
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

3

A Low-Overhead Non-Block Check Pointing and
Recovery Approach for Mobile Computing

Environment

Bidyut Gupta1, Ziping Liu2 and Sindoora Koneru1
1Computer Science Department, Southern Illinois University, Carbondale,

2Computer Science Department, Southeast Missouri State University, Cape Girardeau,
USA

1. Introduction

Check pointing/rollback-recovery strategy is used for providing fault-tolerance to
distributed applications (Y.M. Wang, 1997; M. Singhal & N. G. Shivaratri, 1994; R. E. Strom
and S. Yemini 1985; R. Koo & S. Toueg, 1987; S. Venkatesan et al.,1997; G. Cao & M. Singhal,
1998; D. Manivannan & M. Singhal, 1999). A checkpoint is a snapshot of the local state of a
process, saved on local nonvolatile storage to survive process failures. A global checkpoint
of an n-process distributed system consists of n checkpoints (local) such that each of these n
checkpoints corresponds uniquely to one of the n processes. A global checkpoint M is
defined as a consistent global checkpoint if no message is sent after a checkpoint of M and
received before another checkpoint of M (Y.M. Wang, 1997). The checkpoints belonging to a
consistent global checkpoint are called globally consistent checkpoints (GCCs). The set of
such checkpoints is also known as recovery line.

There are two fundamental approaches for checkpointing and recovery. One is the
asynchronous approach and the other one is the synchronous approach (D. K. Pradhan and
N. H. Vaidya 1994; R. Baldoni et al. 1999; R. Koo & S. Toueg, 1987; S. Venkatesan et al.,1997;
G. Cao & M. Singhal, 1998; D. Manivannan & M. Singhal, 1999).

Synchronous approach assumes that a single process invokes the algorithm periodically to
take checkpoints. This process is known as the initiator process. This scheme is termed as
synchronous since the processes involved coordinate their local check pointing actions such
that the set of all recent checkpoints in the system is guaranteed to be consistent. The scheme
assumes that no site involved in the distributed computing fails during the execution of the
check pointing scheme. In its most fundamental form, it works in two phases as follows.

In the first phase the initiator process takes a tentative checkpoint and requests all other
processes to take their respective tentative checkpoints. Each process informs the initiator
process that it has taken it.

In the second phase, after receiving such information from all processes the initiator process
asks each process to convert its tentative checkpoint to a permanent one. That is, each
process saves its checkpoint in nonvolatile storage. During the execution of the scheme each

www.intechopen.com

Advances and Applications in Mobile Computing

48

process suspends its underlying computation related to an application. Thus, each process
remains blocked each time the algorithm is executed. The set of checkpoints so taken are
globally consistent checkpoints, because there is no orphan message with respect to any two
checkpoints. It may be noted that a message is an orphan with respect to the recent
checkpoints of two processes if its receiving event is recorded in the recent checkpoint of the
receiver of the message, but its sending event is not recorded in the recent checkpoint of its
sender.

This synchronous approach has the following two major drawbacks. First, The coordination

among processes while taking checkpoints is actually achieved through the exchange of

additional (control) messages, for example the requests from the initiator and the replies to

the initiator. It causes some delay (known as synchronization delay) during normal

operation. The second drawback is that processes remain blocked during check pointing. It

contributes significantly to the amount of delay during normal operation. However, the

main advantage is that the set of the checkpoints taken periodically by the different

processes always represents a consistent global checkpoint. So, after the system recovers

from a failure, each process knows where to rollback for restarting its computation again. In

fact, the restarting state will always be the most recent consistent global checkpoint.

Therefore, recovery is very simple. On the other hand, if failures rarely occur between

successive checkpoints, then the synchronous approach places unnecessary burden on the

system in the form of additional messages and delay. Hence, compared to the asynchronous

approach, taking checkpoints is more complex while recovery is much simpler. Observe that

synchronous approach is free from any domino effect (B. Randell, 1979).

In the asynchronous approach, processes take their checkpoints independently. So, taking

checkpoints is very simple as there is no coordination needed among processes while taking

checkpoints. Obviously, there is no blocking of the processes while taking checkpoints

unlike in the synchronous approach. After a failure occurs, a procedure for rollback-

recovery attempts to build a consistent global checkpoint. However, in this approach

because of the absence of any coordination among the processes there may not exist a recent

consistent global checkpoint which may cause a rollback of the computation. This is known

as domino effect (B. Randell, 1975; K. Venkatesh et al., 1987). Observe that the cause for

domino effect is the existence of orphan messages. In the worst case of the domino effect,

after the system recovers from a failure all processes may have to roll back to their

respective initial states to restart their computation again. In general, to minimize the

amount of computation undone during a rollback, all messages need to be saved (logged) at

each process.

Besides these two fundamental approaches there is another approach known as

communication induced check pointing approach (J. Tsai et al., 1998; R. Baldoni et al., 1997;

J. M. Helary et al., 2000). In this approach processes coordinate to take checkpoints via

piggybacking some control information on application messages. However this

coordination does not guarantee that a recent global checkpoint will be consistent. This

means that this approach also suffers from the domino effect. Therefore, a recovery

algorithm has to search for a consistent global checkpoint before the processes can restart

their computation after recovery from a failure. In this approach taking checkpoints is

simpler than synchronous approach while the recovery process is more complex.

www.intechopen.com

A Low-Overhead Non-Block Check
Pointing and Recovery Approach for Mobile Computing Environment

49

B. Gupta et al., 2002 have proposed a simple and fast roll-forward check pointing scheme that
can also be used in distributed mobile computing environment. The direct-dependency
concept used in the communication-induced check pointing scheme has been applied to basic
checkpoints (the ones taken asynchronously) to design a simple algorithm to find a consistent
global checkpoint. Both blocking and non-blocking schemes have been proposed. In the
blocking approach direct-dependency concept is implemented without piggybacking any
extra information with the application messages. The use of the concept of forced checkpoints
ensures a small re-execution time after recovery from a failure. The proposed approach offers
the main advantages of both the synchronous and the asynchronous approaches, i.e. simple
recovery and simple way to create checkpoints. Besides, the algorithm produces reduced
number of checkpoints. To achieve these, the algorithm uses very simple data structure per
process, that is, each process maintains only a Boolean flag and an integer variable. Since each
process independently takes its decision whether to take a forced checkpoint or not, it makes
the algorithm simple, fast, and efficient. The advantages stated above also ensure that the
algorithm can work efficiently in mobile computing environment.

There also exist some other efficient non-blocking algorithms (G. Cao & M. Singhal, 2001; E. N.
Elnozahy et al., 1992; L. M. Silva & J. G. Silva, 1992); however they require significant number

of control (system) messages to determine a consistent global checkpoint of the system. In (G.
Cao & M. Singhal, 2001), the authors have proposed an efficient non-blocking coordinated

check pointing scheme that offers minimum number of check points. They have introduced
the concept of mutable checkpoint which is neither a tentative checkpoint nor a permanent

checkpoint to design their check pointing scheme for mobile computing environment. Mutable
checkpoints can be saved either in the main memory or local disks. It has been shown that the

idea of mutable checkpoints helps in the efficient utilization of wireless bandwidth of the
mobile environment. In general, it may be stated that the ideas of non-blocking check pointing,

reduction in the number of checkpoints to be taken, and using less number of system messages
may offer significant advantage particularly in case of mobile computing, because it helps in

the efficient use of the limited resources of mobile computing environment, viz. limited
wireless bandwidth, and mobile hosts’ limited battery power and memory.

In this context, note that after recovery from a failure even if the processes restart from their
respective checkpoints belonging to a recovery line, still it not necessarily ensures correctness
of computation. To achieve it, any application message that may become a lost message
because of the failure must be identified and resent to the appropriate receiving process. The
responsibility of the receiving process is that it must execute all such lost messages following
the order of their arrival before the occurrence of the failure (D. B. Johnson & W. Zwaenepoel,
1987; M. L. Powell & D. L. Presotto, 1983; L. Alvisi & K. Marzullo, 1995).

An example of a lost message is shown in Fig. 1. In this figure, after the system recovers
from the failure f, if the two processes Pi and Pj restart from their respective checkpoints Ci
and Cj, then message m will be treated as a lost message. The reason is that process Pj does
not have a record of the receiving event of the message m whereas process Pi has the record
of sending it in its checkpoint Ci. Therefore when the processes restart, Pi will not send
message m again to Pj since it knows that it already sent it once. However this will lead to
wrong computation, because Pj aftet its roll back to its last checkpoint needs the message m
for its computation. In such a situation, for correct computation this lost message m has to
be identified and process Pi must resend it to process Pj after the system restarts.

www.intechopen.com

Advances and Applications in Mobile Computing

50

Fig. 1. Message m is a lost message

The objective of this work, is to design a check pointing and recovery scheme for distributed
computing environment which is also very suitable for distributed mobile computing
environment. It considers both determination of a recovery line and resending of all lost
messages to ensure correctness of computation. First, a fast recovery algorithm is presented
that determines a recovery line that guarantees the absence of any orphan message with
respect to the checkpoints belonging to the recovery line. Then the existing idea on sender-
based message logging approach for distributed computing (D. B. Johnson & W.
Zwaenepoel, 1987) is applied to identify and resend any lost messages. It helps a receiving
process, after it restarts, to process these messages following the order of their arrival before
the occurrence of the failure. Thus taking into account both orphan messages and lost
messages will ensure correctness of computation.

The presented check pointing algorithm is a non-blocking synchronous algorithm. It means
application processes are not suspended during check pointing. The non-blocking algorithm
does not require that all processes take their checkpoints; rather only those processes that
have sent some message(s) after their last check points will take checkpoints during check
pointing. It is shown that this algorithm outperforms the one in (G. Cao & M. Singhal, 2001)
mainly from the viewpoint of using much less number of system (control) messages. As
pointed out earlier that non-blocking check pointing along with the reduced number of
checkpoints to be taken and less number of system messages may offer significant
advantage particularly in case of mobile computing, because it helps in the efficient use of
the limited resources of mobile computing environment, viz. limited wireless bandwidth,
and mobile hosts’ limited battery power and memory.

This work is organized as follows: in Sections 2 and 3 we have stated the system model

and the necessary data structures respectively. In Section 4, using an example we have

explained the main idea about when a process needs to take a checkpoint by using some

very simple data structures. We have stated some simple observations necessary to design

the algorithm. In Section 5 we have presented the non blocking check pointing algorithm

along with its performance, and presented a scheme for handling lost messages. In Section

6 we have discussed its suitability for mobile computing systems. Section 7 draws the

conclusions.

www.intechopen.com

A Low-Overhead Non-Block Check
Pointing and Recovery Approach for Mobile Computing Environment

51

2. System model

The distributed system has the following characteristics (R. Koo & S. Toueg, 1987; S.
Venkatesan et al.,1997; P. Jalote, 1998): Processes do not share memory and communicate via
messages sent through channels Channels can lose messages. However, they are made
virtually lossless and order of the messages is preserved by some end-to-end transmission
protocol. Message sequence numbers may be used to preserve the order. When a process
fails, all other processes are notified of the failure in finite time. We also assume that no
further processor (process) failures occur during the execution of the algorithm. In fact, the
algorithm may be restarted if there are further failures. Processes are piecewise
deterministic in the sense that from the same state, if given the same inputs, a process
executes the same sequence of instructions.

3. Data structures

Let us consider a set of n processes, {P0, P1,…, Pn-1} involved in the execution of a distributed
algorithm. Each process Pi maintains a Boolean flag ci. The flag is initially set at zero. It is set
at 1 only when process Pi sends its first application message after its latest checkpoint. It is
reset to 0 again when process Pi takes a checkpoint. Flag ci is stored in local RAM of the
processor running process Pi. A message sent by Pi will be denoted as mi.

As in the classical synchronous approach (M. Singhal & N. G. Shivaratri, 1994), we assume
that an initiator process initiates the check pointing algorithm. It helps the n processes to
take their individual checkpoints synchronously, i.e. the checkpoints taken will be globally
consistent checkpoints. We further assume that any process in the system can initiate the
check pointing algorithm. This can be done in a round-robin way among the processes. To
implement it, each process Pi maintains a variable CLKi initialized at 0. It also maintains a
variable, counteri which is initially set to 0 and is incremented by 1 each time process Pi
initiates the algorithm. In addition, process Pi maintains an integer variable Ni which is
initially set at 0 and is incremented by 1 each time the algorithm is invoked. Note the
difference between the variables counteri and Ni. A control (request) message Mc is
broadcasted by a process initiating the check pointing algorithm to the other (n-1) processes
asking them to take checkpoints if necessary.

In the next section, we explain with an illustration the idea we have applied to reduce the
number of checkpoints to be created in the non blocking synchronous check pointing
scheme proposed in the work.

4. An illustration

In synchronous check pointing scheme, all involved processes take checkpoints periodically
which are mutually consistent. However, in reality, not all the processes may need to take
checkpoints to determine a set of the GCCs.

The main objective of this work is to design a simple scheme that helps the n processes to decide
easily and independently whether to take a checkpoint when the check pointing algorithm is

invoked. If a process decides that it does not need to take a checkpoint, it can resume its
computation immediately. This results in faster execution of the distributed algorithm. Below

we illustrate with an example how a process decides whether to take a checkpoint or not.

www.intechopen.com

Advances and Applications in Mobile Computing

52

Consider the following scenario of a distributed system of two processes Pi and Pj only. It is
shown in Fig. 2. Assume that their initial checkpoints are Ci0 and Cj0 respectively. According
to the synchronous approach, Pi and Pj have to take checkpoints periodically. Suppose that
the time period is T. Before time T, Pi has sent an application message m1 to Pj. Now at time
T, an initiator process sends the message Mc asking both Pi and Pj to take their checkpoints,
which must have to be consistent.

Process Pi checks its flag and finds that ci = 1. Therefore Pi decides to take its checkpoint Ci1.
Thus because of the presence of Ci1, message m1 can never be an orphan. Also, at the same
time Pj checks if its flag cj = 1. Since it is not, therefore process Pj decides that it does not
need to take any checkpoint. The reason is obvious. This illustrates the basic idea about how
to reduce the number of checkpoints to be taken. Now we observe that checkpoints Cj0 and
Ci1 are mutually consistent.

Fig. 2. Ci1 and Cj0 are mutually consistent

The above discussion shows the simplicity involved in taking a decision about whether to
take a checkpoint or not. Note that the decision taken by a process Pj whether it needs to
take a checkpoint is independent of the similar decision taken by the other process. It may
be noted that keeping a copy of each of the flags ci and cj in the respective local RAMs of the
processors running Pi and Pj can save some time as it is more time consuming to fetch them
if they are stored in stable storage than to fetch them from the respective local RAMs.

Below we state some simple but important observations used in the proposed algorithm.

Theorem1: Consider a system of n processes. If cj = 1 , where Cjk is the latest checkpoint of
process Pj , then some message(s) sent by Pj to other processes may become orphan.

Proof: The flag cj is reset to 0 at every checkpoint. It can have the value 1 only between two
successive checkpoints of any process Pj if and only if process Pj sends at least one message
m between the checkpoints. Therefore, cj = 1 means that Pj is yet to take its next checkpoint
following Cjk. Therefore, the message (s) sent by Pj after its latest checkpoint Cjk are not yet
recorded. Now if some process Pm receives one or more of these messages sent by Pj and
then takes its latest checkpoint before process Pj takes its next checkpoint Cjk+1, then these
received messages will become orphan. Hence the proof follows.

www.intechopen.com

A Low-Overhead Non-Block Check
Pointing and Recovery Approach for Mobile Computing Environment

53

Theorem 2: If at any given time t, cj = 0 for process Pj with Cjk+1 being its latest checkpoint,
then none of the messages sent by Pj remains an orphan at time t.

Proof: Flag cj can have the value 1 between two successive checkpoints, say Cjk and Cjk+1, of a
process Pj if and only if process Pj has sent at least one message m between these two
checkpoints. It can also be 1 if Pj has sent at least a message after taking its latest checkpoint.
It is reset to 0 at each checkpoint. On the other hand, it will have the value 0 either between
two successive checkpoints, say Cjk and Cjk+1, if process Pj has not sent any message between
these checkpoints, or Pj has not sent any message after its latest checkpoint. Therefore, cj = 0
at time t means either of the following two: (i) cj = 0 at Cjk+1 and this checkpoint has been
taken at time t. It means that any message m sent by Pj (if any) to any other process Pm
between Cjk and Cjk+1 must have been recorded by the sending process Pj at the checkpoint
Cjk+1. So the message m can not be an orphan. (ii) cj = 0 at time t and Pj has taken its latest
checkpoint Cjk+1 before time t. It means that process Pj has not sent any message after its
latest checkpoint Cjk+1 till time t. Hence at time t there does not exist any orphan message
sent by Pj after its latest checkpoint.

5. Problems associated with non-blocking approach

We explain first the problems associated with non-blocking approach. After that we will

state a solution. The following discussion although considers only two processes, still the

arguments given are valid for any number of processes. Consider a system of two processes

Pi and Pj as shown in Fig. 3. Assume that the check pointing algorithm has been initiated by

process Pi and it has sent the request message Mc to Pj asking it to take a checkpoint if

necessary. As pointed earlier that both processes will act independently, therefore Pi takes

its checkpoint Ci1 because its flag ci = 1. Let us assume that Pi now immediately sends an

application message mi to Pj. Suppose at time (T + €), where € is very small with respect to T,

Pj receives mi. Still Pj has not received Mc from the initiator process. So, Pj processes the

message. Now the request message Mc from Pi arrives at Pj. Process Pj finds that its cj = 1. So

it decides to take a checkpoint Cj1. We find that message mi has become an orphan due to

the checkpoint Cj1. Hence, Ci1and Cj1 cannot be consistent.

5.1 Solution

To solve this problem, we propose that a process be allowed to send both piggybacked and

non –piggybacked application messages. We explain the idea below.

Each process Pi maintains an integer variable Ni, initially set at 0 and is incremented by 1 each

time process Pi receives the request message Mc from the initiator process. In the event that

process Pi itself is the initiator, then also it increments Ni by 1 immediately after the initiation

of the algorithm. That is, the variable Ni represents how many times the check pointing

algorithm has been executed including the current one (according to the knowledge of the

process Pi). Note that at any given time t, for any two processes Pi and Pj, their corresponding

variables Ni and Nj may not have the same values. It depends on which process has received

the request message Mc first. However it is obvious that | Ni - Nj | is either 0 or 1.

Below we state the solution for a two process system. The idea used in this solution is

similarly applicable for an n process system as well.

www.intechopen.com

Advances and Applications in Mobile Computing

54

Consider a distributed system of two processes Pi and Pj only. Without any loss of generality
assume that Pi initiates the algorithm by sending the message Mc to process Pj and it is the
the kth execution of the algorithm, that is, Ni = k. We also assume that process Pi now has
taken its decision whether to take a checkpoint or not, and then has taken appropriate action
to implement its decision. Suppose Pi now wants to send an application message mi for the
first time to Pj after it has finished participating in the kth execution of the check pointing
algorithm. Observe that Pi has no idea whether Pj has received the message Mc
corresponding to this kth execution of the algorithm and has already implemented its check
pointing decision or not. To make sure that the message mi can never be an orphan, Pi
piggybacks mi with the variable Ni. Process Pj receives the piggybacked message <mi , Ni >
from Pi. We now explain below why the message mi can never been an orphan. Note that Ni
= k ; i.e. it is the kth execution of the algorithm that process Pi has last been involved with. It
means the following to the receiver Pj of this message:

Fig. 3. Ci1 and Cj1 are not mutually consistent

1. process Pi has already received Mc from the initiator process for the kth execution of the

algorithm,

2. Pi has taken a decision whether to take a checkpoint or not and has taken appropriate

action to implement its decision,

3. Pi has resumed its normal operation and then has sent this piggybacked application

message mi.

4. the sending event of message mi has not yet been recorded by Pi.

Since the message contains the variable Ni, process Pj compares Ni and Nj to determine if

it has to wait to receive the request message Mc. Based on the results of the comparison

process Pj takes one of the following three actions (so that no message received by it is an

orphan), as stated below in the form of the following three observations:

Observation 1: If Ni (= k) > Nj (= k-1), process Pj now knows that the kth execution of the

check pointing algorithm has already begun and so very soon it will also receive the

message Mc from the initiator process associated with this execution. So instead of waiting

for Mc to arrive, it decides if it needs to take a checkpoint and implements its decision,

and then processes the message mi. After a little while when it receives the message Mc it

just ignores it. Therefore, message mi can never be an orphan.

www.intechopen.com

A Low-Overhead Non-Block Check
Pointing and Recovery Approach for Mobile Computing Environment

55

Observation 2: If Ni = Nj = k, like process Pi, process Pj also has received already the message

Mc associated with the latest execution (kth) of the check pointing algorithm and has taken

its check pointing decision and has already implemented that decision. Therefore, process Pj

now processes the message mi. It ensures that message mi can never be an orphan, because

both the sending and the receiving events of message mi have not been recorded by the

sender Pi and the receiver Pj respectively.

Observation 3: Process Pi does no more need to piggyback any application message to Pj till

the (k+1)th invocation (next) of the algorithm. The reason is that after receiving the

piggybacked message <mi, Ni>, Pj has already implemented its decision whether to take a

checkpoint or not before processing the message mi. If it has taken a checkpoint, then all

messages it receives from Pi starting with the message mi can not be orphan. So it

processes the received messages. Also if Pj did not need to take a checkpoint during the

kth execution of the algorithm, then obviously the messages sent by Pi to Pj staring with

the message mi till the next invocation of the algorithm can not be orphan. So it processes

the messages.

Therefore, for an n process distributed system, a process Pi piggybacks only its first application

message sent (after it has implemented its check pointing decision for the current execution of the

algorithm and before its next participation in the algorithm) to a process Pj, where j ≠ i, and 0 ≤ j ≤

n-1.

5.2 Algorithm non-blocking

Below we describe the algorithm. It is a single phase algorithm since an initiator process

interacts with the other processes only once via the control message Mc.

 i

i i

i i

i i

c

i

At each process P 1 i n

if CLK = i+ counter * n * T //when its turn to initiate the checkpointing procedure

counter =counter + 1;

N = N + 1;

broadcasts M to n-1 other processes;

if c = 1 //at least one

i

i

i c

 message it has sent after its last checkpoint

takes checkpointC ;

c = 0;

continues its normal operation;

else //if it decides not to take a checkpoint

continues its normal operation;

else if P receives M

Ni i

i

i

i

= N + 1;

if c = 1 //at least one message it has sent after its last checkpoint

takes checkpointC ;

c = 0;

continues its normal operation;

else

continues its normal operation;

www.intechopen.com

Advances and Applications in Mobile Computing

56

i j j i c

i i

i

else if P receives a piggybackedmessage < m , N > && P has not yet received M for the

current execution of the check pointing procedure

N = N + 1;

if c = 1 //at least one message it has sent after its la

i

i c

j

c

st checkpoint

c = 0;

takes checkpointC without waiting for M ;

processes the received message m ;

continues its normal operation and ignores M , when received for the

current execution of the checkpointing

j

c

 procedure;

else

processes any received message m ;

continues its normal operation and ignores M , when received for the

current execution of the check pointing procedure;

else

continues its normal operation;

Proof of Correctness : In the first ‘if else’ and ‘else if’ blocks of the pseudo code, each process Pi

decides based on the value of its flag ci whether it needs to take a checkpoint. If it has to take

a checkpoint, it resets ci to 0. Therefore, in other words, each process Pi makes sure using the

logic of Theorem 2 that none of the messages, if any, it has sent since its last checkpoint can

be an orphan. On the other hand, if Pi does not take a checkpoint, it means that it has not

sent any message since its previous checkpoint.

In the second ‘else if’ block each process Pi follows the logic of Observations 1, 2, and 3,

which ever is appropriate for a particular situation so that any application message

(piggybacked or not) received by Pi before it receives the request message Mc can not be an

orphan. Besides none of its sent messages, if any, since its last checkpoint can be an orphan

as well (following the logic of Theorems 1 and 2).

Since Theorem 2, and Observations 1, 2, and 3 guarantee that no sent or received message by

any process Pi since its previous checkpoint can be an orphan and since it is true for all

participating processes, therefore, the algorithm guarantees that the latest checkpoints taken

during the current execution of the algorithm and the previous checkpoints (if any) of those

processes that did not need to take checkpoints during the current execution of the

algorithm are globally consistent checkpoints.

5.3 Performance

We use the following notations (and some of the analysis from (G. Cao & M. Singhal, 2001)

to compare our algorithm with some of the most notable algorithms in this area of research,

namely (R. Koo & S. Toueg, 1987; G. Cao & M. Singhal, 2001; E. N. Elnozahy et al., 1992).

The analytical comparison is given in Table 1.

In this Table:

www.intechopen.com

A Low-Overhead Non-Block Check
Pointing and Recovery Approach for Mobile Computing Environment

57

Cair is cost of sending a message from one process to another process;
Cbroad is cost of broadcasting a message to all processes;
nmin is the number of processes that need to take checkpoints.
n is the total number of processes in the system;
ndep is the average number of processes on which a process depends;
Tch is the check pointing time;

Algorithm Blocking time Messages Distributed

Koo-Toueg [3] nmin * Tch 3 * nmin * ndep * Cair Yes

Elnozahy [8] 0 2 * Cbroad + n * Cair No

Cao-Singhal [7] 0
 2 * nmin * Cair + min(nmin

* Cair, Cbroad)
Yes

Our Algorithm 0 Cbroad Yes

Table 1. System Performance

Figs. 4 and 5 illustrate how the number of control messages (system messages) sent and
received by processes is affected by the increase in the number of the processes in the system.

In Fig. 4, ndep factor is considered being 5% of the total number of processes in the system and
Cbroad is equal to Cair (assuming that special hardware is used to facilitate broadcasting – which
is not the case most of the times). As Fig. 4 shows, the number of messages does not increase
with the increase of the number of the processes in our approach unlike other approaches.

In Fig. 5 we have considered absence of any special hardware for broadcasting and therefore
assumed Cbroad to be equal to n * Cair. In this case, although the number of messages does
increase in our approach, but it stays smaller compared to other approaches when the
number of the processes is higher than 7 (which is the case most of the time).

5.4 Handling of lost messages

The sender-based message logging scheme proposed for distributed computing (D. B.

Johnson & W. Zwaenepoel, 1987) to identify and resend lost messages is used in this work.

This scheme has been the choice since it does not require message ordering, and message

logging is done asynchronously. We apply it in the following way.

When a sending process, say Pi sends a message m to a process Pk, the message m is

piggybacked with a send sequence number (SSN) which represents the number of messages

sent by this process. The sender also logs the message m and its SSN in its local log. The

receiving process Pk will assign a receive sequence number (RSN) to the message m, which

represents the number of messages received by Pk. The RSN is incremented each time Pk

receives a message. It then sends the RSN back to the sender Pi. After receiving the RSN

corresponding to m, the sender records the RSN with the log of the message m. Thus

message m is called a fully logged message. This local log is saved in stable storage when Pi

takes its next checkpoint. Process Pi then sends an acknowledgement, ack to the receiver. In

the meantime after sending the RSN to Pi, process Pk continues its execution, but cannot

send any message until it has received the ack. Note that if the receiver fails before sending

the RSN of the message m, the log of m does not have the RSN. In such a situation message

m is called partially logged.

www.intechopen.com

Advances and Applications in Mobile Computing

58

0

20

40

60

80

100

120

140

160

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

Number of Processes

N
u

m
b

e
r

o
f

M
e
s
s
a
g

e
s Number of Messages

(Koo-Toueg)

Number of Messages

(Elnozahy)

Number of Messages

(Singhal)

Number of Messages

(ours)

Fig. 4. Number of messages vs. number of processes for four different approaches when
Cbroad = Cair

www.intechopen.com

A Low-Overhead Non-Block Check
Pointing and Recovery Approach for Mobile Computing Environment

59

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28

Number of Processes

N
u

m
b

e
r

o
f

M
e

s
s

a
g

e
s Number of Messages

(Koo-Toueg)

Number of Messages

(Elnozahy)

Number of Messages

(Singhal)

Number of Messages

(ours)

Fig. 5. Number of messages vs. number of processes for four different approaches when
Cbroad = n * Cair

Recovery is performed when Pk fails. It restarts from its checkpoint that belongs to the
recovery line as determined by the check pointing algorithm. Now Pk looks for those (if any)
messages such that their sending events have already been recorded in the respective
senders’ checkpoints and the receiving events have not been recorded in Pk’s checkpoint
belonging to the recovery line. These are the lost messages. To get back these messages, the
receiver broadcasts a request to all processes for resending the lost messages. At this time
the receiver also sends the value of the SSNs for different sender processes. Every sender
then resends only those messages with a higher SSN that were sent to Pk before the failure.

The messages received by Pk from the senders are consumed by Pk in the order of their
RSNs. Since the messages that were assigned an RSN by the receiver form a total order,
therefore process Pk gets the same sequence of messages as it did before the failure and
therefore executes the same sequence of instructions as it did before the failure.

Next, Pk receives the partially logged messages following the fully logged ones. These
partially logged messages do not have any RSN values attached to them. So there is no total
ordering imposed on them by Pk. However, according to the work in (D. B. Johnson & W.
Zwaenepoel, 1987) the receiver was constrained from communicating with any process if
the ack for any message it received is pending. Therefore any order in which these partially
logged messages are resent to Pk is acceptable (D. B. Johnson & W. Zwaenepoel, 1987).

www.intechopen.com

Advances and Applications in Mobile Computing

60

Observe that in our approach there does not exist any orphan message between any two
checkpoints belonging to the recovery line. Hence the mechanism to handle orphan

messages in (D. B. Johnson & W. Zwaenepoel, 1987) is not needed in our approach. Thus
absence of any orphan and lost messages ensures correctness of computation.

6. Suitability for mobile computing environment

Consider a distributed mobile computing environment. In such an environment, only

limited wireless bandwidth is available for communication among the computing processes.

Besides, the mobile hosts (MH) have limited battery power and limited memory. Therefore,

it is required that, any distributed application P running in such an environment must make

efficient use of the limited wireless bandwidth, and mobile hosts’ limited battery power and

memory. Below we show that the proposed algorithm satisfies all the above three

requirements.

1. The first requirement about the efficient use of the bandwidth is satisfied by our check
pointing algorithm, because the presented algorithm is a single phase algorithm unlike
any other existing algorithms (R. Koo & S. Toueg, 1987; D. Manivannan & M. Singhal,
1999; L. M. Silva & J. G. Silva, 1992). That is, the initiator process requests any other
process to take a checkpoint by broadcasting only the control message (Mc) during any
invocation of the algorithm. There is no other control message used. So our algorithm
ensures effective utilization of the limited wireless bandwidth. In this context, it may be
noted that our algorithm needs much less number of the system messages than in (R.
Koo & S. Toueg, 1987; G. Cao & M. Singhal, 2001; E. N. Elnozahy et al., 1992; R. Ahmed
& A. Khaliq, 2003).

2. The second requirement about the efficient use of the mobile host’s battery power is
satisfied, because (1) each MH is interrupted only once by the control message Mc, as
our algorithm is a single phase one. It saves time since interrupt handling time cannot
be ignored. Note that in other approaches (G. Cao & M. Singhal, 2001; R. Ahmed & A.
Khaliq, 2003) it is more than one; and (2) each process Pi only checks if its ci = 1 in order
to decide if it needs to take a checkpoint. This is the only computation that an MH is
involved with while participating in the algorithm.

3. The third requirement about the efficient use of the mobile host’s memory is satisfied,
because the data structure used in our algorithm is very simple. Only four variables are
needed by each process Pi. These are: three integer variables, viz. Ni, counteri, CLKi, and
one Boolean variable ci. The amount of data structures stated above is much less than
the same in the related works (G. Cao & M. Singhal, 2001; R. Ahmed & A. Khaliq, 2003).

7. Conclusions

In this work, we have presented a non-blocking synchronous check pointing approach to

determine globally consistent checkpoints. In the present work only those processes that

have sent some message(s) after their last checkpoints, take checkpoints during check

pointing; thereby reducing the number of checkpoints to be taken. This approach offers

advantage particularly in case of mobile computing systems where both non-block check

pointing and reduction in the number of checkpoints help in the efficient use of the limited

resources of mobile computing environment.

www.intechopen.com

A Low-Overhead Non-Block Check
Pointing and Recovery Approach for Mobile Computing Environment

61

Also, the presented non-blocking approach uses minimum interaction (only once) between
the initiator process and the system of n processes and there is no synchronization delay.
This is particularly useful for mobile computing environment because of less number of
interrupts caused by the initiator process to mobile processes, which results in better
utilization of the limited resources (limited battery power of mobile machines and wireless
bandwidth) of mobile environment. To achieve this we have used very simple data
structures, viz., three integer variables and one Boolean variable per process. Another
advantage of the proposed algorithm is that each process takes its check pointing decision
independently which may become helpful for mobile computing. The advantages
mentioned above make the proposed algorithms simple, efficient, and suitable for mobile
computing environment.

The check pointing algorithm ensures that there is no orphan message between ant two
checkpoints belonging to the recovery line. However, absence of orphan messages alone
cannot guarantee correctness of the underlying distributed application. To ensure correct
computation all lost messages at the time of failure have to be identified and resent to the
appropriate receiving processes when the system restarts. The presented recovery approach
handles the lost messages using the idea of sender-based message logging to ensure
correctness of computation.

8. References

Y.M. Wang, (1997). Consistent Global Checkpoints that Contain a Given Set of Local
Checkpoints, IEEE Transactions on Computers, vol. 46, No.4, pp. (456-468).

M. Singhal and N. G. Shivaratri. (1994). In: Advanced Concepts in Operating Systems, McGraw-
Hill.

R. Koo and S. Toueg, (1987). Checkpointing and Rollback-Recovery for Distributed Systems,
IEEE Transactions on Software Engineering, vol.13, No.1, pp. (23-31).

S. Venkatesan, T. T-Y. Juang, and S. Alagar, (1997). Optimistic Crash Recovery without
Changing Application Messages, IEEE Transactions on Parallel and Distributed
Systems, vol. 8, No. 3, pp. (263-271).

G. Cao and M. Singhal, (1998). Coordinated Checkpointing in Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems, vol. 9, No.12, pp. (1213-1225).

D. Manivannan and M. Singhal, (1999). Quasi-Synchronous Checkpointing: Models,
Characterization, and Classification, IEEE Transactions on Parallel and Distributed
Systems, vol.10, No.7, pp. (703-713).

G. Cao and M. Singhal, (2001). Mutable Checkpoints: A New Checkpointing Approach for
Mobile Computing Systems, IEEE Transactions on Parallel and Distributed Systems,
vol.12, No. 2, pp. (157 – 172).

E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, (1992). The Performance of Consistent
Checkpointing, Proceedings. 11th Symp. of Reliable Distributed Systems. October, 1992.

L. M. Silva and J. G. Silva, (1992). Global Checkpointing for Distributed Programs,
Proceedings, 11th Symp. of Reliable Distributed Systems, October, 1992.

P. Jalote, (1998). Fault Tolerance in Distributed Systems. PTR Prentice Hall, (1994), Addison-
Wesley, (1998).

R. Ahmed and A. Khaliq, (2003). A Low-Overhead Checkpointing Protocol for Mobile
Networks, IEEE CCECE 2003, vol. 3, pg. (4 – 7), May 2003.

www.intechopen.com

Advances and Applications in Mobile Computing

62

D. B. Johnson and W. Zwaenepoel, (1987). Sender-Based Message Logging, Proceedings of
17th Intl. Symposium on Fault Tolerant Computing Systems, Pittsburgh, 1987.

M. L. Powell and D. L. Presotto, (1983). Publishing: A Reliable Broadcast Communication
Mechanism, Proceedings of 9th ACM Symposium on Operating Systems.

L. Alvisi and K. Marzullo, (1995). Message Logging: Pessimistic, Optimistic, and Causal,
Proceedings of 15th IEEE Intl. Conference on Distributed Computing Systems.

B. Randell, (1975). System Structure for Software Fault Tolerance, IEEE Transactions on
Software Engineering, vol. 1, pp. (226 - 232).

R. E. Strom, S. Yemini (1985). Optimistic Recovery in Distributed Systems, IEEE Transactions
on Software Engineering, vol. 3, No. 3. pp. (204 – 226).

K. Venkatesh, T. Radhakrishnan, and H. F. Li, ((1987). Optimal Check Pointing and Local
Recording for Domino-Free Rollback Recovery, Information Processing Letters, vol.
25, No. 5, pp. (295 – 304).

B. Gupta, S. K. Banerjee, and B. Liu, (2002). Design of New Roll-Forward Recovery
Approach for Distributed Systems, IEE Proceedings – Comput. Digit. Tech., vol. 149,
No. 3, pp. (105 -112).

 J. Tsai, S-Y Kuo., and Y-M Wang, (1998). Theoretical Analysis for Communication-Induced
Checkpointing Protocols with Rollback-Dependency Trackability, IEEE Transactions
on Parallel and Distributed Systems, vol. 9, No.10, pp. (963 – 971).

 R. Baldoni, J. M. Helway, A. Mosterfaoui, and M. Raynal, (1997). A Communication-
Induced Checkpointing Protocol That Ensures Rollback Dependency Trackability,
Proc. IEEE Int’l Symp. Fault-Tolerant Computing, pp. (68-77), 1997.

 J. M. Helary, A. Mosterfaoui, R. H. B. Netzer, and M. Raynal, (2000). Communication-Based
Prevention of Useless Checkpoints in Distributed Computations’, Distributed
Computing, vol. 13, No.1, pp. (29 – 43).

D. K. Pradhan and N. H. Vaidya, (1994). Roll-forward Check Pointing Scheme: A Novel
Fault-Tolerant Architecture, IEEE Transactions on Computers, vol. 43, No. 10, pp.
(1163 – 1174).

R. Baldoni, F. Quaglia, and P. Fornara, (1999). An Index-based Check Pointing Algorithm for
Autonomous Distributed Systems, IEEE Transactions on Parallel and Distributed
Systems, vol. 10, No. 2, pp. (181 – 192).

www.intechopen.com

Advances and Applications in Mobile Computing

Edited by Associate Prof. Adem Karahoca

ISBN 978-953-51-0432-2

Hard cover, 224 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Advances and Applications in Mobile Computing offers guidelines on how mobile software services can be

used in order to simplify the mobile users' life. The main contribution of this book is enhancing mobile software

application development stages as analysis, design, development and test. Also, recent mobile network

technologies such as algorithms, decreasing energy consumption in mobile network, and fault tolerance in

distributed mobile computing are the main concern of the first section. In the mobile software life cycle section,

the chapter on human computer interaction discusses mobile device handset design strategies, following the

chapters on mobile application testing strategies. The last section, mobile applications as service, covers

different mobile solutions and different application sectors.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Bidyut Gupta, Ziping Liu and Sindoora Koneru (2012). A Low-Overhead Non-Block Check Pointing and

Recovery Approach for Mobile Computing Environment, Advances and Applications in Mobile Computing,

Associate Prof. Adem Karahoca (Ed.), ISBN: 978-953-51-0432-2, InTech, Available from:

http://www.intechopen.com/books/advances-and-applications-in-mobile-computing/fault-tolerance-in-

distributed-mobile-computing-environment

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

