4. Conclusion 

The technology of electrochemical micromachining with ultra short voltage pulses has 

successfully displayed the many applications especially for prototype building or for the 

manufacturing of special products where there is no other technology which can combine a 

very high manufacturing precision for special materials without any mechanical forces or 

thermal influences. [Zemann R.] In principal, it can be applied to all electrochemically active 

materials, including semiconductors. [Schuster R.] Also, the use of applicable effects on 

process accuracy and material removal rate of difficult to machine materials offers a wide 

range of possible applications for µPECM technologies in the future. The occurring 

electrochemical problems are tradable and topics at the IFT, as well as the micromachining 

of many different materials like nickel, tungsten, titanium, non-corroding steels, or hard 

metals. As already mentioned, the machine at the IFT is simple constructed and very easy to 

maintain, so it is adequate for industrial use. However, a more complex machine structure 

would enable to reach highest precision requirements, but needs more maintenance and a 

higher financial investment. The experiments on the IFT´s machine proved that 

electrochemical micromachining is achievable for SME’s. With the parameter sets in table 18 

and 19 appropriate results were manufactured. Appropriate results means, that with these 

parameters, the grooves deliver adequate working gaps and optical results – geometry, 

topology, sharpness of the edges, and shine of the ground. Other parameters would perhaps 

reach higher removal rates, but on the other side lose quality with regard to precision. 
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A = 3000 mV p = 80 ns T = 100 mV 

E = 0,2M HCl 

I = 2000 µA ppr = 1/8 D = 75 µm 

Table 18. Adjustments to achieve appropriate results working on nickel 

Caused by the complexity of this technology, the variation of one of the adjustable 

parameters could significantly affect the result. Therefore at this point of research it is not 

definitely possible to give tangible instructions on how to reach requested results. It is very 

much experience necessary to interpret the proceedings at the machine correctly and to 

enhance the manufacturing process. Due to the multidisciplinary nature of this technology, 

intensified cooperation with other experts and an extensive research study has to be done; 

before a reasonable forecast for the processing parameters of a specific manufacturing 

process can be done. 

 

A = 2800 mV p = 100 ns T = 100 mV 

E = 3% HF/3M HCl 

I = 3000 µA ppr = 1/7 D = 150 µm 

Table 19. Adjustments to achieve appropriate results working on steel (1.4301) 

5. Prospects  

In the course of the experiments, it was also tried to treat carbide metal by electrochemical 

micromachining with ultra short pulses. The work piece used for experimental work was a 

K40FF. This carbide metal consists of a 12% cobalt matrix with 88% tungsten-carbide as 

stengthener. The electrolytes used were 3% HF/3M HCl and 2M NaOH. Both electrolytes 

were found to be unsuitable in combination with this carbide metal. A major challenge is to 

find new material-electrolyte combinations to apply electrochemical micromachining with 

ultra short pulses. The IFT has some tangible visions to realize treatment of carbide metal. A 

prospectively area for application of this technology could be protection of plagiarism. 

Technical devices and parts could be branded with the µPECM technology so, that only the 

producer can find the printed serial number, due to the small size of it.  
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