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1. Introduction 

In adults, glioblastoma multiforme (GBM) represents the most common malignant brain 
tumor (Karpel-Massler et al., 2009). Unfortunately, even with the best available standard of 
care, patients with this disease still face a poor clinical outcome (Stupp et al., 2005). Based on 
the discovery of molecular targets that are involved in tumorigenesis and maintenance of 
the malignant cellular phenotype, new therapeutic strategies were developed. In about half 
of all glioblastomas, the epidermal growth factor receptor (HER1/EGFR) was shown to be 
amplified and overexpressed, rendering it an outstanding target in this disease (Libermann 
et al., 1985; Ekstrand et al., 1991). Thus, great interest was generated in the creation of 
HER1/EGFR-targeted agents. The clinically most advanced compounds that were 
developed to target HER1/EGFR for the treatment of GBM are small-molecule tyrosine 

kinase (TK) inhibitors such as erlotinib (Tarceva, Genentech Inc., San Francisco, CA, 
U.S.A.). TK inhibitors reversibly bind to the intracellular catalytic TK domain of 
HER1/EGFR followed by the inhibition of autophosphorylation of the receptor as well as 
further downstream signaling involving phosphatidylinositol 3-kinase/murine thymoma 
viral oncogene homolog (PI3-K/AKT) and mitogen-activated protein kinase (MAPK) 
pathways ( Arteaga, 2001; Busse et al., 2000; Scagliotti et al., 2004). Erlotinib does not only 
inhibit HER1/EGFR but also EGFRvIII, the most frequent mutant form of HER1/EGFR 
which is characterized by ligand-independent activation (Chu et al., 1997). In experimental 
studies, erlotinib was shown to inhibit the expression of genes encoding pro-invasive 
proteins and to significantly diminish EGFRvIII expression in transfected glioblastoma cells 
(Lal et al., 2002). Moreover, the extent of erlotinib-mediated inhibition of anchorage-
independent growth of glioblastoma-derived cell lines was shown to correlate inversely 
with the cellular capability to induce HER1/EGFR mRNA (Halatsch et al., 2004). However, 
clinical studies examining the therapeutic efficacy of erlotinib in the setting of GBM have so 
far failed to prove a therapeutic benefit (Raizer et al., 2010; van den Bent et al., 2009). In a 
randomized, controlled phase II trial, only 11.4% of the patients with recurrent glioblastoma 
treated with erlotinib were free of progression after 6 months compared to 24.1% of the 
patients treated with temozolomide or carmustine (van den Bent et al., 2009). In addition, 
overall survival of the two treatment groups was found to be similar (7.7 months for the 
erlotinib group versus 7.3 months for the temozolomide/carmustine group).  
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In addition, several studies examined the therapeutic efficacy of erlotinib when combined 
with standard radiochemotherapy (Brown et al., 2008; Peereboom et al., 2010; Prados et al., 
2009). Overall, the results of these studies appear unfavorable and discourage the use of 
erlotinib in combination with temozolomide and radiotherapy. 

Combined inhibition of HER1/EGFR and downstream key regulators such as mammalian 
target of rapamycin (mTOR) and PI3-K represents another approach that has been 
evaluated. In an experimental study, combined treatment with erlotinib and rapamycin, an 
mTOR inhibitor, resulted in significantly increased anti-proliferative effects on phosphatase 
and tensin homolog deleted on chromosome 10 (PTEN)-deficient U87 and SF295 
glioblastoma cells when compared to cells receiving erlotinib alone (Wang et al., 2006). 
Moreover, additional inhibition of PI3-K using a dual mTOR/PI3-K inhibitor (PI-103) was 
shown to result in even more pronounced antineoplastic effects when combined with 
erlotinib in comparison to erlotinib combined with either mTOR or PI3-K inhibition (Fan et 
al., 2007). In the clinical setting, in a pilot study, a 6-month progression-free survival of 25% 
was reported for 22 recurrent glioblastoma patients who were treated with erlotinib or 
gefitinib in combination with sirolimus (rapamycine, Rapamune®, Wyeth Pharmaceuticals 
Inc., Ayerst, PA, U.S.A.) (Doherty et al., 2006). In a phase II clinical trial, no complete or 
partial responses were observed in 32 patients with recurrent glioblastoma treated with 
erlotinib and sirolimus in combination (Reardon et al., 2010). Median progression-free 
survival and median overall survival were shown  to be 6.9 weeks and 33.8 weeks, 
respectively. 

The therapeutic efficacy of a combined treatment with erlotinib and bevacizumab, a 
humanized anti-vascular endothelial growth factor (VEGF) monoclonal antibody, on 
patients with recurrent high-grade glioma was recently evaluated by a phase II clinical trial 
(Sathornsumetee et al., 2010). For glioblastoma patients, median 6-month progression-free 
survival and overall survival were reported as 28% and 42 weeks, respectively. In addition, 
for 48% of the glioblastoma patients radiographic response was reported. However, 
progression-free survival and radiographic response were similar to historical data of 
patients treated with bevacizumab alone.   

In conclusion, current data suggest that the targeted therapeutic approach against 
HER1/EGFR may require a synergistic drug combination strategy involving other targeted 
agents in addition to HER1/EGFR-targeted TK inhibitors. This chapter focuses on 
innovative therapeutic strategies combining HER1/EGFR-targeted TK inhibitors with novel 
agents aiming to enhance the antineoplastic effect exerted by erlotinib. Most of the agents 
discussed in this chapter have not been evaluated for the treatment of GBM yet but 
constitute worthy candidates for further evaluation in this setting.   

2. Promising candidates for enhancing the antineoplastic activity of erlotinib 

2.1 Inhibitors of Kit 

Kit (CD117) is a receptor tyrosine kinase which is related to the macrophage colony-
stimulating factor receptor (c-fms) and to the platelet-derived growth factor receptor 
(PDGFR) ( Heinrich et al., 2002; Yarden et al., 1987). Its physiologic ligand is stem cell factor, 
also known as mast cell factor or steel factor (Nocka et al., 1990). Ligand-binding is followed 
by receptor dimerization, autophosphorylation and activation of downward signaling 

www.intechopen.com



Future Perspectives of Enhancing the Therapeutic 
Efficacy of Epidermal Growth Factor Receptor Inhibition in Malignant Gliomas 

 

45 

pathways such as MAPK, JAK/STAT and PI3K/AKT pathways ( Duensing et al., 2004; Mol 
et al., 2003). Kit was found to be expressed by a variety of cell types including the interstitial 
cells of Cajal, mast cells, haemopoietic progenitor cells or melanocytes (Natali et al., 1992; 
Nocka et al., 1989; Turner et al., 1992; Ishikawa et al., 1997), and its dysregulation has been 
associated with the pathogenesis of various different human malignancies (Duensing & 
Duensing, 2010; Heinrich et al., 2002; Woodman & Davies, 2010).  

In glioma, about 75% of the tumors were reported to express Kit (Cetin et al., 2005). 
Interestingly, amplification and expression of Kit were shown to be significantly higher in 
high-grade gliomas when compared to low-grade gliomas (Joensuu et al., 2005; Puputti et 
al., 2006). These findings suggest that Kit may be involved in the tumorigenesis and 
malignant transformation of gliomas.  

Different mutational changes of Kit have been described, such as the D816V mutation 
conferring an enhanced catalytic activity and an increased affinity for adenosine 
triphosphate or small in-frame deletions or insertions in the inhibitory juxtamembrane 
region causing ligand-independent activation of the receptor (Heinrich et al., 2002). Such 
genetic alterations of Kit have not been reported for gliomas yet. In other human 
malignancies including gastrointestinal stromal tumors (GIST) or mast cell leukemia, these 
mutations are quite frequently encountered (Duensing & Duensing, 2010). As a 
consequence, Kit-targeted agents such as imatinib mesylate (Gleevec®, Novartis, East 
Hanover, NJ, U.S.A.), a small molecule tyrosine kinase inhibitor, were developed. Imatinib 
was shown to significantly increase median overall survival of patients with GIST from 19 
months to more than 50 months (Blanke et al., 2008a, 2008b; Gold et al., 2007). 

Imatinib was shown to inhibit the proliferation of certain glioblastoma cell lines in vitro 

(Hagerstrand et al., 2006). In another experimental study, imatinib significantly inhibited the 

proliferation of human U87 glioblastoma cells and significantly increased the 

radiosensitivity of this glioma cell line in vitro and in vivo (Oertel et al., 2006). However, in 

clinical phase I and II trials, imatinib was shown to exert only moderate antitumor activity 

(Razis et al., 2009; Wen et al., 2006). In a phase I/II study, 34 patients with glioblastoma were 

treated with imatinib monotherapy at a dose of 800 mg/d (Wen et al., 2006). Progression-

free survival at 6 months was only 3%, no patient achieved complete response and only 6 

patients reached stable disease while 2 patients showed partial response. In a different phase 

II study, 20 patients with glioblastoma were diagnosed by tumor biopsy and treated with 

400 mg imatinib administered twice a day for a period of 7 days prior to re-biopsy or tumor 

resection. Molecular examination of the tumor specimens showed that treatment with 

imatinib did not significantly change Ki67 expression, suggesting that treatment with 

imatinib did not affect tumor proliferation (Razis et al., 2009).  

The fact that inhibition of Kit and co-targeted tyrosine kinases such as the platelet-derived 

growth factor (PDGFR), alone, does not sufficiently suppress tumor growth in glioblastoma 

might be explained by co-activation of other growth factor receptors such as HER1/EGFR. 

Cellular signaling derived from activated HER1/EGFR might interfere with the inhibitory 

effects of imatinib on Kit and preserve the cancerous cellular phenotype. In this regard, 

additional inhibition of HER1/EGFR by erlotinib might prove beneficial in terms of a more 

pronounced therapeutic efficacy. To date, no experimental or clinical data exist with respect 

to a combined therapeutic approach with erlotinib and an inhibitor of Kit in this disease. 
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However, in the setting of recurrent glioblastoma, encouraging results were reported by a 

phase II study evaluating the therapeutic efficacy of a combination therapy with imatinib 

and hydroxyurea, a ribonucleotide reductase inhibitor (Reardon et al., 2005). Median overall 

survival, progression-free survival at 6 months and median progression-free survival were 

48.9 weeks, 27% and 14.4 weeks, respectively. Nine percent of the patients achieved 

radiographic response and 42% had stable disease within a median follow-up of 58 weeks.  

In conclusion, despite rather discouraging results of Kit inhibitors used as single agent 
therapies in clinical trials, Kit inhibitors may prove as valuable partners for the treatment of 
glioblastoma when combined with other agents such as erlotinib. 

2.2 Histone deacetylase (HDAC) inhibitors 

In humans, 18 HDACs with different tissue distributions and functions have been identified. 

Class I, IIa and IV HDACs are found in the brain (Marsoni et al., 2008). HDACs induce an 

increased packaging of chromatin and subsequent suppression of transcription (Lane & 

Chabner, 2009; Svechnikova et al., 2008). Modulation of the chromatin state through 

enzymatic histone modification may alter the transcriptional activity of genes involved in 

cell cycle control which is considered to be an important factor in tumorigenesis (Yoo & 

Jones, 2006). HDACs were shown to be overexpressed in a variety of human cancers 

including breast cancer, hematologic malignancies, colorectal cancer or pancreatic 

carcinoma (Lane & Chabner, 2009; Nakagawa et al., 2007). Moreover, inhibition of HDAC 

was shown to induce apoptosis by different mechanisms (Insinga et al., 2005; Nebbioso et 

al., 2005; Zhang et al., 2006; Zhao et al., 2005). In addition, inhibition of HDAC was shown to 

disrupt the function of the heat shock protein 90 which promotes the degradation of 

oncogenic proteins such as HER1/EGFR, AKT or BCR-ABL ( Bolden et al., 2006; Kovacs et 

al., 2005; Whitesell & Lindquist, 2005). Thus, HDAC inhibition may constitute a promising 

approach in cancer therapy.  

Romidepsin is a bicyclic peptide that was shown to have anti-microbial, immunosuppressive 

and antineoplastic activities ( Ritchie et al., 2009; Ueda et al., 1994). It was shown to selectively 

inhibit deacetylases such as HDAC or tubulin deacetylase and represents one of the best 

studied HDAC inhibitors in the clinical setting (Yoo & Jones, 2006). The clinical experience 

with HDAC inhibitors is most advanced for the treatment of cutaneous T-cell lymphoma 

(CTCL) and hematologic malignancies (Lane & Chabner, 2009; Prince et al., 2009). In an early 

phase I trial, 10 patients with chronic lymphocytic leukemia (CLL) and 10 patients with acute 

myeloid leukemia (AML) were treated with romidepsin at a dose of 13 mg/m2 on day 1, 8, and 

15 of a 4-week cycle (Byrd et al., 2005). Despite absence of formal complete or partial 

responses, all seven CLL patients who had elevated leukocyte counts at the beginning of the 

therapy showed an improvement in peripheral leukocyte counts, while in the AML group one 

patient developed a tumor lysis syndrome. Moreover, in a phase II clinical trial, treatment with 

romidepsin resulted in a decrease of bone marrow blasts in 5 of 7 patients with AML (Odenike 

et al., 2008). However, within a month after achieving their best response towards romidepsin, 

these 5 patients developed disease progression. In the clinical setting of refractory CTCL, two 

phase II clinical trials examining the therapeutic efficacy of romidepsin were recently 

published (Piekarz et al., 2009; Whittaker et al., 2010). In 71 patients with treatment-refractory 

or advanced CTCL treated with a starting dose of 14 mg/m2 romidepsin administered as a 4-h 
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intravenous infusion on days 1, 8, and 15 of a 28-day cycle, an overall response rate of 34% was 

found (Piekarz et al., 2009). Partial response, complete response and stable disease were 

reported as 26%, 7% and 38%, respectively. Similar findings were reported by a different 

group (Whittaker et al., 2010). Overall, the safety profile of romidepsin has been favorable, and 

serious adverse events were shown to be rare (Byrd et al., 2005; Odenike et al., 2008; Piekarz et 

al., 2009; Prince et al., 2009; Whittaker et al., 2010).  

There is no clinical data on romidepsin in glioblastoma and only little data on other HDAC 
inhibitors in this setting. However, in experimental studies, a radiosensitizing effect was 
observed in glioblastoma cells treated with HDAC inhibitors. The fraction of surviving 
SF539 and U251 glioblastoma cells that were treated with valproic acid (VA), an 
anticonvulsive drug known to also inhibit HDACs, and radiation was significantly lower in 
comparison to cells that were treated with radiation only (Camphausen et al., 2005). 
Moreover, in a murine heterotopic U251 xenograft model, treatment with VA and 
irradiation was shown to result in a significantly greater delay of tumor growth when 
compared to animals treated with either VA or irradiation alone. These findings were 
confirmed by other groups using different HDAC inhibitors (Entin-Meer et al., 2007; Lucio-
Eterovic et al., 2008). In another experimental study, treatment with the HDAC inhibitor 
trichostatin A or 4-phenyl-butyrate was shown to induce cellular differentiation of different 
human glioblastoma cell lines (Svechnikova et al., 2008). In addition, both HDAC inhibitors 
were shown to inhibit cellular proliferation and to promote apoptosis in glioblastoma cell 
lines.  

In the setting of glioblastoma, so far only one experimental study was published examining 
the effects of romidepsin. In that study, treatment with romidepsin at a concentration of 1 
ng/ml was shown to significantly reduce proliferation of T98G, U251MG and U87MG 
glioblastoma cells (Sawa et al., 2004). In addition, U251MG cells treated with romidepsin 
were shown to be significantly less invasive when compared to controls. Moreover, in a 
heterotopic xenograft model, mice treated with romidepsin were shown to have 
significantly reduced tumor growth of subcutaneously inoculated EGFRvIII-bearing U87MG 
glioblastoma cells. 

Both erlotinib and romidepsin are promising anticancer agents fitting a reasonable safety 
profile. However, further studies are needed to elucidate if combining the antineoplastic 
effects of erlotinib and HDAC inhibitors such as romidepsin may result in a significant 
improvement of the current clinical course of glioblastoma. 

2.3 Vascular disrupting agents 

Tumor angiogenesis stands for cancers’ development of their own blood supply. This 
process was found to be crucial for the growth and metastasis of solid tumors and can be 
achieved by different mechanisms such as sprouting angiogenesis, recruitment of bone 
marrow-derived endothelial progenitor cells or the longitudinal splitting of existing blood 
vessels called intussusception (reviewed in Heath & Bicknell, 2009). 

Different anti-angiogenic agents were developed for the treatment of human malignancies 

including high-grade glioma. One such agent is bevacizumab (Avastin, Genentech Inc., San 
Francisco, CA, U.S.A.), a humanized monoclonal antibody targeted to VEGF. Numerous 
clinical studies were conducted evaluating the therapeutic efficacy of bevacizumab in 
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glioblastoma. In a phase II study, 20 of 35 patients (57%) with recurrent glioblastoma who 
were treated with bevacizumab in combination with irinotecan showed at least partial 
response. The 6-month progression-free survival and 6-month overall survival rates were 
46% and 77%, respectively (Vredenburgh et al., 2007). Similar findings were reported for 
patients with recurrent World Health Organization (WHO) grade III gliomas (Desjardins et 
al., 2008). More recently, Friedman et al. reported the results of a phase II multicenter 
clinical trial (BRAIN) studying a larger patient population (Friedman et al., 2009). In this 
study, 167 patients with recurrent glioblastoma were randomly assigned to either treatment 
with bevacizumab alone (n=85) or in combination with irinotecan (n=82). Median overall 
survival was 9.2 months and 8.7 months, respectively, 6-month progression-free survival 
rates were 42.6% and 50.3%, and objective response rates were 28.2% and 37.8%, 
respectively.  

The tumor blood supply may not only be therapeutically attacked by anti-angiogenic means 
inhibiting the formation of new tumor-supplying blood vessels, but also by destroying 
already existing tumor blood vessels. The combretastatins are small molecule microtubule-
depolymerising agents which cause selective disruption of the tumor-supplying 
vasculature. The best studied member of this group of agents is represented by CA4P 
(ZybrestatTM, Oxigene Inc., Lund, Sweden). 

The blood supply of spontaneous and ortho- and heterotopically transplanted rodent 
tumors as well as human xenografted tumors was shown to be significantly reduced within 
10-20 min after application of CA4P, an effect lasting for up to 24 hrs in some tumors ( 
Kanthou & Tozer, 2007; Tozer et al., 2001). However, despite the fact that a single-dose 
application of CA4P was shown to induce abundant tumor necrosis within a short period of 
time, cells in the outer rim of the tumor survived (Dark et al., 1997; Tozer et al., 2001). The 
cells in this niche may continue or restart to grow causing tumor recurrence. In a heterotopic 
rat glioma model, blood flow in subcutaneous tumors dropped to about half of the initial 
tumor blood flow during the first 110 min after administration of CA4P (Eikesdal et al., 
2000). However, treatment with CA4P at a dose of 50 mg/kg did not significantly affect 
tumor growth in comparison to controls. Remarkably, when the treatment with CA4P 
preceded a hyperthermic treatment by 3 hrs, tumor growth was significantly more delayed 
when compared to animals receiving CA4P immediately before hyperthermia or animals 
subjected to hyperthermic treatment alone. In conclusion, if applied at the right time, 
treatment with CA4P may increase thermally induced antitumor activity.  

To date, there are no clinical studies examining the effects of CA4P in glioblastoma. 
However, CA4P was shown to diminish perfusion and blood flow in different advanced 
solid tumors (Dowlati et al., 2002; Rustin et al., 2003; Stevenson et al., 2003). In addition, 
some patients were reported to have experienced a notable clinical benefit from the 
treatment with CA4P. Complete response was reported for a patient with anaplastic thyroid 
cancer. This patient was free of disease for more than 5 years. Another patient suffering 
from fibrosarcoma achieved partial response.  

Aiming at the elimination of viable tumor cells remaining at the periphery of the tumor 
despite treatment with VDAs, a therapeutic approach was attempted combining VDAs with 
radiotherapy or conventional chemotherapy. Eight patients with advanced non-small cell 
lung cancer (NSCLC) were treated with radiotherapy (27 Gy) and CA4P at a dose of 50 
mg/m2 starting after the second fraction of radiotherapy (Ng et al., 2007). The tumor blood 
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volume was shown to be reduced by 22.9% at 4 hrs after application of CA4P and by 29.4% 
after 72 hrs. Moreover, the decrease in blood volume was shown to be more pronounced at 
the outer rim of the tumor than at its center (51.4% vs 22.8%). These findings suggest that 
the antivascular effect exerted by CA4P can be enhanced by radiotherapy in the setting of 
NSCLC. In another study, CA4P was applied for the treatment of patients with different 
advanced cancers refractory to standard therapy 18-22 hrs prior to a single-agent treatment 
with paclitaxel or carboplatin or combination therapy with paclitaxel and carboplatin in 
sequential order (Rustin et al., 2010). A formal response was noted in 7 of 18 patients with 
ovarian cancer, primary peritoneal carcinoma, or cancer of the fallopian tube. Partial 
remission was achieved in another 3 out of 30 patients with non-ovarian cancer. Thus, this 
combinatorial regimen displays antitumor activity in patients with difficult-to-treat cancers.  

Overall, VDAs are promising anticancer agents and might provide an additional benefit 
when combined with other antineoplastic drugs. Other therapeutics administered in 
addition to VDAs might be trapped in the tumor tissue due to the shut-down of tumor 
blood flow. Thereby, tumor cells might not only die secondary to ischemia, but surviving 
cells in the outer rim of the tumor may also be eliminated. This way, tumor regrowth might 
be retarded or prevented. At this point, there is no data on the therapeutic efficacy of a 
combined treatment with erlotinib and VDAs for the treatment of glioblastoma. Further 
studies are warranted to examine the overall antineoplastic effect of a combined treatment 
with erlotinib and a VDA in glioblastoma.  

3. Conclusion 

Unfortunately, in glioblastoma, HER1/EGFR-targeted small-molecule TK inhibitors such as 

erlotinib did not fulfill the enthusiastic expectations derived from the promising results 

obtained by preclinical studies (Brown et al., 2008; van den Bent et al., 2009). Thus, the fate 

of patients diagnosed with glioblastoma remains dismal despite employing the currently 

best standard of care. New therapeutic strategies are undoubtedly needed to overcome this 

frustrating situation.  

One such new therapeutic approach which aims at enhancing the therapeutic efficacy against 
glioblastoma involves the combination of erlotinib with other targeted agents in order to 
inhibit key regulators that are located further downstream of the signaling cascade or with 
agents inhibiting other signaling pathways. Several clinical studies are ongoing to evaluate this 
therapeutic option. In patients with recurrent glioblastoma or gliosarcoma, a phase I/II clinical 
trial currently evaluates the therapeutic effects of a combined treatment with erlotinib, 
sorafenib (BAY 54-9085, Bayer HealthCare Pharmaceuticals, Montville, NJ, U.S.A.), an 
inhibitor of murine leukemia viral oncogene homolog (RAF)/mitogen-activated protein kinase 

kinase (MEK)/extracellular signal-regulated kinase (ERK) and VEGFR-2/PDGFR-β signaling 
pathways, and temsirolimus (CCI-779, Wyeth Pharmaceuticals, Madison, NJ, U.S.A.), an 
inhibitor of mTOR. The results are awaited. A different clinical trial investigated the effects of 
dual therapy with erlotinib and sorafenib in patients with progressive or recurrent 
glioblastoma. This study has been completed, and the results are pending.  

In this chapter, we emphasize the need for a continous search for new agents replenishing 
our armory for the fight against glioblastoma. Some of the novel agents presented herein 
may allow to enhance overall antitumor activity when applied together with other 
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compounds such as erlotinib. In addition, several candidate erlotinib resistance genes have 
been proposed from genetic analysis of glioblastoma cell lines (Halatsch et al., 2009) and 
further validation is under way.  
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