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1. Introduction 

An ultimate level of theory in molecular simulations [e.g., molecular dynamics (MD) and 
Monte Carlo (MC) simulations], which can accurately reproduce or even predict many 
experimental values, should be ab initio path integral. In ab initio path-integral simulations, 
both electrons and nuclei are treated quantum mechanically and adiabatically. No empirical 
parameter is involved, other than those fundamental physical constants (e.g., electronic mass 
and Planck’s constant). The only inherent approximations are the Born-Oppenheimer 
approximation (to decouple internuclear dynamics from electronic motions) and the ergodicity 
in MD simulations or the importance samplings in MC simulations (to partly integrate the 
entire phase space). Consequently, correlation energy among electrons, anharmonic zero-point 
motions and tunnelling effects in nuclei, and isotope effects can all be incorporated in the 
simulations. Proper consideration of the electronic and internuclear quantum effects, even just 
partially, can be critical to compare computed values with state-of-the-art experiments, e.g., (I) 
hydrogen adsorption in carbon nanotechnology (Tanaka, Kanoh et al. 2005; Kowalczyk, 
Gauden et al. 2007; Kowalczyk, Gauden et al. 2008); (II) electronic redistributions and isotope 
effects (Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; Gao and Wong 
2008) on biochemical reactions in protein (Wong and Gao 2007; Wong and Gao 2011; Wu and 
Wong 2009; Warshel, Olsson et al. 2006; Gao, Major et al. 2008; Major, Heroux et al. 2009) and 
RNA enzymes (Wong, Lee et al. 2011; Wong, Gu et al. 2012). 

However, owing to the extraordinarily high computational cost, ab initio path-integral 
simulations are thus far not practical even for modest size molecules, and are limited to only 
some relatively simpler or smaller molecular systems, e.g., thirty-two water molecules, and 
malonaldehyde [CH2(CHO)2]. Nevertheless, the unique information and invaluable insight 
for a molecular system, which can be provided perhaps only from ab initio path-integral 
simulations, have already been recognized in a number of pure computational publications 
in some high-profile journals, e.g., Nature, Science, and Physical Review Letters, etc (Marx and 
Parrinello 1995; Tuckerman, Marx et al. 1997; Marx, Tuckerman et al. 1999; Tuckerman and 
Marx 2001; Tuckerman, Marx et al. 2002; Ohta, Ohta et al. 2004; Hayashi, Shiga et al. 2006; 
Paesani, Iuchi et al. 2007). 

In this chapter, after quickly going over the fundamental physical laws tailoring MD 
simulations, we (wongky@biomaps.rutgers.edu; kiniu@alumni.cuhk.net) discuss a new 
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theoretical method that combines our novel systematic free-energy expansion approach, 
based on Zwanzig’s free-energy perturbation theory, with our recently developed 
automated integration-free path-integral method, based on Kleinert’s variational 
perturbation theory, (Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; 
Wong, Gu et al. 2012) to perform ab initio path-integral simulations for realistic 
macromolecules at an affordable computational cost. Since in this new method, we can 
progressively choose computationally affordable levels of theory, now important physical 
quantities, e.g., free-energy barrier, change of binding energy, pKa value, and isotope effect, 
can all be computed at an ab initio path-integral level. Therefore, we anticipate this new 
systematic approach will become an essential computational tool to catch up with or even 
predict experimental results for breaking down subtle mechanisms underlying a variety of 
molecular systems in Life and Materials Sciences. 

2. Fundamental physical laws governing molecular dynamics simulations 

In this section, we lay the theoretical foundation for molecular dynamics (MD) simulations. 

2.1 Molecular Schrödinger equation 

Ever since quantum mechanics was constructed in the 1920s, solving the non-relativistic 
time-independent Schrödinger equation for a system of nuclei and electrons has  
become an essential step to understand every single detail of atomic or molecular properties 
(Kleppner and Jackiw 2000). The non-relativistic time-independent Schrödinger equation for 
a molecular system (the molecular Schrödinger equation) is: 

 ˆ ,mole n n nH E    (1) 

where ˆ
moleH  is the complete (non-relativistic) molecular Hamiltonian, n  and nE  are an 

energy eigenfunction (or wave function) and an energy eigenvalue at an eigenstate n, 
respectively. In contrast to the (intra)nuclear or nucleon Hamiltonian (Dean 2007), the 
complete molecular Hamiltonian (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn 
1999; Pople 1999; Helgaker, Jørgensen et al. 2000; Springborg 2000) for Nn nuclei and Ne 
electrons can fortunately be written in an analytic closed form (thanks to the inverse square-
distance proportionality in Coulomb’s electrostatic force law): 

 2 21 1 1ˆ .
2 2

n n e n e eN N N N N N
j j j

mole j i
j jj ij iij j j i j i i i

Z Z Z
H

M x r r



   
             (2) 

In Eq. (2), the units are atomic units, Mj is the mass ratio of nucleus j to electron, and Zj is the 
atomic number of nucleus j. The Laplacian operators 2

j  and 2
i  denote the second order 

differentiation with respect to the coordinates of the jth nucleus and the ith electron, 
respectively. The first term in Eq. (2) represents the kinetic energy operator for nuclei; the 
second term is the Coulomb repulsion between nuclei; the third term is the operator for the 
kinetic energy of electrons; the fourth and fifth terms indicate the Coulomb attraction 
between electrons and nuclei, and the repulsion between electrons, respectively. The 
distance between the jth and the j'th nuclei is jjx  ; the separation between the ith and the 
i′th electrons is iir  ; the distance between the jth nucleus and the ith electrons is ijr . 
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2.2 Central quantity in quantum thermodynamics: Quantum partition function 

Once the energy eigenvalues or the quantized energy spectrum in Eq. (1) are calculated, it is 
straightforward to obtain a central physical quantity in thermodynamics, i.e., the quantum 
canonical partition function qmQ  (McQuarrie 2000), by the following summation of the 

Boltzmann energy distribution: 

  exp ,qm n
n

Q E   (3) 

where 1 Bk T  , Bk  is Boltzmann’s constant, and T is temperature. All standard 
thermodynamic quantities for a system of nuclei and electrons, e.g., free energy, internal 
energy, entropy, pressure, etc., can be derived from it. In Eq. (3), the lowest energy level 0E , 
which is often called the ground state energy or zero-point energy (ZPE), is usually the 
dominant energy level contributing to the partition function. Further, by virtue of 
Heisenberg’s uncertainty principle, the ZPE is always larger than the minimum value of 
potential energy because a particle can never be at rest anywhere in a given potential or a 
particle with a particular momentum can be everywhere in a given potential. 

2.3 Origin of potential energy surface: Born-Oppenheimer approximation 

Unfortunately, even though all physics and chemistry of a (time-independent) molecular 
system is essentially in the molecular Schrödinger equation [Eq. (1)], it can be exactly solved 
only for simplest one-electron atoms or ions. For other systems, approximations must be 
introduced to calculate numerical solutions with the aid of computers. The most common 
and perhaps the mildest approximation is the Born-Oppenheimer approximation (Born and 
Oppenheimer 1927; Hirschfelder and Meath 1967; Kolos 1970; Ballhausen and Hansen 1972; 
Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Helgaker, Jørgensen et al. 2000; 
Springborg 2000; Mielke, Peterson et al. 2003). It decouples internuclear motions from 
electrons so that nuclei effectively move on a potential energy surface (PES) obtained by 
solving the electronic part of Schrödinger equation. 

This approximation is based on the fact that an electron is much lighter than any nucleus 
(e.g., a proton, the lightest nucleus, is about 1840 times heavier than an electron). Nuclei 
move, consequently, much slowlier. As a result, from the electronic perspective, for a given 
set of nuclear positions, electrons adjust their positions ‘instantly’ before nuclei have a 
chance to move. On the other hand, from the standpoint of nuclei, electrons are moving so 
fast that their effects on nuclei are averaged out over the electronic wave functions. 
Mathematically, to simplify the molecular Hamiltonian, we first solve the electronic part of 
the Schrödinger equation for a particular set of nuclear configurations  jx . The electronic 
part of the complete molecular Hamiltonian [Eq. (2)] is called electronic Hamiltonian: 

 21 1ˆ .
2

e n e eN N N N
j

elec i
ij iii j i i i

Z
H

r r 
        (4) 

With this electronic Hamiltonian, we can obtain the electronic energy elecE from the 
corresponding electronic Schrödinger equation: 
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   ˆ ,elec elec elec j elecH E x   (5) 

where elec  is the electronic wave function. Note that the electronic energy   elec jE x  
depends parametrically on the nuclear positions  jx . With this electronic energy, the 
molecular Hamiltonian in Eq. (2) can be simplified as follows: 

   

  

2 2

2

2

1 1 1ˆ
2 2

1
2

1
,

2

n n e n e e
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j jjj j j
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j j
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Z Z Z
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Z Z
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V x
M



   





        

 
     

  

   

    

 



 (6) 

where   signifies the average over electronic wave functions or the expectation value. In 
Eq. (6), V is defined as the sum of the nuclear repulsion energy and electronic energy, which 
effectively turns out to be the internuclear potential energy function as a consequence of the 
Born-Oppenheimer approximation: 

      .nN
j j

j elec j
jjj j

Z Z
V x E x

x




   (7) 

There are many systematic and rigorous theories in electronic structure calculations to 
derive the internuclear potential energy from first principles (i.e., besides the universal 
fundamental constants in physics, there is no other empirical parameter involved in the 
calculations), e.g., Hartree-Fock theory, configuration interaction method, Møller-Plesset 
perturbation theory, coupled cluster approach, and Kohn-Sham density functional theory. 
All these quantum mechanical (QM) approaches for electronic structure calculations are 
often known as ab initio methods (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn 
1999; Pople 1999; Helgaker, Jørgensen et al. 2000; Springborg 2000). 

In contrast, a complete empirical method to determine an internuclear potential energy 
surface is to parameterize the potential energy as an analytic function without treating 
electronic degrees of freedom. This type of approach is referred to as molecular mechanical 
(MM) method and the empirical potential energy is called force-field energy. Comparing to 
ab initio approach, MM methods are computationally much less expensive and can be 
applied to describe equilibrium properties in macromolecular systems involving over tens 
of thousands of heavy atoms (Hagler, Huler et al. 1974; Brooks, Bruccoleri et al. 1983; 
Weiner, Kollman et al. 1984; Jorgensen and Tirado-Rives 1988; Mayo, Olafson et al. 1990). 
But for the process involving electronic redistributions (e.g., electronic transfer, chemical 
bond breaking or forming, etc.), MM force field is often unable to describe it. Later, a hybrid 
approach called combined QM/MM method has emerged to synthesize the efficiency of 
MM force field with the accuracy of QM calculations (Field, Bash et al. 1990; Gao and 
Truhlar 2002). For the rest of this chapter, discussions are limited to the Born-Oppenheimer 
approximation, which adiabatically decouples nuclear and electronic degrees of freedom. 
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2.4 Classical free-energy profile vs classical potential of mean force 

In practice, quantum effects on internuclear motions are much smaller than those on the 
electronic part. In many applications, the internuclear quantum effects are insignificant and 
could even be neglected. Thus, the eigenenergy spectrum En in Eq. (1) would become 
continuous. Given an internuclear potential V, the quantum canonical partition function in 
Eq. (3) consequently reduces to the classical canonical partition function as: 

   
233 3

3 exp ,
2

nn n

n

NN N
j

cl jN
jj

pdx dp
Q V x

Mh


 

 

               
   (8) 

where h is Planck’s constant and p is the momenta associated with the nuclear coordinates x. 
Subsequently, the classical free energy Gcl of a molecular system can be expressed in terms 
of the classical partition function Qcl as follows: 

   
233 3

3ln ln exp .
2

nn n

n

NN N
j

cl B cl B jN
jj

pdx dp
G k T Q k T V x

Mh


 

 

                  
   (9) 

Note that the partition function and the free energy defined above are ‘state’ functions, 
which is independent of any nuclear coordinate and momentum (as we integrate out the 
entire phase space). Given a particular 3 nN -degree-of-freedom molecular system described 
by a particular potential energy function V at particular temperature, the partition function 
and the free energy are constants. 

On the other hand, of significant interest in simulating a many-body biochemical or physical 
event is to examine how the free energy of a molecular system varies during the event. 
Conventionally, we first predetermine a coordinate which should be able to describe the 
event of interest from the start to the end. Next, we generate a free energy profile, which is 
an energy function of that predetermined coordinate, to investigate how the profile changes 
during the event. In fact, such a kind of free-energy profile can also be termed as potential 
energy of ensemble-average or mean force (Kirkwood 1935). Reasons are given below. 

The free energy profile of a molecular system as a function of a predetermined coordinate of 
interest z can be written as follows: 

 
      

   

233 3

3

3 1

ln exp
2

ln exp , ,

nn n

n

n

NN N
j

z B z z jN
jj

N
B j z

pdx dp
G z k T x z V x

Mh

k T dx V x x z C

  



 

 






                     
           

 



 (10) 

where   is Dirac delta function, z  is the thermal de Broglie wavelength for the degree of 
freedom along z-direction, and C is a normalization factor dependent on the inverse of the 
thermal de Broglie wavelengths for all degrees of freedom (the wavelength is a function of 
the nuclear mass Mj, and temperature T). C should be a constant during the biochemical or 
physical event of our interest. The integrand in the final configurational integral of Eq. (10) 
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is basically the probability density of the molecular system as a function of z. In practice, it is 
rare to determine the value of C because what we often care about is the free-energy 
difference at various values of z. 

Notably, by taking the negative derivative of  zG z , i.e.,  zdG z dz , we obtain the average 
force over all ensembles or over all degrees of freedom, which is called the mean force 
(Kirkwood 1935), based on the ensemble average definition in Eq. (16): 
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 (11) 

Thus  zG z , the free energy profile as a function of a predetermined coordinate, is also 
called the potential of mean force (PMF) (Kirkwood 1935). 

However, please note that if the predetermined coordinate of interest is not a linear 
combination of rectilinear coordinates, or in other words, if it is a curvilinear coordinate, 
then PMF is oftentimes not exactly equal to free-energy profile. Not only the Jacobian-
determinant contribution makes their difference (Ruiz-Montero, Frenkel et al. 1997; Hénin, 
Fiorin et al. 2010), but also in a forthcoming paper, we will show that actually change of 
domains with respect to the coordinate of interest can also contribute to the free-energy 
profile, i.e., the Leibnizian contribution (Flanders 1973). 

In addition, we will also show that according to differential geometry and general relativity, 
once we realize the equivalence between orthogonal covariant and contravariant vectors 
(Arfken and Weber 2001), then the Jacobian scale factor for a predetermined curvilinear 
coordinate of interest, q , can be proved to be (in contravariant space): 

 1
qh q
 


 


 (12) 

and the unit vector for q  can be proved as (in contravariant space): 

 q̂ q q    
 

 (13) 

In Eq. (12) and (13), q  must belong to at least one complete set of curvilinear coordinates, 
hypothetically. In general, unless we explicitly define the rest of the complete curvilinear 
coordinates, the sole definition of q  is not sufficient to make the PMF be unique. But, we 
will show the free-energy profile does not suffer from this uniqueness problem. In fact, if we 
restrict ourselves to a complete set of curvilinear coordinates in which q  is orthogonal to the 
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rest of coordinates, then the PMF will be unique and its relation with the free-energy profile 
can be proved as follows (den Otter 2000), after using Eq. (12) and Eq. (13): 

 
 

0 0

0
2 2

0
B

q q

dG q q
V k T

d q q
 

  

 
 




 

                      

 
 

   (14) 

In Eq. (14), the Leibnizian contribution is nil, the first term on RHS is the mean force for q , 
the second term is the Jacobian contribution, and 

0q   is the ensemble average over all 
configurations with 0q  . 

Finally, the Fixman potential (Fixman 1974), which corrects the velocity-bias in constrained 
MD, will also be presented with correct dependence on mass in our forthcoming paper. 

2.5 Simulating classical thermodynamics: Molecular dynamics simulations 

By assuming the molecular system of our interest is ergodic, molecular dynamics (MD) 
simulation techniques can be employed to compute the ensemble average of a physical 
quantity. In essence, MD simulations is numerically solving, integrating or propagating the 
Newtonian equations of motion, one-time-step by one-time-step. Given an internuclear 
potential V (regardless of using QM, MM, or hybrid QM/MM to construct), the motion or 
trajectory of a nucleus j as a function of time t is governed by Newton’s second law: 

      Extended Forces

2

2 .j
j j j

d x
V x t M

dt
  


 (15) 

Note the extended forces in Eq. (15) are essential for having canonical ensemble (constant 
temperature) instead of microcanonical ensemble (constant energy) in MD simulations 
(Hünenberger 2005). In the ergodic hypothesis (Lebowitz and Penrose 1973; Cogswell 1999) 
[the dynamical version of ergodic theory was first proposed by Birkhoff (Birkhoff 1931), in 
which Liouville’s theorem was applied to ensure the ensemble distribution in phase-space is 
invariant with time], if the simulation time for propagating the trajectory  jx t  of the 
nucleus j is infinitely long, the ensemble average of a physical quantity     f ,x p  (which 

can be either a scalar or a vector) over the entire phase space, i.e., 

        f  f

233 3

3
1

, exp ,
2

nn n

n

NN N
j

jN
cl jj

pdx dp
x p V x

Q Mh


 

 

               
   (16) 

is equal to the time average in MD simulations: 

       f f
0

1
, .lim

f

f

t

t f

x t p t dt
t

   (17) 

In other words, longer MD simulation time allows us to sample more phase space for 
computing the corresponding ensemble average, which in turn could be in higher accuracy. 
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3. Zwanzig’s free-energy perturbation theory 

Owing to the Boltzmann exponential energy distribution, one of the major difficulties in 
computing a converged free-energy profile or potential of mean force [Eq. (10)] via MD and 
MC sampling techniques is that it takes longer simulation time or runs more MC steps to 
have enough higher-energy samples. Yet, many interesting biochemical or physical 
molecular properties could be in higher-energy regions, e.g., the transition state during 
protein folding or biochemical reaction. 

In practice, in order for having effective samplings on both the lower-energy (e.g., reactant 
state) and higher-energy regions (e.g., transition state), Zwanzig’s free-energy perturbation 
(Zwanzig 1954) [which is also referred to as statistical-mechanical perturbation theory 
(McQuarrie 2000)] has been extensively applied. The feature of the perturbation is relating 
the change of free energy between two systems (both have the same number of degrees of 
freedom) by an ensemble average taken in only one of the two systems. This can be 
illustrated by first writing the classical free energy Gcl corresponding to the partition 
function in Eq. (8) as follows: 

  
3 3

3ln exp ,
n n

n

N N

cl B cl N

dx dp
G k T Q E

h


 

 

      (18) 

where E is the energy at a point     ,j jp x  in the phase space, i.e., 
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Next, we rewrite Eq. (18) as: 
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 (20) 

where 0G  is the free energy of the reference system, 0E  is the energy at a point in the phase 
space of the reference system, and 0  is an ensemble average for the reference system. 
From Eq. (20), we obtain Zwanzig’s free-energy perturbation (Zwanzig 1954): 

  0 0 0
ln exp .BG G k T E E        (21) 

As a result, by taking the advantage of the perturbation [Eq. (21)], we can readily have 
enough samples in higher-energy regions in a reference frame where their original high 
potential energy values intentionally get lowered. Afterwards, the corrected free energy can 
straightforwardly be recovered by taking the average of the exponential factor 

 0exp E E     over the ensembles sampled in the reference system. This is exactly the 
idea behind many enhanced sampling methods, such as the umbrella sampling technique. 
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4. Systematic ab initio molecular dynamics approach: Free-energy expansion 
method as a series of covariance tensors 

A fundamental key to have successful molecular simulations is the accuracy of internuclear 
potential for describing atomic motions during biochemical or physical events. By exploiting 
Zwanzig’s free-energy perturbation (FEP) theory, we are developing a new rigorous method 
to systematically obtain accurate free-energy profiles, in which the internuclear potential 
energy is effectively computed at a high-level ab initio theory. Our new method is a 
systematic free-energy expansion (FEE) in terms of a series of covariance tensors. The new 
expansion will enable us to have a free-energy profile at a level as high as the coupled 
cluster theory at an affordable computational cost, which is currently known as the gold 
standard but unreachable level of theory for free-energy simulations. The focus of our FEE 
method will be on the difference of free energy calculated by two different internuclear 
potential. Furthermore, in contrast to Car-Parrinello MD (CPMD) which is limited to 
potential energy derived from DFT (Car and Parrinello 1985), our method is independent of 
how the potential energy functions being constructed. Therefore, by combining it with our 
novel automated integration-free path-integral (AIF-PI) method together (See Section 5; 
Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, Gu et al. 2012), 
we will also be able to compute free-energy barriers, changes of binding energy, pKa values, 
and isotope effects at an ab initio path integral level (see Section 6). 

Let’s begin with the FEP theory. From Eq. (21), the free energy difference between using 
lower-level (LL) and higher-level (HL) ab initio methods can be expressed as: 

  ln exp .HL LL B HL LL LL
G G G k T E E          (22) 

Next we expand the ensemble average in Eq. (22) and sum up the prefactors into a series of 
cumulants: 

      
,1

1 1
ln exp ln exp ,n

HL LL LL LL cn

G G G E E 
 





               
   

  (23) 

where 

 ,HL LLE E E    (24) 

,LL c
  is a cumulant, and n is the order of a cumulant. In his original 1954 paper (Zwanzig  

1954), Zwanzig showed that the cumulant expansion is fast converging when the change of 
energy ΔE in the ensemble is reasonably small relative to the inverse of . However, in terms 
of computational cost, this cumulant expansion does not provide an advantage for 
correcting lower-level free energy. This is because the time required for calculating the 
cumulant average ,LL c

  with computer is basically as much as the time needed to directly 
compute the higher-level free energy HLG , regardless of whether the perturbation ΔE is big. 

In order to ease up this situation, in a forthcoming paper we will prove that each cumulant 
can be further expanded as a Taylor series expansion fluctuating about the ensemble 
average position xLL  in the form: 
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          2 x x D x x x
1 ˆ cov ,
2!

pTn
n n LL n LLLLLL

E f f f           (25) 

where pT  is transpose,    x  
n

nf E   , x is a position vector of 3N Cartesian coordinates 
of the system, D̂n  is the nth-order tensor operator for differentiation with respect to the 3N 
coordinates (e.g.,  D xˆ

n LLf  is the gradient and  2D xˆ
n LLf  is the Hessian matrix), and 

 x xcov ,pT  is the covariance matrix. The higher order terms in Eq. (25) involve higher order 
covariance tensors. Note that the term associated with the gradient is not shown in Eq. (25) 
because the first order central moment, i.e., x xLL LL

 , is always zero by definition. 

By combining Eq. (25) with Eq. (23), we have enough equations to systematically approach 
the exact value of high-level free energy at a reduced computational cost. The number of 
calculations involving EHL is now considerably decreased to only a single-point energy 
calculation at xLL  for the zeroth order correction, and merely a normal-mode frequency 
analysis at xLL  for the second order correction. 

To increase the converging property for the expansion in Eq. (25) as well as to overcome the 
problem of multi-model probability distribution, we can further generalize the FEE method 
by considering a decomposition of the ensemble average into subgroups by clustering 
methods. The clustering scheme will be determined in a way such that the FEE expansion is 
converged up to the second order correction in each group or each cluster. Please note that, 
in the limit that the number of clusters becomes as many as the number of ensembles, the 
formalism reduces back to the original ensemble average, and inclusion of only the zeroth 
order term  in Eq. (25) is able to  return us back the exact result of Eq. (23). 
 

Cumulant Tensor G (kcal/mol) Error 

1st 

0th −170.601 0.316 
1st −170.601 0.316 
2nd −170.680 0.237 
3rd −170.680 0.237 
∞ −170.680 0.237 

2nd 

0th −170.601 0.316 
1st −170.601 0.316 
2nd −170.875 0.042 
3rd −170.877 0.040 
∞ −170.883 0.034 

6th ∞ −170.917 0.000 

Table 1. Free-Energy correction G for H2O from HF/6-31G(d) to MP2/6-311G(d,p). 

Since single-point energy calculations and a normal-mode frequency analysis at high-level 
electronic structure calculations are actually very common in literature (which are often 
used for minimized structures, though), we anticipate this new free-energy expansion 
method would be particularly useful for coupling accurate results from high-level ab initio 
theory with computational efficiency of lower-level samplings in free-energy calculations. 
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The preliminary results using this new systematic FEE method, i.e., Eq. (23), are very 
encouraging. Table 1 shows the free energy correction G for a single water molecule from 
HF/6-31G(d) to MP2/6-311G(d,p). Even just up to the first cumulant at the zeroth order 
correction, the computed error is in the order of magnitude ~0.1 kcal/mol. The first 
cumulant is basically converged as soon as the second order correction is included. 

5. Simulating quantum thermodynamics: Feynman’s path integral 

All the above discussions on simulating internuclear thermodynamics are limited to 
classical mechanics (regardless of using QM, MM, hybrid QM/MM to construct potential 
energy). However, the real world is described by quantum mechanics, including nuclei. In 
some important applications of Life and Materials Sciences, such as hydrogen adsorption in 
carbon nanotechnology, the transport mechanism of hydrated hydroxide ions in aqueous 
solution, and kinetic isotope effects on a proton-transfer reaction, actually internuclear 
quantum-statistical effects (e.g., quantization of vibration and quantum tunneling) are not 
negligible. A popular choice for incorporating such internuclear quantum-statistical effects 
in the conventional molecular dynamics (MD) or Monte Carlo (MC) simulations (Tanaka, 
Kanoh et al. 2005; Warshel, Olsson et al. 2006; Kowalczyk, Gauden et al. 2007; Gao, Major et 
al. 2008; Kowalczyk, Gauden et al. 2008; Major, Heroux et al. 2009; Wong, Gu et al. 2012) is 
using Feynman’s path integral (Feynman 1948; Feynman 1966; Kleinert 2004; Brown 2005; 
Feynman, Hibbs et al. 2005). 

The essence of Feynman’s path integral is to transform the Schrödinger differential equation 
to become an integral equation. As a result, the many-body path integrations can be carried 
out by the conventional MD or MC sampling techniques. In addition, the quantum 
canonical partition function can be directly obtained with no need to compute individual 
energy eigenvalues. 

5.1 Kleinert’s variational perturbation theory for centroid density of path integrals 

Kleinert’s variational perturbation (KP) theory (Kleinert 2004) for the centroid density 
(Gillan 1987; Gillan 1987; Voth 1996; Ramírez, López-Ciudad et al. 1998; Ramírez and López-
Ciudad 1999; Feynman, Hibbs et al. 2005) of Feynman path integrals (Feynman 1948; 
Feynman 1966; Kleinert 2004; Brown 2005; Feynman, Hibbs et al. 2005) provides a complete 
theoretical foundation for developing non-stochastic methods to systematically incorporate 
internuclear quantum-statistical effects in condensed phase systems. Similar to the 
complementary interplay between the rapidly growing quantum Monte Carlo simulations 
(Anderson 1975; Grossman and Mitas 2005; Lester and Salomon-Ferrer 2006; Wagner, 
Bajdich et al. 2009) and the well-established ab initio or density-functional theories (DFT) for 
electronic structure calculations (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn 
1999; Pople 1999; Helgaker, Jørgensen et al. 2000; Springborg 2000), non-stochastic path-
integral methods can complement the conventional Fourier or discretized path-integral 
Monte-Carlo (PIMC) (MacKeown 1985; Coalson 1986; Ceperley 1995; Mielke and Truhlar 
2001; Sauer 2001) and molecular dynamics (PIMD) (Cao and Voth 1994; Voth 1996) 
simulations which have been widely used in condensed phases. 

To simplify the illustration of the essence of Kleinert’s variational perturbation theory, we 
now consider a one-particle one-dimensional system. For a one-particle one-dimensional 
system, the classical canonical partition function in Eq. (8) reduces to become: 
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The traditional way to obtain the quantum canonical partition function, i.e., Eq. (3), is to 
solve the internuclear Schrödinger equation to get the individual energy eigenvalues. But in 
the path-integral (PI) formulation, we do not know the individual energy eigenvalues for 
obtaining the quantum partition function. This is because the PI representation of the 
quantum partition function can be written in terms of the centroid effective potential W as a 
classical configuration integral (Gillan 1987; Gillan 1987; Voth 1996; Ramírez, López-Ciudad 
et al. 1998; Ramírez and López-Ciudad 1999; Kleinert 2004; Feynman, Hibbs et al. 2005): 
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 (27) 

Given the centroid potential  0W x , thermodynamic and quantum dynamic quantities can 
be accurately determined, including molecular spectroscopy of quantum fluids and the rate 
constant of chemical and enzymatic reactions. The mass-dependent nature of  0W x  is also 
of particular interest because isotope effects can be obtained, and it has been applied to 
carbon nanotubes (Tanaka, Kanoh et al. 2005; Kowalczyk, Gauden et al. 2007; Kowalczyk, 
Gauden et al. 2008), and biochemical reactions in protein (Warshel, Olsson et al. 2006; Gao, 
Major et al. 2008; Major, Heroux et al. 2009) and RNA enzymes (Wong, Gu et al. 2012). 

The centroid potential  0W x  in Eq. (27) is defined as follows (Gillan 1987; Gillan 1987; 
Voth 1996; Ramírez, López-Ciudad et al. 1998; Ramírez and López-Ciudad 1999; Kleinert 
2004; Feynman, Hibbs et al. 2005): 
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where τ is a real number and represents the component for pure imaginary time in path 
integral,  x   describes a path in space-time,    0x x x  D  denotes a summation over 
all possible closed paths in which x  is equal to 0x  (i.e., a functional integration), and x  is 
the time-average position, called ‘centroid’ 
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In Eq. (28), A  is the quantum-statistical action: 

        ,
2

0 2
M

x d x V x


              


A  (30) 

where  V x  is the original potential energy of the system. Generalization of Eq. (28) to a 
multi-dimensional system is straightforward (Kleinert 2004; Feynman, Hibbs et al. 2005). 
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A number of non-stochastic approaches have been developed to approximately estimate the 
centroid potential. For example, Feynman and Hibbs described a first-order cumulant 
expansion by introducing a Gaussian smearing function in a free-particle reference frame to 
yield an upper bound on the centroid potential (Feynman, Hibbs et al. 2005). This was 
subsequently modified by Doll and Myers (DM) by using a Gaussian width associated with 
the angular frequency at the minimum of the original potential (Doll and Myers 1979). 
Mielke and Truhlar employed a free-particle reference state and approximated the sum over 
paths by a minimal set of paths constrained for a harmonic oscillator. The action integral is 
obtained by using the three-point trapezoidal rule for the potential to yield the displaced-
point path integral (DPPI) centroid potential (Mielke and Truhlar 2001). 

A closely related theoretical approach to the KP theory is the variational method 
independently introduced by Giachetti and Tognetti (Giachetti and Tognetti 1985), and by 
Feynman and Kleinert (hereafter labeled as GTFK) (Feynman and Kleinert 1986), which 
formally corresponds to the first order approximation in the KP theory, i.e., KP1. The GTFK 
approach is a variational method that adopts a harmonic reference state by variationally 
optimizing the angular frequency. This variational method has been applied to a variety of 
systems, including quantum dynamic processes in condensed phases (e.g., water and 
helium). Although the original GTFK approach is among the most accurate approximate 
methods for estimating the path-integral centroid potential in many applications (Mielke 
and Truhlar 2001), significant errors can exist in situations in which quantum effects are 
dominant, especially at low temperatures. Higher order perturbations of KP theory can 
significantly and systematically improve computational accuracy over the KP1 
results.(Kleinert 2004; Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; 
Wong, Gu et al. 2012) 

In essence, what Kleinert’s variational perturbation (KP) theory does is to systematically 
builds up anharmonic corrections to the harmonic centroid potential calculated in a 
harmonic reference state characterized by a trial angular frequency Ω (Kleinert 2004). Given 
the reference, or trial harmonic action: 

      .0
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A  (31) 

the centroid potential  0W x  in Eq. (28) can be expressed as a path integral of the harmonic 
action which is perturbed by the anharmonicity of the original potential: 
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where 0xQ  is the local harmonic partition function given as follows: 
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and 0x

  is the expectation value over all closed paths of the action in Eq. (31): 
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In Eq. (34),  F x     denotes an arbitrary functional. It is of interest to note that Eq. (32) is 
similar to the starting point of Zwanzig’s free-energy perturbation (Section 3), which has 
been extensively used in free-energy calculations through Monte Carlo and molecular 
dynamics simulations. Their difference is one is for ordinary ensemble average, while 
another one is for closed-path average, i.e., functional average. 

If we expand the exponential functional in Eq. (32) and sum up the prefactors into an 
exponential series of cumulants, then the nth-order approximation,  0nW x , to the centroid  
potential  0W x  can be written as follows (Kleinert 2004): 
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where 0 0
int
x x

 A A A  is the so-called inter-action, representing the perturbation to the 
harmonic reference state, 0

,
x

c  is a cumulant which can be written in terms of expectation 
values 0x

  by the cumulant expansion (Zwanzig 1954; Kubo 1962; Kleinert 2004), e.g., 
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More importantly, Kleinert and co-workers derived a math equation for expressing the 

expectation value  
0
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 from the functional-integral form to be in 

terms of Gaussian smearing convolution integrals (ordinary integrals) (Kleinert 2004): 
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where  Det 2
k k

a  
    is the determinant of the -matrixn n  consisting of the Gaussian 

width  2
k k

a  
 ,  2

k k
a  

   is an element of the inverse matrix of  2
k k

a  
 , and the Gaussian 

width is a function of the trial frequency Ω: 
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 (40) 

After using these smearing potentials given in Eq. (39), the nth-order Kleinert variational 
perturbation (KPn) approximation,  0nW x , shown in Eq. (35) as functional integrals, can 
now be written in terms of ordinary integrals as follows (Kleinert 2004): 
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where      0
22

0int
1
2

xV x V x M x x                  (the kinetic energy terms in Eq. (30) and 
Eq. (31) cancel each other out). 

As n tends to infinity,  0nW x  approaches the exact value of the centroid potential  0W x  
in Eq. (28), which is independent of the trial Ω. But the truncated sum in Eq. (41) does 
depend on Ω, and the optimal choice of this trial frequency at a given order of KP expansion 
and at a particular centroid position 0x  is determined by the least-dependence of  0x

nW   
on Ω itself. This is the so-called frequency of least dependence, which provides a variational 
approach to determine the optimal value of Ω,  opt, 0n x  (Kleinert 2004). 

Of particular interest is the special case when 1n  , which turns out to be identical to the 
original GTFK variational approach. An important property of KP1 or the GTFK variational 
approach is that there is a definite upper bound for the computed  1 0W x  by virtue of the  

Jensen-Peierls inequality, i.e., from Eq. (32) and (35): 
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Note that by choosing 0   (i.e., the reference state is for a free particle), KP1 or GTFK 
(Giachetti and Tognetti 1985; Feynman and Kleinert 1986) reduces to the Feynman-Hibbs 
approach (Feynman, Hibbs et al. 2005). For higher orders of n, unfortunately, it is not 
guaranteed that a minimum of  0x

nW   actually exists as a function of Ω. In this case, the 
least dependent Ω is obtained from the condition that the next derivative of  0x

nW   with 
respect to Ω is set to zero. Consequently, Ω is considered as a variational parameter in the 
Kleinert perturbation theory such that  opt,

0
0

x
n nW x    is least-dependent on Ω. 
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This variational criterion relies on the uniformly and exponentially convergent property 
demonstrated from the KP theory. Kleinert and coworkers proved that his theory exhibits 
this property in several strong anharmonic-coupling systems. More importantly, this 
remarkably fast convergent property can also be observed even for computing the electronic 
ground state energy of a hydrogen atom (3 degrees of freedom). The ground state energy 
was determined by calculating the electronic centroid potential at the zero-temperature 
limit. The accuracies of the first three orders of the KP theory for a hydrogen atom are 85%, 
95%, and 98%, respectively (Kleinert 2004). 

In practice, for odd n, there is typically a minimum point in Ω, but due to the alternating 
sign of the cumulants in Eq. (41), there is usually no minimum in Ω for even n. Nevertheless, 
the frequency of least-dependence for an even order perturbation in n can be determined by 
locating the inflexion point, i.e., the zero-value of the second derivative of  0x

nW   with 
respect to Ω. Since the KP expansion is uniformly and exponentially converged, Kleinert has 
demonstrated that the least-dependent plateau in  0x

nW  , which is characterized by a 
minimum point for odd n or by an inflexion point for even n, grows larger and larger with 
increasing orders of n (Kleinert 2004). 

5.2 Automated integration-free path-integral method 

An especially attractive feature of Eq. (41) is that the if the real system potential is 
expressed as a series of polynomials or Gaussians, then analytic expressions of Eq. (41) 
can be obtained, making the computation extremely efficient because the time-demanding 
Monte Carlo samplings for multi-dimensional numerical integrations could be avoided. 
Hereafter, the level of calculations up to nth order KP expansion for an mth-order-
polynomial potential is denoted as KPn/Pm. For other potentials, KPn theory still 
involves elaborate n-dimensional space-time (2n degrees of freedom) smearing integrals 
in Eq. (39). The intricacy of the smearing integrals increases tremendously for 
multidimensional potentials, where Ω becomes a 3 3N N  matrix Ωij for N nuclei. This 
complexity is a major factor limiting applications of the KP theory beyond KP1, the 
original FK approach. 

To render the KP theory feasible for many-body systems with N particles, we decouple the 

instantaneous normal mode (INM) coordinates  0
3Nxq  for a given configuration  3

0
N

x  

(Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, 
Gu et al. 2012). Hence the multidimensional V effectively reduces to 3N one-dimensional 
potentials along each normal mode coordinate. Note that INM are naturally decoupled 
through the second order Taylor expansion of V. The approximation of decoupling the INM 
coordinates has also been used elsewhere (Stratt 1995; Deng, Ladanyi et al. 2002). This 
approximation is particularly suited for the KP theory because of the exponential decaying 
property of the Gaussian convolution integrals in Eq. (39). In the decoupling INM 
approximation, the total effective centroid potential for N nuclei can be simplified as: 

        0
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where  0
,

x
i n iw q  is the centroid potential for normal mode i. Although the INM 

approximation sacrifices some accuracy, in exchange, it allows analyses of quantum 
mechanical vibration and tunneling, and their separate contributions to the W. Positive and 
negative values of iw  raise (vibration) and lower (tunneling) the original potential, 
respectively. In practice, real frequencies from the INM analysis often yields positive iw ’s in 
Eq. (43) with dominant contributions from zero-point-energy effects. For imaginary 
frequencies in the INM, the values of iw  are often negative, due to tunneling contributions. 

To obtain analytical expressions for the expectation values in Eq. (41), we use an mth order 
polynomial (Pm) to approximate or interpolate the potential along qi. Hereafter, an mth 
order polynomial representation of the original potential energy function obtained with an 
interpolating step size q Å both in the forward and backward directions along the normal 
mode coordinate at x0 is denoted as Pm-qA. Note that analytical results for P4 have been 
used by Kleinert for a quadratic-quartic anharmonic potential and a double-well potential 
(Kleinert 2004); however, higher order polynomials are needed to achieve the desired 
accuracy in real systems. We have thus derived the analytical closed forms of Eq. (41) up to 
P20 (Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; 
Wong, Gu et al. 2012). Consequently, the W as a function of an arbitrary Ω can be promptly 
obtained. This provides a convenient way to determine the least dependent Ω value without 
computing the complicated smearing integrals [Eq. (39)] iteratively for different trial values 
of Ω by Monte Carlo multi-dimensional numerical integrations. In fact, after the 
interpolating potential along each instantaneous normal-mode coordinate is determined, 
there is little computational cost for obtaining the W. Thereby, high level ab initio or density-
functional (DFT) methods can be used to evaluate the potential energy function for ab initio 
path-integral calculations (Wong, Richard et al. 2009; Wong, Gu et al. 2012). 

The computational procedure for obtaining the first and second order KP approximations to 
the centroid potential using our automated integration-free path-integral (AIF-PI) method is 
summarized below (Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard 
et al. 2009; Wong, Gu et al. 2012): 

1. For each  3
0

N
x , the mass-scaled Hessian matrix is diagonalized to obtain  0

3Nxq . 
2. The original potential V is scanned from the configuration  3

0
N

x  along each 0x
iq  for 10 

points both in the forward and backward directions to interpolate V as P20-0.1A. A step 
size of 0.1 Å should be a reasonable choice to yield W in a few per cent of the exact. 

3. After the P20-0.1A interpolations, each 0
, ( )x

i n iw q  as a function of Ω is readily obtained 
using the analytical expressions of KP1/P20 or KP2/P20. Note that the path integrals 
for these polynomials have been analytically integrated. 

4. The values of 0
, ( )x

i n iw q  are determined by numerically locating the least dependence of 
0

, ( )x
i n iw q  on Ω, i.e., zeroing the lowest order derivative of 0

, ( )x
i n iw q  w.r.t. Ω (first 

derivative for KP1 and usually second derivative for KP2). 

The procedure presented above is integration-free and essentially automated (Wong and 
Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, Gu et al. 2012). 
We hope it could be used by non-path-integral experts or experimentalists as a “black-box” 
for any given system. We are currently developing a formalism to systematically couple 
instantaneous normal-mode coordinates. 
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Due to the integration-free feature, our AIF-PI method is computationally efficient such that 
the potential energy can be evaluated using ab initio or density-functional theory (DFT) for 
performing the so-called ab initio path-integral calculations. Consequently, we used DFT to 
construct the internuclear potential energy function for computing kinetic isotope effects 
(KIE) on several series of proton transfer reactions in water with the AIF-PI method. These 
reactions are relevant to biosynthesis of cholesterol. The computed KIE results at the KP2 
level are in good agreement with experiment (Wong, Richard et al. 2009). Recently, we also 
employed the same computational technique to perform ab initio path-integral calculations 
of KIE on some RNA model reactions. Again, as shown in Table 2, the calculated values are 
in good agreement with experiments (Wong, Gu et al. 2012). 
 

Reaction 
KP2 Expt 

18kNu 18,34kLg 18kNu 18,34kLg 

Native 0.968 1.059 0.981(3) 1.034(4) 
S3′ 1.043 1.008 1.119(6) 1.0118(3) 
S5′ 1.042 1.002 1.025(5) 1.0009(1) 

Table 2. Calculated primary kinetic isotope effects (KIEs) on 2’ nucleophile (18kNu) and 5’ 
leaving (18kLg or 34kLg) oxygens for RNA-model reactions using our AIF-PI method based on 
second order of Kleinert’s variational perturbation theory (KP2), along with the most 
relevant available experimental (Expt) results for comparison. Experimental errors in the last 
decimal place are given in parenthesis. 

Another compelling feature of the AIF-PI method is that it does not suffer the convergence 
difficulties of PIMC or PIMD simulations at the zero-temperature limit, i.e., absolute zero 
temperature. At the zero-temperature limit (T = 0 K), in principle, minimizing the centroid 
effective potential with respect to the nuclear positions can give us two important physical 
quantities: the exact value of the eigenenergy for zero-point motion (i.e., the zero-point 
energy ZPE or the ground state energy) and the exact expectation values of the nuclear 
positions at the ground state (Ramírez, López-Ciudad et al. 1998; Ramírez and López-
Ciudad 1999), i.e., 

  min min 0
0

lim ,
T

W x E


  (44) 

and 

 min 0 0 ,x x   (45) 

where x  is the position operator, and minx  and  min minW x  are, respectively, the 
coordinate and value at the (global) minimum of the centroid potential. In Eq. (44) and (45), 

0  is the nuclear ground state wave function and 0E  is the lowest eigenvalue of the 
Hamiltonian, i.e., the zero-point energy. In a forthcoming paper, we will have a rigorous 
proof showing that in fact at absolute zero temperature, there is only one stationary and 
minimum point in centroid potential, which is true even for any many-body systems. 
Hence, our recently derived analytical zero-temperature-limit results provide a convenient 
way to compute these two important physical quantities without solving the Schrödinger 
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equation (Wong 2008; Wong and Gao 2008), e.g., see Table 3. Together with the accurate 
low-lying excitation energies (Ramírez and López-Ciudad 2001) which could be obtained by 
the frequency analysis of the Hessian matrix at the sole minimum point at absolute zero 
temperature (including tunneling splitting), potentially one day our AIF-PI method could 
replace MC or MD simulations to have highly reproducible and precise free-energy calculations 
for many-body systems. 
 

Molecule Quantum Harmonic KP1 KP2 
HCl 4.231 4.274 4.253 4.234 
HF 5.732 5.793 5.762 5.736 

H2 6.193 6.284 6.238 6.202 

Table 3. Ground state energy values (kcal/mol) for hydrogen chloride, hydrogen fluoride, 
and hydrogen molecules from the Morse potential using the harmonic-oscillator 
approximation, and our AIF-PI method based on first and second orders of the Kleinert’s 
variational perturbation theory (KP1 and KP2). 

 

Born-Oppenheimer Approximation 

Electronic Schrödinger equation 
Ab initio molecular orbital theory 

Internuclear Schrödinger equation 
Systematic internuclear thermodynamics 

theory 

Most molecular properties of interest are 
at 

low lying electronic energy states 

All thermodynamic properties virtually 
can be derived from quantum partition 

functions 

Hartree-Fock (HF) theory 
Kleinert’s variational perturbation 

theory for centroid effective potential 

Independent electron (single-electron) 
approximation 

Decoupled instantaneous normal 

coordinate approximation (DINCA) 

Roothaan and Hall expressed the Fock 
operator in terms of basis functions for 
solving HF equations in matrix algebra 

self-consistently (SCF) 

We propose interpolating potential energy 
functions to mth order polynomials in 

which analytic results of path-integration 
can be derived 

Explain chemical properties in terms of 
frontier occupied and unoccupied 

molecular orbitals 

Quantum effects from vibration and 
tunneling are separated and quantified in 

one mathematical framework 

Post Hartree-Fock method to include 
correlation energy by systematically 

couple single-electron orbitals 

Work out a formalism to systematically 
couple instantaneous normal coordinates 

Table 4. Comparison (1) between Kleinert’s variational perturbation (KP) theory and 
Hartree-Fock (HF) theory, (2) between our decoupled instantaneous normal coordinate 
approximation and independent electron approximation, and (3) between our integration-
free path-integral results for polynomials in the KP theory and Roothann-Hall basis function 
approach for HF theory. 
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Finally, we make a quite interesting table (Table 4) to compare the traditional ab initio 
molecular orbital theory for electronic structure calculations with our systematic approach 
for computing internuclear quantum effects. In short, the rigor and the spirit of both types of 
methods is the same. We first breakdown or dissect a complicated many-body problem into 
many one-body problems. Then we identify which one bodies are more important. Next we 
couple back those important one bodies to systematically approach the exact. 

6. Systematic ab initio path-integral free-energy expansion approach 

In order to systematically refine a classical free-energy profile to become ultimate quantum 
free-energy profile, in which both electrons and nuclei are treated quantum mechanically 
and adiabatically, we are developing a systematic ab initio path-integral free-energy 
expansion (SAI-PI-FEE; ) approach. In this  approach, we combine our novel free-
energy expansion (FEE) method (Section 4) with our automated integration-free path-
integral (AIF-PI) method (Section 5.2) such that we can perform ab initio path-integral 
simulations for realistic molecular systems. The key of this combination is that first we 
realize the quantum partition function can be computed as a classical configuration shown 
in Eq. (27), then now in Eq. (23), we treat the E as: 

 ,E W V    (46) 

where V is the original internuclear potential and W is the centroid potential. So once we get 
the accurate value of W using our AIF-PI method, we can go ahead using our FEE method to 
systematically upgrade the level of our classical free-energy profile to an ab initio path-
integral level, in which zero-point energy and tunnelling effects in nuclei, and isotope effects 
could all be incorporated. 

In order to rigorously validate our  method in a more effective way, the free-energy 
perturbation (FEP) in the Hamiltonian space will be performed, using the recently derived 
“universal” probability density function (UPDF), which is defined as follows: 

       exp .b E s
P E K a b E s e

      
 

 (47) 

 

 
Fig. 1. Free energy perturbation for a water molecule in the Hamiltonian space using the 
universal probability density function (UPDF). 
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This UPDF can be used to determine the change of free energy G in Eq. (23), by simply 
locating the intersection point of two probability density functions (Nanda, Lu et al. 2005; 
Chipot and Pohorille 2007). In Eq. (47), E is a variable for the difference of the Hamiltonian 
or energy between two levels of theory, while K, a, b, and s are the fitting parameters. In 
Figure 1, we demonstrate the simultaneous fitting to the UPDF to determine the change of 
free-energy for a water molecule from HF/6-31G(d) to MP2/6-311G(d,p). The intersection 
point of the two probability functions at −170.917 kcal/mol is the best estimate value for the 
G in Table 1 above. 

7. Conclusion and outlook 

In this chapter, we (wongky@biomaps.rutgers.edu; kiniu@alumni.cuhk.net) discuss 
developing the method to systematically generate quantum free-energy profiles at an 
ab initio path-integral level in molecular simulations. Since quantum free energy or partition 
function is a universal central quantity in thermodynamics of biology, chemistry, and 
physics, we anticipate our method would be very crucial in both Life and Materials 
Sciences and wish that it could be used by non-specialists as a black box one day. 
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