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1. Introduction

One of the aims of nuclear physics studies is to establish a complete theoretical description
of the structure of nuclear systems. The correct theoretical description of nuclear structure is
expected to help explain and accurately predict different properties of and process in nuclei
(Donnelly & Raskin, 1986). Fundamental to a complete description of nuclear structure are
the wave function describing nuclear systems, the Hamiltonian describing interactions in
the nucleus and electromagnetic form factors describing charge and currents distributions
in the nucleus. None of these components is completely understood and, therefore, none can
be completely determined for a given nuclear system, yet. As a result, theoretical models
of these components, based on different approximations that are guided by experimental
observations, are usually employed in the description of nuclear systems. The quality of such
models is often judged by their ability to explain existing experimental observations. Parallel
to the theoretical developments, the developments in experimental technologies has led not
only to the availability of more precise experimental data, but also to data in kinematical
regions previously not accessible. The availability of precise experimental data in a wide
kinematical region allow for more accurate quantitative testing and, therefore, development
of realistic theoretical models that, in turn, generate more accurate predictions of experimental
outcomes (Golak et al., 2005).

Besides the understanding of static and dynamical properties of nuclear matter, studies
in nuclear physics are aimed at constructing a comprehensive description of properties of
nucleon-nucleon interactions. Few-nucleon systems provide unique favourable environment
for such investigations (Rampho, 2010). In theoretical investigations, the interaction
models in few-nucleon systems can be treated realistically and the resulting dynamical
equations can be solved directly. The formulation and solution of dynamical equations for
many-body systems is, on the other hand, quite challenging. Progress towards a better
understanding of the nuclear force has been made over the years. Based on the accumulated
experimental nucleon-nucleon scattering data different phenomenological nucleon-nucleon
interaction models have been suggested. The models are constructed by fitting the models
to existing nucleon-nucleon scattering data as well as some properties of the 2H nucleus
(Cottingham et al., 1973; Lagaris & Pandharipande, 1981; Machleidt et al., 1987; Nagels et al.,
1978; Wiringa et al., 1984). These interaction models are known as modern or realistic
nucleon-nucleon potentials and are able to explain most of the static properties of light
nuclei. Since the exact form of the short-range behavior of the nucleon-nucleon interaction
is not completely determined, yet, the short-range part of many of these potential models is
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often musked by introducing short-distance cut-off factors. Knowledge of the short-range
behavior of the nucleon-nucleon force may reveal some information about the limits and
boundaries between hadronic degrees of freedom and quark degrees of freedom. The
suggestion that the short-range behavior of the strong nuclear interaction could manifest
itself through short-range nucleon-nucleon correlations and momentum distributions in a
nucleus (Schroeder et al., 1979) refocused the need for a better understanding of, and therefore
more intensive investigations into, these concepts. Hence, there are continued experimental
(Egiyan et al., 2007; 2006; Jones et al., 2000; Ulmer et al., 2002) and theoretical (Alvioli et al.,
2008; Frankfurt et al., 1993; Piasetzky et al., 2006) investigations of these concepts.

Over the years a variety of methods have been developed and refined in the study of
properties of nuclei. Very accurate wave functions for bound and scattering states in
few-nucleon systems can now be constructed using realistic Hamiltonian for the systems. A
demonstration of the level of accuracy that can now be achieved in describing ground state
properties of the four-nucleon system using seven different state-of-the-art methods is given
in reference (Kamada et al., 2001). The use of some of these methods in the study of properties
of few-nucleon systems is shown in references (Carlson & Schiavilla, 1998; Golak et al., 2005).
The application of these methods to systems consisting of more than four particles is still
a challenge. For investigations of light to medium nuclei microscopic models have been
employed in the study of static and dynamical properties of nuclei (Aichelin, 1991; Boffi et al.,
1968; Kanada-En’yo et al., 2003; Neff et al., 2005; Ono & Horiuchi, 2004). These methods are
continuously developing. Following the Time-Dependent Cluster Model (Caurier et al., 1982),
microscopic simulation models were developed (Feldmeier, 1990; Horiuchi, 1991) for the
study of fermionic systems. These models combine Fermi-Dirac statistics with elementary
quantum mechanics to treat the motion of particles in a system (Feldmeier, 1990). However,
the models are not fully quantum mechanical and do not assume a shell structure for the
system. In this work the antisymmetrized molecular dynamics (AMD) approach is employed.
The AMD total wave function is constructed as Slater determinant of single particle shifted
Gaussian wave functions. The shift parameters of the Gaussian functions are complex
variational parameters which are treated as generalised coordinates of the system. The
width parameters are taken as free real parameters and are chosen to be the same for all the
Gaussian. The equations of motion for the variational parameters are determined from the
time-dependent variational principle. The equations are then solved by using the frictional
cooling technique (Ono et al., 1992) to determine the variational parameters.

In the past, the AMD approach was employed in the study of dynamics of heavy-ion collisions
(Ono et al., 1992) and elastic proton-nucleus scattering (Engel et al., 1995; Tanaka et al., 1995).
Clustering in nuclei as well as angular distributions of scattered protons in proton-nucleus
scattering can be well explained with the AMD model (Tanaka et al., 1995). Some properties
and/or processes in physical systems are governed by conservation laws related to parity
and total angular momentum of the system. Such systems are best described in terms of
wave functions that have definite parity and angular momentum. The AMD wave function
does not have definite parity nor does it possess definite total angular momentum. As
a result, for applications in realistic investigations of properties of physical systems the
AMD wave function requires some improvement. A number of modifications have since
been introduced in the AMD formalism. In reference (Kanada-En’yo et al., 1995) numerical
technique are used to project the AMD wave function onto the eigenstates of parity and
total angular momentum. The resulting wave functions have definite parity and total
angular momentum. In addition, a number of different techniques were considered for
constructing a more flexible total wave function. One way was to use linear combinations
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Antisymmetrized Molecular Dynamics and Nuclear Structure 3

of variational spatial, spin and isospin functions to represent single-particle wave functions
(Doté & Horiuchi, 2000; Doté et al., 2006). The resulting wave functions are suitable for
investigating systems with tensor forces. The other approach is to use a linear combination
of several Slater determinants (Kanada-En’yo et al., 1995; 2003; Kimura, 2004) to represent the
total wave function of the system. In the approach of reference (Doté et al., 1997) orthogonal
single-particle wave functions characteristic of the Hartree-Fock orbitals are constructed from
the AMD wave function. The AMD+Hartree-Fock wave function is also more flexible than
the original AMD wave function. These modifications to the AMD wave function introduced
significant improvements in the description of ground-state properties, mean-field and cluster
structure of nuclear systems. It should be noted that most of the studies indicated employed
phenomenological nucleon-nucleon potentials of Gaussian radial form. The main reason for
this is that the expectation values of this type of potentials can be evaluated analytically.

To extend the application of the AMD approach to realistic potentials further proposals were
made. In Refs. (Togashi & Kato, 2007; Togashi et al., 2009) the G-matrix approach was used to
incorporate two-body correlations in the wave function. The resulting Bruckner-AMD wave
function can be constructed with realistic nuclear potentials. In Ref. (Watanabe et al., 2009;
Watanabe & Oryu, 2006) Jacobi coordinates are employed to construct the wave function.
Many-body correlations are included, more variational parameters are considered and the
effects of the center-of-mass are completely and explicitly removed. Most realistic potentials
are of non-Gaussian form and are, in many cases, expanded as the sum-of-Gaussian for
application in the AMD approach. In Ref. (Rampho, 2011) a numerical technique of evaluating
expectation values of non-Gaussian potentials is introduced. The technique approximates the
expectation value of the potential operator with a rapidly converging series of Talmi integrals.
This technique is further elaborated on in this work. Ground-state properties of selected
few-nucleon systems are determined using the Argonne V4’ nucleon-nucleon potential.

In section 2 the construction of the AMD wave function is outlined while the variational
technique used to determine the variational parameters is briefly discussed in section 3.
Application of AMD to selected light nuclei is presented in section 4 while section 5 is devoted
to the charge form factors of ground state in three- and four-nucleon systems. Conclusions are
given in section 6.

2. The AMD wave function

Consider a nuclear system consisting of A nucleons. The wave function Ψ describing the
system depends on the position�ri, spin �σi and isospin �τi (i = 1, 2, 3, . . . , A), vectors of the
nucleons. In what follows the collective vector, �υi, is used to represent the set {�si�ri�σi�τi }
where�si is a complex variational parameter. For a systems of fermions, like nuclei, the total
wave function is required to be antisymmetric with respect to the interchange of any two
particles in the system. One way of constructing such a wave function is by the use of Slater
determinants of single-particle wave functions ψi(�υj) as

Ψt(�υ1,�υ2,�υ3, . . . ,�υA) =
1√
A!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(�υ1) ψ2(�υ1) ψ3(�υ1) · · · ψA(�υ1)

ψ1(�υ2) ψ2(�υ2) ψ3(�υ2) · · · ψA(�υ2)

ψ1(�υ3) ψ2(�υ3) ψ3(�υ3) · · · ψA(�υ3)

...
...

...
. . .

...

ψ1(�υA) ψ2(�υA) ψ3(�υA) · · · ψA(�υA)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1)
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The functions ψi(�υj) do not form an orthogonal basis. However, an orthonormal basis can
be constructed from these functions (Doté et al., 1997; Togashi & Kato, 2007; Togashi et al.,

2009). The ground state wave function of the system is represented by Ψt(�S) where �S ≡
{�s1,�s2,�s3, . . . ,�sA}.

The single-particle wave function ψ(�υ) is assumed to be separable in the form

ψ(�υ) = φ(�s,�r) χ(�σ) ξ(�τ) (2)

where φ(�s,�r), χ(�σ), and ξ(�τ) are the spatial, spin and isospin wave functions, respectively.
The intrinsic spin state χ(�σ) of a fermion, with spin s and third component of the spin ms, is
denoted by

χ(�σ) = | s , ms 〉 =

⎧

⎨

⎩

∣

∣

∣

1
2 , + 1

2

〉

= | ↑ 〉
∣

∣

∣

1
2 , − 1

2

〉

= | ↓ 〉
(3)

where | ↑ 〉 represents the spin-up and | ↓ 〉 the spin-down state. These two spin states are
orthogonal to each other. To improve the quality of the wave function the spins of the fermions
may be allowed to vary. This is done by representing the fermion spin as a general spinor.
Such a spinor is expressed as a linear combination of the spin-up and spin-down states using
complex variational parameters (Kanada-En’yo et al., 2003). The isospin state, ξ(�τ), in the
case of a nucleon, with isospin t and third component of the isospin mt, is given by

ξ(�τ) = | t , mt 〉 =

⎧

⎨

⎩

∣

∣

∣

1
2 , + 1

2

〉

= | p 〉
∣

∣

∣

1
2 , − 1

2

〉

= | n 〉
(4)

where | p 〉 refers to a proton while | n 〉 refers to a neutron state. These states are
time-independent also.

All the constituent particles are described by the same form of the spatial wave function. The
spatial component, φ(�s,�r), is parametrized as a normalized Gaussian wave packet (Ono et al.,
1992)

φ(�s,�r) =

(

2α

π

)3/4

exp

[

− α

(

�r − �s√
α

)2

+
�s2

2

]

. (5)

The phase �s2/2 is included mainly to simplify the structure of the elements of the resulting
overlap matrix, 〈 φi | φj 〉. The width parameter α is treated as a real constant and assumed to
be the same for both protons and neutrons in the nucleus. It can be argued that the assumption
is still valid if the masses of the constituents are not significantly different, like in nuclear
systems. When the momentum operator of a fermion is denoted by�p, then the real component
Re[�s] and the imaginary component Im[�s] of the parameter�s are given by

Re[�s] =
√

α
〈 φ(�r) |�r | φ(�r) 〉
〈 φ(�r) | φ(�r) 〉 and Im[�s] =

1

2 h̄
√

α

〈 φ(�r) |�p | φ(�r) 〉
〈 φ(�r) | φ(�r) 〉 . (6)

The single-particle wave function in Eq. (5) satisfies the minimum uncertainty ∆�r ∆�p = h̄/2
(Ono & Horiuchi, 2004) which helps in the choice of the value for the width parameter
α. Following Ref. (Ono et al., 1992), the value of α is chosen so as to generate reasonable
description of the ground state properties of light nuclei. The expectation values of relevant
operators calculated with this form of the wave function can be determined in analytical form.
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A more realistic wave function is constructed from the AMD wave function (1) by projecting
on to states with definite parity π and total angular momentum J. The parity projected wave
function has the form

Ψπ =
1

2

[

1 ± Pπ
]

Ψ(�S) (7)

where Pπ is the parity projection operator. A wave function with a definite parity π, total
angular momentum J, and angular momentum projections MK, is constructed from the AMD
wave function as

Ψ
Jπ
MK =

1

2
PJ

MK(Ω)
[

1 ± Pπ ]

ΨAMD (8)

where PJ
MK(Ω) is the angular momentum projection operator, Pπ the parity projection

operator. The angular momentum projection operator is defined by (Peierls & Yoccoz, 1957)

PJ
MK(Ω) =

2 J + 1

8 π2

∫

dΩ D J∗
MK(Ω) R̂(Ω) (9)

where D
J
MK(Ω) is the Wigner D-function and R̂(Ω) the rotation operator with Ω ≡ {α, β, γ}

representing Euler rotation angles.

3. Equations of motion

The wave function of the system Ψ(�S) depends on the set of complex variational parameters
�S. To establish the time evolution of such a wave function, the form of the time dependence
of the variational parameters, and therefore the equations of motion, is determined. The
equations of motion of the parameters are derived from the time-dependent variational
principle (Kramer & Saraceno, 1981)

δ
∫ t2

t1

[

ih̄

2

〈

Ψ
∣

∣Ψ̇
〉

−
〈

Ψ̇
∣

∣ Ψ
〉

〈Ψ|Ψ 〉 − 〈Ψ |H| Ψ〉
〈Ψ|Ψ〉

]

dt = 0 (10)

with the constraints
δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0 (11)

where Ψ̇ = dΨ/dt and Ψ∗ the complex conjugate of the wave function. In this definition
of the variational principle the wave function Ψ is not normalized. Therefore the equations
of motion for the variational parameters will not depend on either the normalization or the
phase of the wave function. The variation of the wave function in Eq. (10) with respect to time
can be cast in the form

d Ψ

d t
= ∑

i

[

d s̃i

dt

∂ Ψ

∂�si
+

d s̃i
∗

dt

∂ Ψ

∂�si
∗

]

. (12)

The equations of motion of the variational parameters can then be obtained by expressing
Eq. (10) in terms of the parameters as

δ
∫ t2

t1

[

i h̄

2 ∑
j

(

d s̃j

dt

∂

∂�sj
−

d s̃j
∗

dt

∂

∂�sj
∗

)

ln〈Ψ|Ψ〉 − E

]

dt = 0 (13)

with the constraints
δ�s(t1) = δ�s(t2) = δ�s∗(t1) = δ�s∗(t2) = 0 (14)
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where

E(�S,�S∗) =
〈Ψ(�S)| H |Ψ(�S)〉
〈Ψ(�S)|Ψ(�S)〉

(15)

is the energy functional of the system. Minimizing the action in Eq. (13) with the constraints
(14) results in the equations

i h̄

2 ∑
i

(

∂2 ln〈Ψ|Ψ〉
∂�si ∂�s∗j

)

d s̃i

dt
=

∂E

∂�s∗j
and − i h̄

2 ∑
j

(

∂2 ln〈Ψ|Ψ〉
∂�si ∂�s∗j

)

d s̃∗j
dt

=
∂E

∂�si
(16)

of the variational parameters. Defining a Hermitian and positive definite matrix C with
elements

Cij =
∂2 ln〈Ψ|Ψ〉

∂�si ∂�s∗j
, (17)

the equations of motion can be compactly expressed in the form (Kramer & Saraceno, 1981)

i h̄

2

⎡

⎢

⎢

⎢

⎢

⎣

0 C

−C∗ 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

d�s∗

d t

d�s

d t

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

∂ E

∂�s∗

∂ E

∂�s

⎤

⎥

⎥

⎥

⎥

⎦

. (18)

The solution to these equations provide the time evolution of the variational parameters and
therefore of the wave function of the system.

To determine the parameters�si and the variational energy E of the system Eq. (18) are modified
by multiplying the right-hand-side by a complex constant µ = a + ib where a and b are
arbitrary real numbers. The coefficient µ introduce friction in the equations. The resulting
equations can be solved numerically. To show that solving the modified equation of motion
minimizes the energy the matrix C is replaced by a simpler positive definite matrix, the unit
matrix I (Ono & Horiuchi, 2004). Then the equations of motion for the variational parameters
takes the form

d�si

d t
=

2µ

i h̄

∂ E

∂�s∗i
and

d�s∗

d t
= − 2µ∗

i h̄

∂ E

∂�si
. (19)

These equations have a form similar to that of Hamilton’s classical equations of motion for
canonically conjugate variables. The variation of the energy functional with time leads to

d E

d t
= ∑

i

[

∂ E

∂�si

d s̃i

d t
+

∂ E

∂�s∗i

d s̃∗i
d t

]

=
4b

h̄ ∑
i

∂ E

∂�si

∂ E

∂�s∗i
. (20)

The same result can be obtained using the positive definite matrix C (Ono & Horiuchi, 2004).
Since the two terms in Eq. (20) are positive at all times, it is evident that

d E

d t
< 0 when b < 0 , (21)

so that choosing b < 0 results in the energy functional decreasing with time during the
variation of the parameters. Hence the parameter µ is referred to as the coefficient of friction
and this technique of lowering the energy of a system is called frictional cooling. The equations
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are solved with the constraint ∑i �si = 0. The zero-point oscillation of the center-of-mass need
be subtracted from the expectation value of the Hamiltonian of the system.

4. Nuclear ground state properties

To evaluate the variational energy functional and solve for the variation parameters, the
Hamiltonian H of the nucleus is required as input. Considering only two-body interactions in
the nucleus the nuclear Hamiltonian has the form

H = −∑
i

h̄2

2 mi
∇2

i +
1

2 ∑
i 
=j

[

VNN(�rij) + VC(�rij)
]

(22)

where mi is the mass of nucleon i, VNN(�r) the nucleon-nucleon NN potential, VC(�r) the
Coulomb potential and�r the relative position vector of the interacting nucleons. In this work
the AV4′ NN potential with the VC1(�r) Coulomb component is used (Wiringa & Pieper, 2002).
In operator form the general Argonne nucleon-nucleon potential can be written in the form

V(�rij) = ∑
m

vm(rij)Om
ij (23)

where vm(rij) are radial form factors and Om
ij two-body nucleon operators. The Argonne V4’

potential employed in this work consists of the first four operators

O1→4
ij ≡

{

1 , �σi ·�σj

}

⊗
{

1 , �τi ·�τj

}

. (24)

The V4 potential model can also be cast in the form

V(�rij) =
1

∑
T=0

1

∑
S=0

Vc
ST(rij)Ω

(S)
ij Ω

(T)
ij (25)

where the subscripts S (T) indicate the coupled spin (isospin) of the interacting nucleon pair.
Using the transformations

Ω
(S)
ij =

1

2

[

1 + (−1)S+1 Pσ
ij

]

and Ω
(T)
ij =

1

2

[

1 + (−1)T+1 Pτ
ij

]

(26)

of the spin and isospin projection operators, respectively, where Pσ
ij (Pτ

ij) is the spin (isospin)

exchange operator, one obtains

V(�rij) = Vc(rij) + Vσ(rij) Pτ
ij − Vτ(rij) Pσ

ij − Vστ(rij) Pσ
ij Pτ

ij . (27)

The relation between the form factors in equations (23) and (27) are

Vc = vc − vτ − vσ + vστ (28)

Vτ = 2
[

vτ − vστ
]

(29)

Vσ = 2
[

vσ − vστ
]

(30)

Vστ = 4 vστ (31)

where the dependence on r is understood. These radial form factors are very difficult to
approximate satisfactorily with less than twenty Gaussian functions.
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The variational energy E0, root-mean-square (rms) radius
√

〈r2〉 and magnetic moment µ of
the nuclei are calculated using the parity projected AMD wave function, Ψπ. These three
quantities are given by

E0 =
〈Ψπ | H |Ψπ〉
〈Ψπ |Ψπ〉 (32)

〈r2〉 = 1

A

〈

Ψπ
∣

∣ ∑
A
i=1

[

�ri − �R
]2∣
∣Ψπ

〉

〈Ψπ |Ψπ〉 (33)

�µ =

〈

Ψπ
∣

∣ ∑
A
i=1

[

gℓ�ℓi + gs�si

]
∣

∣Ψπ
〉

〈Ψπ |Ψπ〉 (34)

where �R is the center-of-mass of the nucleus,�ℓi (�si) the orbital (spin) angular momentum and
gℓ (gs) the corresponding g-factor of a nucleon. The g-factors are constants with values (Wong,
1998)

gℓ =

{

1 for proton
0 for neutron

: gs =

{

5.585695 for proton
−3.826085 for neutron

(35)

The integrals in equations (32), (33) and (34) can be analytically evaluated (Rampho, 2010). As
an illustration the evaluation of the variational energy is summarized. The variational energy
is evaluated as

E0 = ∑
ik

Tik B−1
ik + ∑

ijkl

Vijkl Bli Bkj

[

Pd
ij B−1

il B−1
jk −Pe

ij B−1
ik B−1

jl

]

(36)

where the first sum generate the total kinetic energy while the second generate the total
potential energy of the system. In this energy functional Tik and Vijkl represent the integrals

involving the kinetic operator and potential functions, respectively, with Bij = 〈ψi|ψj〉 and Pd
ij

(Pe
ij) resulting from direct (exchange) interactions. The evaluation of the expectation values

of the potential can be evaluated analytically when the these radial components are given in
terms of Gaussian functions (Tohsaki, 1992). Instead of expanding the potential in terms of
Gaussians the corresponding expectation value is approximated by the series (Rampho, 2011)

Vijkl = exp

(

− η2
2

4

)

∞

∑
m=0

(

η2
2

4

)m

Iα(m) (37)

where �η2 =�sl −�sk +�si −�sj and

Iα(m) =
2 αm+3/2

Γ(m + 1)Γ(m + 3
2 )

∫ ∞

0
r2 m+2V(r)e−α r2

dr (38)

the Talmi integral involving the gamma function Γ(x). If the range of the potential is not

greater than 1/
√

2 α then the series in Eq. (37) converges quite fast for any value of �η2

(Brink, 1965). Therefore, only the first few terms in the series tend to be significant. The
Coulomb potential is treated with a Gaussian integral transform. In solving the cooling
equations a random number generator is used to set up the initial values of the variational
parameters. The required wave function is obtained when the energy functional for the system
is independent of the variations of the parameters of the wave function. The parity projection
of the wave functions is done before the variation of the parameters. Only the first five terms
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of the series in (37) were considered. The integral in Iα(m) is evaluated numerically using a
Gaussian quadrature. The value of α was chosen to satisfactorily reproduce the experimental
binding energy of the three-nucleon systems. The variational energies are corrected by
subtracting contributions from spurious center-of-mass. The results are presented along with
corresponding experimental data in Table 1. As can be observed from this table the theoretical
prediction of the experimental binding energies of the three-nucleon systems is satisfactory,
as expected. However, the experimental binding energy of the 2H nucleus is overestimated

by about 60 %. The binding energy of the 4He nucleus is underestimated by 10 % whereas
that of the 6Li and 8Be nuclei are underestimated by 14 %. The 8Be nucleus is very unstable
(Audi et al., 2003) and, therefore, very challenging to study experimentally.

The AMD generates reasonable predictions of the experimental values for the rms radii of
the nuclei. The deviation of the predicted values from the experimental values for the nuclei
range from 0 %, for the 3He nucleus, to 11 %, for the 6Li nucleus. The theoretical radii of the
6Li and the 8Be nuclei are almost the same. In general the theoretical results overestimate the
experimental values of the rms radii for all the nuclei. The calculated magnetic moments of
the three-nucleon systems are different from the experimental values by 6 % and 10 %. For
the three-nucleon systems the theoretical moments equal the magnetic moment of the unlike
nucleon in the system. This reason also explains why the calculated magnetic moments of
the 2H and 6Li nuclei, which overestimate the respective experimental values by 3 % and 7 %,

are equal. The calculated magnetic moments of the 4He and 8Be nuclei are both equal to
zero. These results are consistent with the theoretical expectation when only the dominant
spherical ground state wave function of the system is used in the calculations (Phillips, 1977).
The results for the parity and angular momentum projected wave function are given in
Table 2 for the three-nucleon and the four-nucleon systems. The parity projection is done
before the variation of the parameters and the angular momentum projection is done after
the optimisation of the parameters. The rotation increases the theoretical energies of the
three-nucleon systems by 10 % and decreases that of the four-nucleon system by 10 %, relative
to the un-rotated wave function. Since the nuclear systems are described with spherical
wave functions, spatial rotations are not expected to introduce significant modifications to
the results presented in Table 1. The binding energy found for the 3H system overestimates

E0 (MeV)
√

〈r2〉 (fm) µ (µN)

AXπ AMD EXP AMD EXP AMD EXP

2H+ -3.53 -2.23 2.16 1.96 0.880 0.857

3H+ -8.12 -8.48 1.76 1.60 2.793 2.979

3He+ -7.78 -7.72 1.76 1.77 -1.913 -2.128

4He+ -25.50 -28.3 1.53 1.47 0.000

6Li+ -27.54 -31.99 2.70 2.4 0.880 0.822

8Be+ -49.38 -55.99 2.75 0.000

Table 1. The ground state energies, rms radii and magnetic moments of selected light nuclei.
The experimental data are taken from reference (Suzuki et al., 2008).

141Antisymmetrized Molecular Dynamics and Nuclear Structure

www.intechopen.com



10 Will-be-set-by-IN-TECH

E0 (MeV)
√

〈r2〉 (fm) µ (µN)

AX
(

Jπ
)

AMD EXP AMD EXP AMD EXP

3H
(

1
2
+)

-8.95 -8.48 1.33 1.60 2.769 2.979

3He
(

1
2
+)

-8.61 -7.72 1.33 1.77 -1.847 -2.128

4He
(

0+
)

-23.04 -28.30 1.16 1.47 0.000

Table 2. The ground state energies, rms radii and magnetic moments of the three- and
four-nucleon systems. The experimental values are taken from reference (Suzuki et al., 2008).

the experimental energy by 5 % and for the 3He system by 12 %. In contrast, the 4He
results are lower than the experimental value by ∼ 19 %, a result which is in line with other
calculations in the field using the same rank in the potential. The rms radii obtained for the
3H and 3He systems are lower than the experimental values by ∼ 16 % and ∼ 22 % less,

respectively. Similar results are obtained for the 4He system where the calculated rms radius
is underestimated by ∼ 21 %. In general, the AMD approach reproduces the experimental
values for the magnetic moment of the nuclei quite satisfactorily.

Intrinsic density distribution in a nucleus is determined by rotating the arbitrary space-fixed
coordinate axes on to the body-fixed principal axes of the nucleus. The rotation is generated
by diagonalising the moment-of-inertia tensor of the nucleus which is defined by elements

Iµν =

〈

Ψπ
∣

∣ ∑
A
i=1

[

�ri − �R
]

µ

[

�ri − �R
]

ν

∣

∣Ψπ
〉

〈Ψπ |Ψπ〉 (39)

where { µ, ν } ≡ { x, y, z }. The calculated intrinsic density using the parity projected wave

function, in the body-fixed coordinate axes, are shown in Figure 1 for the 4He nucleus and in

Figure 2 for the 6Li and 8Be nuclei. The 4He nuclei displays a spherical density distribution
whereas the 6Li and 8Be nuclei display distinct cluster structures.
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Fig. 1. Density distribution of the 4He nucleus.
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Fig. 2. Density distributions of the 6Li nucleus (left) and the 8Be nucleus (right).

5. Charge form factors

Most of the information accumulated about nuclear structure is derived from electron-nucleus
scattering. In electron-nucleus scattering the electron transfers momentum �q and energy ω to
the target nucleus and the nucleus undergoes some transitions that are governed by selection
rules related angular momentum and parity. For elastic scattering the initial and final states
of the nucleus have the same angular momentum (de Forest Jr. & Walecka, 1966). This type
of electron scattering is used to probe ground state charge and magnetisation distributions
in nuclei. The ground state of the 3He nucleus has total angular momentum and parity

Jπ = 1
2
+

whereas the 4He system has Jπ = 0+. Theoretical predictions of electromagnetic
provide a good test of the quality of the wave function describing the system. In this section

the charge form factors of 3He and 4He nuclei are calculated in the plane wave impulse
approximation (PWIA) (Chew & Wick, 1952). In this approximation the nucleons inside the
target nucleus are assumed non-interacting with one another during the interaction with the
electron. This means that the electron interacts with independent nucleons inside the nucleus.
Since the transitions are between states of definite angular momentum, the parity and angular
momentum projected wave functions are employed.

The charge distribution in the nucleus is inferred from the electric transitions in the nucleus
due elastic electron-nucleus scattering. The charge form factor is the expectation value of the

nuclear charge operator. For a nucleus in an initial state
∣

∣Ψ
Jπ
MK

〉

the charge form factor is given
by

Fch(�q) =
1

Z

〈

Ψ
Jπ
MK

∣

∣ ρ(�q)
∣

∣Ψ
Jπ
MK

〉

〈

Ψ
Jπ
MK

∣

∣Ψ
Jπ
MK

〉

(40)

where Ze is the total charge on and ρ(�q) the charge operator of the nucleus with �q being
the momentum transferred to the nucleus by the electron. In the PWIA the nuclear charge
operator is formed by the superposition of the individual nucleon charge operators and is
given by (Rampho, 2010)

ρ(�q) =
A

∑
k=1

[

q

Q
GN

Ek(Q
2)− 2 GN

Mk(Q
2)− GN

Ek(Q
2)

4 m2
N

√
1 + τ

i�σk ·�q ×�pk

]

exp
(

i�q ·�rk

)

(41)
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where τ = Q2/4 m2
N , Q2 = q2 − ω2, ω =

√

q2 + m2
N − mN and GN

E (GN
M) the nucleon

Sachs electric (magnetic) form factor. For the Sachs form factors the phenomenological
parametrization derived in Ref. (Friedrich & Walcher, 2003) is adopted. The general multipole
analysis of nuclear charge form factors is given by (Uberall, 1971)

Fch(�q) =
√

4 π
≤ 2J

∑
L=0

〈J JL0|J J〉 F
ρ
L(q)Y∗

L0(q̂) (42)

where Y∗
LM(q̂) are the spherical harmonics, L the nuclear orbital angular momentum and

〈J JL0|J J〉 the Clebsch-Gordan coefficients and q̂ = �q/|�q|. The summation is over even values
of L only. The intrinsic charge form factor is corrected by dividing the calculated charge form
factor by the contributions of the center-of-mass (Rampho, 2010). The integrals in Eq. (42) can
be analytically evaluated.
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Fig. 3. The charge form factor of 3He (left) and 4He (right) compared with the experimental
data of (McCarthy et al., 1977) and the theoretical fit to the data (Amroun et al., 1994).

The results of the calculated ground-state charge form factors of the 3He and 4He nuclei
are presented in Figure 3. In these figures the theoretical charge form factors are compared
with experimental data from (Frosch et al., 1967; McCarthy et al., 1977). In the comparison
phenomenological parametrization (Amroun et al., 1994) that fit experimental universal data
of the form factors for electron-nucleus scattering are also shown. The charge form factors are
normalized such that Fch(0) = 1. As can be seen in these figures, for low momentum transfers,
up to the first diffraction minimum, the AMD gives a reasonable description, albeit it slightly
overestimates the experimental data. Beyond the first diffraction minimum the results are
lower than the data. The first diffraction minimum for the nuclei are consistent with, but not
better than, the predictions of other theoretical models obtained with various nucleon-nucleon
potentials in the PWIA (Kloet & Tjon, 1974). It should be noted that the overestimation of
the position of the diffraction minimum indicates an underestimation of the nuclear charge
radius.

6. Conclusions

To test the applicability of the AMD model in nuclear structure studies, the angular
momentum and parity projected AMD wave function were used to calculate binding energies,
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rms radii, and the magnetic moments for selected few-nucleon systems. The nuclear
Hamiltonian was constructed from the Argonne AV4′ NN potential that includes also the
Coulomb interaction. Comparison with the experimental data revealed that the reproduction
of the ground state properties of light nuclei is quite satisfactory. The discrepancies observed
can be attributed to reasons not entirely related to the AMD. These include i) the omission of
mixed-symmetric states (for three-body) ii) the use of a limited rank for the Argonne AV18
potential, and iii) the omission of three-nucleon forces. As far as the magnetic moment is
concerned, the inclusion of relativistic corrections to the magnetic moment operator, are also
expected to contribute to the reduction of the discrepancy between theory and experiment.
The technique used in the approximation of the variational energy can be easily extended
to the three-body interactions. The implementation of this technique in nuclear three-body
interactions will be considered future projects.

The angular momentum and parity projected AMD was used to calculate the ground state

charge form factors for the 3He and 4He nuclei. In overall, the results obtained, within the
AMD and PWIA approximation, reproduce the general behavior of the experimental form
factors. For momentum transfer below the first diffraction minimum the reproduction of
experimental form factors is fairly good. However, beyond the first diffraction minimum the
results are lower than the data. The deviations of the theoretical results from experimental
data can be minimize by employing improved wave functions. The wave functions can
be constructed by using a more complete realistic Hamiltonian, three-body forces, and
relativistic corrections in the electromagnetic operators. It should be noted that these results
are consistent with other results obtained by competing theoretical models. In conclusion,
the results indicate that the AMD method is a very promising method in calculating
electromagnetic form factors of the general A-body nuclear system.

Work is underway to construct wave functions for scattering processes applicable in nuclear
breakup reactions (Rampho, 2010). In these constructs the AMD is combined with the Glauber
multiple scattering to account for final state interactions. Wave functions for two-body
and three-body scattering reactions can be treated accurately in the Faddeev formalism
(Golak et al., 2005; Merkuriev et al., 1976). In the hyperspherical harmonics approach some
progress in being made towards the construction of accurate wave functions for two-body
scattering processes (Kievsky et al., 2008). However, these methods become involved for
systems consisting of more than four constituent particles.
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