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1. Introduction  

3D graphics applications make use of polygonal 3D meshes for object’s shape 
representation. The recent introduction of high-performance laser scanners and fast 
microcomputer systems gave rise to high-definition graphics applications. In such 
applications, objects with complex textures are represented using dense 3D meshes which 
consist of hundreds of thousands of vertices. Due to their enormous data size, such highly-
detailed 3D meshes are rather intricate to store, costly to transmit via bandwidth-limited 
transmission media, and hard to display on end-user terminals with diverse display 
capabilities. Scalable compression, wherein the source representation can be adapted to the 
users' requests, available bandwidth and computational capabilities, is thus of paramount 
importance in order to make efficient use of the available resources to process, store and 
transmit high-resolution meshes. 

State-of-the-art scalable mesh compression systems can be divided into two main categories. A 
first category includes codecs that directly compress the irregular topology meshes in the 
spatial domain. In such codecs, the connectivity information is encoded losslessly while mesh 
simplification methods such as vertex coalescing (Rossignac & Borrel, 1993), edge decimation 
(Soucy & Laurendeau, 1996) and edge collapsing (Ronfard & Rossignac, 1996) are employed to 
encode geometry. These mesh simplification methods progressively remove those mesh 
vertices which yield the smallest distortion. In order to enable the reconstruction of the original 
mesh at various levels of detail (LODs), the discarded vertices are encoded in the compressed 
bit-stream. Mesh compression systems belonging to this category include Progressive Meshes 
(Li & Kuo, 1998), (Pajarola & Rossignac, 2000) and Topological Surgery (Taubin et al., 1998). 
These techniques generally exhibit two major drawbacks: first, due to the highly irregular 
topology of the input mesh, a large source rate is needed for lossless encoding of connectivity. 
Secondly, encoding the removed vertices in the compressed bit-stream is quite costly for high-
resolution meshes. Therefore, such schemes are not useful for complex meshes containing a 
large number of vertices. An alternative that solves the problem of the large source rates 
needed to encode the connectivity information, described above, is remeshing, which can be 
used to convert the original irregular mesh into a mesh consisting of regular elements, such as 
B-spline (Eck & Hoppe, 1996) or subdivision connectivity patches (Eck et al., 1995). The regular 
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mesh lends itself better to compression, and hence compared to the irregular mesh a much 
lower rate is needed to losslessly encode its connectivity information. Furthermore, 
multiresolution techniques alleviate the second problem of having to encode all the original 
vertices, because only detail information has to be encoded in order to create multiple LODs 
(or multiple resolution levels). Remeshing together with subdivision-based multiresolution 
(Lounsbery et al., 1997) are the two major components of the second category of codecs which 
use space-frequency dilation methods such as wavelet transforms to decorrelate the input 
mesh data (Khodakovsky et al., 2000), (Denis et al., 2010b). The generated wavelet coefficients 
are compressed using tree-based bit-plane coding methods (Shapiro, 1993), (Munteanu et al., 
1999b) to achieve high compression efficiency. Multiresolution mesh compression techniques 
provide substantial compression gains compared to their competing schemes, and in this 
chapter we will confine our discussion to these techniques only. 

In the recent past, several multiresolution scalable mesh compression schemes have been 
proposed. The majority of these schemes use coding techniques which were specifically 
developed for image compression. However, in general, image and mesh data exhibit different 
statistical characteristics as the images are consisting of pixels (with intensities) while mesh 
data involve geometry, i.e., the positions of vertices in a 3D space. Thus, one must be cautious 
when extrapolating image compression techniques towards mesh geometry encoding.  

In this book chapter, we propose a constructive design methodology for multiresolution- 
scalable mesh compression systems. The input mesh is assumed to possess subdivision 
connectivity (Lounsbery et al., 1997), i.e., the connectivity in the mesh is built through 
subdivision1. A 3D mesh with subdivision connectivity is also referred to as a semi-regular 
mesh. With respect to design, we address two major aspects of scalable wavelet-based mesh 
compression systems, namely, the optimality of embedded quantization in scalable mesh 
coding and the type of coefficient dependencies that can assure the best compression 
performance. In this context, thorough analyses investigating the aforementioned aspects 
are carried out to establish the most appropriate design choices. Later on, the derived design 
choices are integrated as components of the scalable mesh coding system to achieve state-of-
the-art compression performance.  

The remainder of the book chapter is organized as follows: in Section 2, a brief overview of 

multiresolution analysis of the mesh geometry is given. Section 3 presents a model-based 

theoretical investigation of optimal embedded quantization in wavelet-based mesh coding. 

An information theoretic analysis of the statistical dependencies among wavelet coefficients 

and the conclusions regarding the best exploitable statistical dependency are detailed in 

Section 4. Section 5 gives an overview of the state-of-the-art mesh compression systems. 

2. Multiresolution analysis of semi-regular meshes 

A 3D mesh  c, p }{M  is generally represented as a set of two components, a vertex list c  

and a polygon list p . c  is a matrix whose ith row ic  contains the x , y  and z  position of 

the ith vertex, i.e.,    , , ,, ,i i x i y i zc c c c . p  is a list of polygons made up of edges where each 

edge is a line connecting two vertices. In computer graphics, 3D meshes are constructed 

                                                                 
1 In general, an initial remeshing step (Eck et al., 1995) is required to convert the original irregular mesh 
into a mesh with the required connectivity.  
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using different polygonal shapes, e.g., triangles, rectangles etc. However, in this chapter, we 

will confine our discussion to the triangular meshes only. 

In the following, a brief theoretical overview of semi-regular multiresolution analysis is 
presented. Later on, two practical transforms, namely the lifting-based wavelet transform 
and the spatially adapted wavelet transform are detailed. 

2.1 Theory 

2.1.1 Subdivision surfaces 

Subdivision is a process of iteratively refining a control polyhedron 0M  into fine geometry 

polyhedra such that the refined polyhedra 1 2 3, , ...M M M  converge to a limit surface M . In 

general, subdivision schemes consist of splitting and averaging steps. In the splitting step, 

each triangular face is split into four sub-triangles by adding new vertices. This way, an 

intermediate polyhedron jM  is created for any level j . The averaging step is used to 

determine the position of each vertex in jM  from its local neighborhood of vertices in jM , 

 1,2,...,j J .  

1c

6c5c

4c

3c

2c

7c
8c

p
c

 

Fig. 1. Butterfly subdivision stencil. 

  P 1j jN Nj  and  Q 1 1j jN Nj (where jN  denotes the number of vertices of jM ) are the 

splitting and averaging matrix at level j . The subdivision process, expressed in matrix 

form, can be written as: 

c Q P c
1j j j j    ,  0,1,2,..., 1j J .  

A commonly used subdivision is Butterfly subdivision (Dyn et al., 1990). The subdivision 

stencil for Butterfly is shown in Fig. 1, where the position of a newly introduced vertex p  is 

computed as, 
8

1p i ii
c a c whereby ia ’s denote the Butterfly weights (Dyn et al., 1990). 

Loop (Loop et al., 2009) and Catmull-Clark (Catmull & Clark, 1978) are among the other 

commonly used subdivision schemes for 3D meshes. 

2.1.2 Multiresolution analysis 

Lounsbery (Lounsbery et al., 1997) first invented the multiresolution analysis for arbitrary 

topology semi-regular surfaces using subdivision. He proved that refinable bases exist when 

a coarse mesh 0M  is refined through subdivision, i.e., 
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    j j j x x P1  , for x 0M  and  0 j J . (1) 

 j x  in the above equation denotes the row vector of scaling functions  j
i . Given these 

refinable scaling functions, scalar-valued function spaces associated with the coarsest 

geometry 0M  are defined as (Lounsbery et al., 1997): 

     Span x0 :j jV M  , for  0 j J . (2) 

Eq (1) implies that these spaces are indeed nested, i.e., 

        0 0 1 0 2 0 ...V M V M V M ,  (3) 

The wavelet space  0jW M  is defined as a space which is the orthogonal complement of 

 0jV M  in  1 0jV M . Hence,  0jW M  and  0jV M  together can represent any scalar-

valued piecewise function in the space  1 0jV M . If  x
j  is a row vector containing 

refinable bases functions of  0jW M , the following stands (Lounsbery et al., 1997): 

    j j j x x Q1  , for x 0M  and  0 j J . (4) 

Combining (1) with (4) yields 

         P Q
j j j x x x1, , ,j j    or         j j j

  P Qx x x
1

1, ,j j    . (5) 

A set of scaling functions  j+1 x  can then be used to decompose a surface 1jS  in 
1 0( )jV M , i.e., 

  j      x c11 1 11jj j j
i i

i

S c  , (6) 

where 1j
ic  is the ith vertex in 1jM . Since the analysis filters are uniquely determined by 

the relationship 

    
   
 

P Q
A

B

1 j
j j

j , (7) 

by combining Eq (5) and Eq (6) and making the above substitution for  P Q
1

j j , we  

obtain: 

           x A c x B c1 1 1.j j j j j j jS    (8) 

From Eq (8), Eq (9)  one derives the forward wavelet transform, given by: 

 = =
  c A c d B c1 1,j j j j j j

, j :  0 j J , (9) 
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j
A

j
B

1j
A

1j
B

0
M1j

M
 j

M

j
d

1j
d

 

Fig. 2. Pictorial representation of the forward wavelet decomposition, (Lounsbery et al., 
1997). 

where d j  is a matrix containing the wavelet coefficients for the thj  level of the transform. 

In general, after the transform, a fair amount of correlation still exist between x , y  and z

wavelet component. Local frame representation (Khodakovsky et al., 2000) of wavelet 

coefficients is often used to make wavelet components much more independent. After the 

local frame transformation, each wavelet coefficient consists of a normal and two tangential 

components. sA j  and sB j  are matrices representing the low and the high-pass filters, 

respectively, also referred to as analysis filter pairs. 

A similar reasoning as for Eq (9) can be used to formulate the inverse wavelet transform, 
expressed by: 

 1j j j j j   c P c Q d= , for j :  0 j J . (10) 

Hence, sP j  and sQ j  jointly form the synthesis part of the decomposition for the lossless 

reconstruction of the input semi-regular mesh JM . Note that the computation of the sA j  

and sB j  involves the inversion of a large matrix, which makes the forward transform more 

complex than the inverse transform. 

2.2 Lifting-based wavelet transform 

As explained earlier, the filter bank implementation of multiresolution analysis is quite 

complex in the sense that the computation of analysis filters involve the computationally 

intensive inversion of large subdivision matrices. In this context, the lifting-based  wavelet 

implementation (Schröder & Sweldens, 1995) provides a low complexity construction of 

multiresolution methods. In lifting-based multiresolution analysis, each scaling function  j
i  

of the jth level exists so that  { | }j j
i i M  is a Riesz basis of  0jV M  (Schröder & Sweldens, 

1995). The refinement relation for the scaling functions is then: 

     1
, ,jj j

i ii l
l

p  (11) 

where l  is the set which defines all linear combination of scaling functions and ,
j
i lp  forms 

the entries of a matrix similar to P j . A similar refinement relation as Eq (11) is also defined 

for wavelet functions, i.e., each wavelet function  j
k  exists so that  { | }j j

k k K  is a Riesz 

basis of  0jW M : 
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     1
, .jj j

k kk l
l

q  (12) 

jK  and jM  are disjoint sets and they jointly form the scaling function index set of the next 

higher level, i.e.,   1j j jM M K . The lifting-based forward decomposition is expressed by 

the following relations (Schröder & Sweldens, 1995): 

 

subsample

prediction

update







   

    

     
  







1

1

11 1

22 2

:

: .

:

j

j j j
i i

j j j j
k k i i

i M

j j j
kj

j j j
k

i M c c

k K d c a c

c c a d
k K

c c a d

 (13) 

In the forward transform, the first step is to produce a lower-resolution mesh jM  starting 

from a higher-resolution version 1jM . The wavelet coefficient j
kd  is the prediction error 

when a high-resolution vertex 1j
kc  is predicted based on its low-resolution neighborhood 

in jM . After the prediction, an update step is used to modify the low resolution mesh jM . 

The update step is carried out on a pair 1 2{ , }c c  of low-resolution vertices joined by a parent 

edge (Schröder & Sweldens, 1995) using the update weights  1 2{ , }a a . In general, the 

prediction and update weights only depend on the connectivity with respect to the vertex to 

be predicted. However, specific multiresolution analyses for which the weights depend on 

the specific resolution level and the underlying geometry can be also constructed (more 

details are given in Section 2.3).  

The inverse transform can be formulated by following the forward-transform steps in the 
reverse order, i.e.: 

 

inverse update

inverse predict

inverse subsample






     
  

     

   






11 1

22 2

1

1

:

:

:

j

j j j
kj

j j j
k

j j j j
k k i i

i M

j j j
i i

c c a d
k K

c c a d

k K c d a c

i M c c

  (14)  

2.3 Spatially Adaptive Wavelet Transform (SAWT) 

As mentioned earlier, lifting-based transforms generally employ fixed prediction weights, 

independent of the spatial position and geometry around the vertex to be predicted. A 

simple observation reveals that a better prediction can result from adapting the prediction to 

the underlying geometry of the mesh. This argument is explained with a simple example: 

Fig. 3, referring to the position variable of the vertices, shows a scenario where the vertex to 

be predicted pc  lies on the straight line joining the vertex pair  1 2,c c , while the remaining 

six coarser vertices 
8

3{ }i ic  lie on two different planes. In this situation, a prediction function 

for pc  involving all eight coarser vertices will not be optimal and a better prediction could 

result by using 1c  and 2c only. This is logical since pc  lies on the edge formed by the vertex 

pair  1 2,c c  and is geometrically more correlated to vertices  1 2,c c . Thus, an efficient 
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prediction can be achieved if the prediction process is adapted to the local mesh geometry. 

Efficient prediction results in smaller energy of wavelet coefficients and hence an improved 

compression performance of the mesh coding system. To reverse the prediction operation, 

the decoder needs to know the weights used by the encoder for the prediction of each vertex 

pc . Since additional rate (compared to classical Butterfly) needs to be spent for coding the 

prediction weights, the total compression efficiency in the geometry adaptive case is a 

compromise between the bitrate saved due to the efficient prediction and the extra bitrate 

needed for signaling the prediction weights. 

pc1c
2c

5c
3c 6c

7c 8c4c
 

Fig. 3. Butterfly footprint on an edge. 

In the following, a finite set of prediction filters is proposed in the context of spatially-
adaptive wavelet transforms (SAWT) (Denis et al., 2010a). The idea is to use one filter out of 
this set which best suits the geometry around the vertex to be predicted and which results in 
the smallest prediction error. A careful application of such an adaptive approach will 
provide an average rate gain if the reduction in the bitrate due to better prediction 
dominates the extra bitrate needed to signal the filter type to the decoder. 

In a first step, the input semi-regular mesh is segmented into regions as follows. Let  ,B r s

denote the bounding box of the input semi-regular mesh, where   , ,B B Br x y z  and 

  , ,x y zs s s s  represent the coordinates of the top-left corner and the size vector, 

respectively. Considering the bounding box as the root cell, each cell on a certain tree level is 

recursively split into eight equally sized sub-cells to create the next level of the octree. This 

recursive splitting continues until the number of vertices in the highest-level cells are 

smaller than a user-defined threshold  . This way, the semi-regular mesh is divided into 

regions of approximately the same size – see Fig. 4.  

For each region k , the wavelet analysis is performed by selecting one of the six candidates 

filters given below: 

       
       
     
   
   
   

Butterfly

Modified Butterfly

Loop

Hybrid of and

        

        

    

  

  

    

1 1 1
1 1 2 3 4 5 6 7 82 8 16

1 1 1
2 1 2 3 4 5 6 7 82 4 8

3 1
3 1 2 3 48 8

1
4 1 22

1
5 3 42

1
6 1 2 3 4 4 54

edge

anti edge

f c c c c c c c c

f c c c c c c c c

f c c c c

f c c

f c c

f c c c c f f
 

Note that the above set of filters is defined using a mixture of Butterfly, Loop and midpoint 
subdivision schemes. 
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Fig. 4. Mesh partitioning for   400 . The red and green patches indicate different regions 

for which different prediction filters will be selected. 

Similar to (Chang & Girod, 2006), a filter candidate for a particular region k  in JM , is 

chosen in an optimal distortion-rate (D-R) manner. More specifically, a predictor for each 

region k  is selected such that the following Lagrangian cost function is minimized: 

 
 

   


          


2

,,
1,2,..,6

arg minJ
lk p p f k lM k

l

E c c R f  (15) 

where  k lR f  denotes the rate necessary for encoding the filter index l  used for prediction 

in the region k. 

3. Scalable quantization of wavelet coefficients 

In scalable mesh compression, the wavelet coefficients in the subbands are quantized using 
a generic family of embedded deadzone scalar quantizers (EDSQ) (Taubman & Marcelin, 
2001), in which every wavelet coefficient X  is quantized to: 

  


 
  

         



,

0

0

n n
n n n

X X
sign X if

q

otherwise

 (16) 

where  n  denotes the quantization level. n  and n  denote the deadzone control 

parameter and the step size for any  0n , respectively, with   0 2n
n  and   02n

n , 

where 0  and 0  are the parameters for the highest rate quantizer ( 0)n . Note that  0 0  

corresponds to the well-known SAQ (Shapiro, 1993) in which the deadzone size is twice the 

step size n  for any n . 

3.1 Wavelet coefficient histogram 

In general, the observed histogram j
kH  of the thk ,  , ,k x y z , coordinate component of 

the thj wavelet subband is symmetric around its center of mass which is often zero or very 

close to zero. Moreover, the histogram is peaky around the mean and the frequency of 

occurrence decays as the magnitude of the coefficient’s component increases. Fig. 5 depicts 
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the observed histograms of the d 3J  subband of Rabbit (non-normal mesh) and Dino (normal 

mesh) obtained using the classical Butterly transform. It is observed experimentally that, in 

general, 12 2( ) ( )j j
k kH H    for 1 j J  .  

In the literature, the observed histogram of any component of a wavelet subband is 
generally modeled using a zero mean generalized Gaussian (GG) distribution (Mallat, 1989), 
expressed by: 

 

1

( , , )
2 (1 )

x
GGx f x e

  


  


 , (17) 

where  ,    0,2 , is the shape control parameter.   0  is the scaling factor and 

        1 23 1 , where   is the Gamma function. Note that, for   1 , Eq (17) 

transforms into a zero-mean Laplacian probability density function (PDF) given by: 

 

2
1

( , )
22

x x
Lx f x e e

 


      where  


2
, (18) 

and for   2  Eq (17) corresponds to a zero-mean Gaussian PDF.  

Although GG distributions closely approximate the observed histogram of wavelet 
coefficients, only approximate rate and distortion expressions for a uniformly quantized GG 
random variable are known (Fraysse et al,. 2008). The extension of these expressions to 
embedded quantization is not evident as the rate and distortion functions for such 
distributions are not easily tractable and can only be computed numerically. Moreover, 
computing these quantities gets very cumbersome due to the slow numerical integration of 
expressions involving a GG probability function, especially for   1 . 

3.2 Proposed Laplacian mixture model 

In order to avoid the aforementioned drawbacks of GG distributions, we propose a simple 
Laplacian mixture (LM) model which not only gives an easy closed-form derivation of the 
distortion and rate quantities but also better approximates the observed histogram of 
wavelet coefficients in the majority of cases. The proposed LM is a linear combination of two 
Laplacian PDFs, i.e., 

                1 2( ) , 1 ,LM L Lx f x f x f x . (19) 

Note that ( )LMf x  indeed defines a probability function, as 



 ( ) 1LMf x dx . 

The LM model is fitted over the observed data using the expectation maximization (EM) 
algorithm (Dempster et al., 1977) in order to determine the parameters  1 ,  2  and  . The 

E-step in the EM process calculates two responsibility factors  

 
     

   
     

1 2
1 2

1 2 1 2

, 1 ,
( ) , ( ) ,

, 1 , , 1 ,

   
       

  
 

       
L i L i

L i L i L i L i

f x f x
r i r i

f x f x f x f x
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of each observation  , 1ix i N  and the M-step updates the parameters to be estimated,  

as: 

 

 
 1

1
1

1

.
1

2 , 1,2, and

N

m i N
i

m N
i

m
i

r i x

m r i
N

r i







  





  . 

The E- and M- steps are executed in tandem till the algorithm achieves minimum Kullback-

Leibler (KL) distance between the observed and model histograms. A better convergence rate 

is achieved by the initialization condition  2 2
1 0.5 E ,  2 2

2 2 E  and   0.9 , where  2
E  is 

the estimated data variance. Histogram fitting for GG distributions is done using the brute-

force method where parameters 1 , 2  and   are exhaustively computed for a minimum 

KL distance.    

3.3 Distortion-Rate (D-R) function 

Closed-form expressions for the output distortion LD  and the output rate LR  of a Laplacian 

source quantized using an n  level EDSQ are derived in the Appendix. In this section, we 

derive the D-R function for our proposed LM model. Since the distortion is a linear function 

of the source PDF, the output distortion LMD  of the LM PDF for any quantization level n  can 

be written as: 

        , , ,1         
n n n n n nLM L LD Q D Q D Q , with 1  n n . (20) 

This does not hold for the output rate LMR  since the entropy involves the non-linear  log .  

function. Instead, LMR  can be computed as an infinite sum:  

0 0
2 ( )

 
  n n

LMP f x dx , 
( )

( 1 )
( )





 

  
  n n

n n

k

k LMk
P f x dx , 1,2,3...k , and , 2( ) log






  n nLM k k
k

R Q P P

, 

where kP  denotes the probability mass of the thk  quantization cell (  0k  corresponds to the 

deadzone cell). Since the LM model is symmetric around its mean, k kP P . Note that the 

probability mass function (PMF) can be computed exactly due to the possibility of analytical 

integration of ( )LMf x . For the GG distribution, however, only numerical integration is 

possible. 

3.4 Model validation 

This section demonstrates that the proposed LM model is able to approximate the observed 

histogram and the observed D-R function of 3D wavelet coefficients more accurately 

compared to the commonly utilized GG distributions. For comparison purpose, results for 

the single Laplacian    0LMf  case are also reported. 
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Fig. 5. Probability function fitting over the observed histogram (Exp) for d 3J -normal 

component for Rabbit (left) and Dino (right). SL is used as the abbreviation of single 
Laplacian PDF.  

 

 

 

Fig. 6. Modeled and observed D-R functions for the histograms of Fig. 5. Rate is taken as bits 
per spatial coordinate component. 

Fig. 5 illustrates that the proposed mixture model provides a better fitting probability 

function for the observed histogram compared to the Laplacian and GG distributions. This 

is especially true for the middle range positive and negative coefficients values – see Fig. 5. 

For the Rabbit mesh, LM gives only slightly better fitting than the other two models. 

However, for Dino, the LM can clearly model the fast decay of the observed histogram more 

accurately than the GG. The Laplacian PDF in this case only gives a very coarse 

approximation of the observed histogram. 
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Mesh 
Type 

Mesh (Filter) 
SL LM GG 

Nor Tan 1 Tan 2 Nor Tan 1 Tan 2 Nor Tan1 Tan 2 

N
o

n
-N

o
rm

a
l 

Venus(U-BF) 
0.097 
(6.3) 

0.114 
(10.3) 

0.103 
(8.9) 

0.075 
(1.3) 

0.100 
(3.3) 

0.091 
(2.8) 

0.086 
(4.7) 

0.102 
(5.0) 

0.089 
(4.7) 

Venus(L-BF) 
0.137 
(11.4) 

0.137 
(10.1) 

0.104 
(6.0) 

0.090 
(2.0) 

0.108 
(2.9) 

0.080 
(1.9) 

0.112 
(8.1) 

0.121 
(5.4) 

0.092 
(4.1) 

Venus(Loop) 
0.113 
(9.4) 

0.102 
(7.3) 

0.091 
(6.7) 

0.085 
(3.3) 

0.090 
(1.8) 

0.069 
(1.7) 

0.098 
(7.1) 

0.092 
(3.9) 

0.081 
(5.0) 

Rabbit(U-BF) 
0.170 
(8.6) 

0.171 
(10.4) 

0.172 
(10.2) 

0.134 
(1.4) 

0.136 
(2.0) 

0.132 
(1.8) 

0.150 
(5.7) 

0.143 
(5.2) 

0.147 
(6.2) 

Rabbit(L-BF) 
0.208 
(12.0) 

0.188 
(10.7) 

0.177 
(8.4) 

0.143 
(2.5) 

0.140 
(1.5) 

0.138 
(1.8) 

0.160 
(6.7) 

0.152 
(5.1) 

0.153 
(5.3) 

Rabbit(Loop) 
0.167 
(11.2) 

0.207 
(11.2) 

0.173 
(8.3) 

0.115 
(2.4) 

0.156 
(1.8) 

0.135 
(2.3) 

0.136 
(7.9) 

0.177 
(7.6) 

0.152 
(5.2) 

N
o

rm
a

l 

Dino(U-BF) 
0.527 
(16.2) 

0.656 
(34.3) 

0.971 
(42.7) 

0.145 
(5.6) 

0.147 
(7.8) 

0.154 
(9.4) 

0.165 
(7.5) 

0.132 
(23.4) 

0.141 
(30.3) 

Skull(U-BF) 
1.108 
(37.2) 

1.473 
(44.9) 

1.877 
(50.4) 

0.120 
(3.9) 

0.138 
(7.9) 

0.157 
(20.5) 

0.145 
(12.8) 

0.141 
(15.4) 

0.141 
(19.9) 

Skrewdriver(U-
BF) 

0.5294
(33.0) 

0.6477
(42.4) 

0.6377
(41.9) 

0.309 
(14.4) 

0.251 
(17.0) 

0.263 
(20.0) 

0.315 
(25.0) 

0.262 
(34.8) 

0.249 
(35.2) 

Table 1. KL (%ME, the modeling error as defined in Eq (19)) for the normal (NOR) and the  
two tangential components (TAN1, TAN2) averaged over the five subbands. U-BF (Unlifted 
Butterfly), L-BF (Lifted Butterfly). 

Fig. 6 plots the observed and model D-R curves for the same subband as the one used in Fig. 

5. For Rabbit, the LM D-R almost completely overlaps the observed D-R curve. In both cases, 

the D-R function of the proposed LM model follows the experimental D-R curve more 

closely than the other two models. 

In Table 1, the average KL divergence results for the Laplacian, GG and LM models for two 

non-normal (Venus, Rabbit) and three normal (Dino, Skull, Skredriver) meshes are shown. 

Each of the three coordinate components is considered separately. For each trial of Table 1, 

average is taken over five highest resolution subbands. For the large majority of cases, the 

LM model gives better fitting of the observed histogram than the competing GG model. 

Note that the Laplacian model gives always the worst fitting results. Also, the LM model 

gives equally good fitting for both normal (Nor) and tangential (Tan 1 and Tan 2) components. 

Superior histogram fitting results of our proposed model are also observed for the SAWT of 

Section 2.3. These results are not reported here due to lack of space.  

In Table 1, the percentage modeling error (%)ME  relative to the KL divergence is shown in 

parenthesis of each table entry. The (%)ME  is defined in order to gauge the D-R accuracy of 

the proposed mixture model with respect to other two models. (%)ME  is defined as: 

 

   

    






 



(%) 100

max ,

M E

R

M E
R

R

D R D R

ME
D R D R

. (21) 
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Mesh 
Type 

Mesh (Filter) 
SL LM GG 

 1J  2J  3J  1J  2J  3J  1J  2J   3J  

N
o

n
-N

o
rm

a
l 

Venus(U-BF) 
0.044 
(13.6) 

0.038
(8.4) 

0.039
(3.5) 

0.014
(2.9)

0.008
(0.85)

0.025
(1.5)

0.027
(9.5) 

0.024 
(5.6) 

0.033 
(2.8) 

Venus(L-BF) 
0.050 
(13.8) 

0.070
(13.9)

0.076
(7.6) 

0.010
(2.1)

0.010
(1.5)

0.027
(1.7)

0.029
(9.9) 

0.041 
(10.1) 

0.049 
(4.1) 

Venus(Loop) 
0.051 
(13.8) 

0.054
(11.0)

0.038
(4.0) 

0.016
(2.4)

0.009
(1.6)

0.023
(0.80)

0.036
(11.0)

0.031 
(6.8) 

0.032 
(2.7) 

Rabbit(U-BF) 
0.064 
(14.0) 

0.062
(11.4)

0.082
(8.1) 

0.008
(1.5)

0.011
(1.0)

0.035
(1.3)

0.029
(8.6) 

0.032 
(6.8) 

0.054 
(4.9) 

Rabbit(L-BF) 
0.069 
(14.2) 

0.093
(13.9)

0.111
(11.2)

0.007
(1.5)

0.011
(1.1)

0.035
(1.8)

0.029
(8.6) 

0.040 
(8.6) 

0.058 
(5.9) 

Rabbit(Loop) 
0.082 
(16.4) 

0.088
(14.7)

0.085
(9.0) 

0.011
(2.0)

0.013
(1.9)

0.034
(2.0)

0.042
(11.5)

0.038 
(8.7) 

0.058 
(5.4) 

N
o

rm
a
l 

Dino(U-BF) 
1.208 
(56.7) 

0.873
(46.7)

0.623
(34.7)

0.029
(13.7)

0.074
(12.8)

0.049
(4.6)

0.031
(41.3)

0.042 
(32.9) 

0.058 
(20.4) 

Skull(U-BF) 
2.039 
(65.7) 

1.981
(49.9)

1.832
(32.4)

0.054
(34.2)

0.040
(7.6)

0.076
(5.1)

0.036
(40.2)

0.068 
(15.1) 

0.066 
(8.3) 

Skrewdriver(U-
BF) 

0.536 
(67.0) 

0.696
(61.6)

0.483
(39.7)

0.067
(53.2)

0.074
(18.2)

0.065
(7.3)

0.035
(64.0)

0.064 
(54.3) 

0.101 
(25.4) 

Table 2. KL (%ME) for three resolution subbands averaged over the three coordinate 
components. 

From Table 1, it is evident that on average the proposed LM model performs better than the 

GG and Laplacian models also in the ME  sense. Better ME  results are also obtained for 

SAWT (not reported here). Hence, the proposed LM model along with the derived D-R 

function is a better choice for modeling both the histogram and the D-R curve of mesh 

wavelet coefficients compared to the contemporary models. One notices that, a best 

histogram fitting in KL  sense may not always yield the lowest ME . 

Table 2 reports the model validation results for different resolution subbands.  For each trial 

the average is taken across the three spatial coordinate components. It is observed that the 

GG model performs slightly better for the low-resolution subbands of some meshes. The 

observed histograms in such cases are more Gaussian-alike, i.e., they have a round top. In 

general, the LM model faces difficulty in approximating such a round-top histogram due to 

the peaky nature of each of its Laplacian components; the GG fits well such histograms, as it 

corresponds to a Gaussian distribution for   2 . Nevertheless, the results show that, on 

average, the LM model outperforms the Laplacian and the GG models in KL as well as in 

ME sense. 

3.5 Optimal embedded quantization  

In this section, conclusions regarding the optimal EDSQ to be used in scalable wavelet-based 
coding of meshes are drawn. Let z  denote the ratio between the deadzone size for n = 0 (see 

Eq. (16)) and the step size for  0n  of a general EDSQ. The total average signal-to-noise 
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ratio (SNR) difference which is utilized to measure the performance gap of different 
embedded quantizers is defined as: 

1 1

1
( ) ( )

 

 
   

 


z z

SNR SNR R SNR R
N

, 

which is computed over a rate range  for N  rate points, where ( )SNR R  denotes the 

discrete SNR-rate function. The  2
1010 log ( )SNR D  is computed in dBs, where D  is the 

total distortion in the transform domain. The difference in SNR is computed relative to the 

uniform embedded quantizer (UEQ), i.e.,  1z . SNR  for five embedded deadzone 

quantizers is plotted in Fig. 7. over a wide range of standard deviation ratios  2 1 . In Fig. 

7., the commonly observed proportion   0.9  is considered, as mentioned in Section 3.2.  

We determined experimentally that at lower standard deviation ratios, SNR  is positive 

and the UEQ is optimal for   2 1 120 . For   2 1120 290 , the quantizer with  1.5z  

performs better compared to all other quantizers. Similarly,  2z  (i.e. the SAQ) performs the 

best in the range   2 1290 600 , while  2.5z  performs the best for   2 1600 . In 

general, small standard deviation ratios correspond to   close to 1 , observed in non-

normal meshes, while higher ratios correspond to   1 , observed in normal meshes. These 

results show that one cannot determine a single embedded quantizer that provides the best 

performance for all 3D meshes. However, an optimal quantizer per wavelet coordinate can 

be determined based on the corresponding  2 1  extracted from the model.  

Overall, for   2 1 120 , the difference between SAQ and the UEQ is significant, and hence 

UEQ is the optimal choice. For   2 1 120 , SAQ is not always the optimum, but lies not far 

from the optimum. 

 

 

Fig. 7. SNR difference for five EDSQs with respect to UEQ. 

Given the fact that SAQ is closely linked to bit-plane coding and that it can be implemented 
using simple binary arithmetic, one concludes that SAQ is not an optimal, but an acceptable 
solution in scalable coding of meshes. 
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4. Analysis of wavelet coefficient dependencies 

Similar to images, parent-children and neighboring wavelet coefficient dependencies exist in 
wavelet decomposed mesh structure. In Fig. 8 (middle, right), the positions of the wavelet 
coefficients at different levels of the transform are shown with the help of white and dark 
circles. In particular, wavelet coefficients have a one-to-one correspondence with the edges 
of the coarser mesh. For each wavelet coefficient there are rings of neighboring coefficients 
which lie in the same wavelet subband – see Fig. 8 (right). Also, a set of four wavelet 
coefficients have a parent coefficient at the next coarser resolution – see Fig. 8 (middle, 
right). 

 

Fig. 8. Parent-children and neighboring wavelet coefficients: actual mesh (left); coarser 
meshes after one (middle), and after two wavelet decomposition levels (right).  

Statistical intraband dependencies exist between neighboring coefficients of each resolution 
level. The main reason for the existence of these dependencies is the smoothness of the 
surface. Wavelet coding paradigms that exploit the intraband dependencies between the 
wavelet coefficients are known as intraband wavelet codecs such as block-based coding 
techniques (Munteanu et al., 1999a), quadtree coding approaches (Munteanu et al., 1999b), 
and the EBCOT codec employed in the JPEG-2000 scalable image coding standard 
(Taubman, 2000). 

Statistical dependencies also exist between the parent and descendants (children) due to the 
natural decay of the coefficients’ magnitude for increasing frequencies. In other words, if a 
parent coefficient magnitude is below a certain threshold, then there is a high probability 
that the magnitude of its descendants will be also below this threshold. This corresponds to 
the so-called zerotree-model, firstly introduced by Shapiro in (Shapiro, 1993). The wavelet 
coding paradigms that exploit the parent-children dependencies are known as interband 
wavelet codecs. 

Finally, there is a third category of coding paradigms, exploiting both the interband and 
intraband statistical dependencies between the wavelet coefficients. They are generally 
known as composite codecs, EZBC (Hsiang & Woods, 2000) and the ECECOW approach of 
(Wu, 1997) are typical examples of codecs in this category. 

In the following, an information theoretical analysis of the aforementioned coefficient 
dependencies is presented. Our aim is to single out the type of dependencies which can 
ensure best compression performance in the context of wavelet-based mesh compression. 
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4.1 Mutual information analysis 

The mutual information is the reduction in the entropy of one random variable due to the 
knowledge of the other random variable. 

 ( ; ) ( ) ( / )I X Y h X h X Y  , (22) 

It is known that ( , ) ( , )I X Y I Y X . In the wavelet domain, we define the following mutual 

information quantities:  

( ; )XI X P : denotes the mutual information between a wavelet coefficient X  and its parent 

coefficient XP . 

n( ; )XI X : denotes the mutual information between a wavelet coefficient X  and its 

neighboring wavelet coefficients 1, 2, ,[ , ,.... ]nX X X N Xn n n . 

n( ; ; )X XI X P : denotes the composite mutual information. 

From the basics of information theory (Cover & Thomas, 1991), we know that: 

 
and n n n( ; ; ) ( ; ) ( ; ; ) ( ; ).X X X X X XI X P I X I X P I X P

 (23) 

For the estimation of n( ; )XI X , we need to estimate the joint PDF ( , )xp x n  which can have 

high dimensionality depending on the number of considered neighbors. Since the amount of 

data needed to accurately estimate a PDF increases exponentially with its dimensionality, it 

is difficult to reliably estimate a high-dimensional PDF. To alleviate this problem, the 

reduction in dimensionality as proposed in (Liu & Moulin, 2000) is used here. We 

summarize the neighborhood of X  through a so-called summarizing function  n( )XT g . 

This function maps the neighboring wavelet coefficients to a single value. We note that such 

a many-to-one summarizing function cannot increase the mutual information, i.e., 

 ( ; ) ( ; )XI X I X Tn . (24) 

Equality in the above equation holds if  nX T X  forms a Markov chain. The 

summarizing function used in our analysis is: 

 
 


 n

2

,
1

( ) .
N

X i X
i

T f n

 (25) 

Due to this summarizing function, it is sufficient to compute the joint PDF ( , )p x t , t  is a 

realization of the random variable T , instead of ( , )xp x n , for the estimation of the intraband 

mutual information n( ; )XI X . 

In our analysis, the mutual information for the defined quantities is estimated using the 

adaptive partitioning method (Darbellay & Vajda, 1999) instead of the traditional histogram 

method. This is because the histogram method highly depends on the bin size and for a 

small bin size there may not be sufficient number of observations in some bins to make a 

correct estimate. The adaptive partitioning method (Darbellay & Vajda, 1999) on the other 
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hand, ensures that there are always sufficient numbers of observations in each bin, and 

provides reliable estimates of the mutual information. 

 

 Butterfly Loop 

Mesh Type MESH INTRABAND INTERBAND COMPOSITE INTRABAND INTERBAND COMPOSITE 

N
o

n
-N

o
rm

a
l Venus 0.3727 0.1902 0.6886 0.8320 0.5591 1.5847 

Bunny 0.3960 0.1992 0.6844 0.8033 0.5628 1.5427 

Horse 0.5615 0.2869 0.9873 1.0482 0.6943 1.9684 

Rabbit 0.4048 0.2017 0.7089 0.8996 0.6450 1.7425 

Feline 0.8277 0.2134 1.0696 1.1471 0.6285 2.0287 

N
o

rm
a
l Venus 0.3052 0.2130 0.5741 - - - 

Skull 0.3381 0.2922 0.7001 - - - 

Dino 0.3043 0.2804 0.6672 - - - 

Table 3. Average mutual information in bits for several non-normal and normal meshes. 

Table 3 shows the average mutual information results for interband, intraband and 

composite dependencies for various mesh models. Since in mesh coding three different 

components need to be coded for each vertex position in space, the average mutual 

information   ( )/3avg X Y ZI I I I  is reported instead of the mutual information for the three 

components individually. It is observed from Table 3 that for both normal and non-normal 

meshes mutual information of interband models is the least, independent of the wavelet 

transform employed. On the other hand mutual information for intraband models is 

significantly higher than for the interband models. Finally, composite models which gather 

the characteristics of both interband and intraband models exhibit even higher mutual 

information than interband or intraband models alone. Mathematically we can summarize 

our numerical findings as:  

       n n; ; ; ;X X X XI X P I X I X P . (26) 

Experimental results for the mutual information based estimation of interband, intraband 
and composite dependencies seem to indicate that exploiting the composite dependencies 
should be preferred. Additionally, it is important to point out that favoring intraband over 
zerotree-based interband models brings along the additional benefit of resolution scalability. 
Specifically, by following an intraband codec design, only those wavelet subbands that are 
needed in order to reconstruct a target mesh resolution-level need to be encoded, while the 
others can be discarded. This does not hold in case of interband and composite codec 
designs, due to the tree-structures that span all the wavelet decomposition levels. Since 
composite models cannot be discarded altogether due to their highest mutual information 
property, a careful implementation of a composite mesh coding system needs to be carried 
out into order to get the benefit of both the higher compression efficiency and the resolution 
scalable decoding at the same time. 

Finally, it is important to point out that the differences in terms of mutual information do 
not give any indication about the final performance differences between interband, 
intraband and composite coding systems. Hence, an actual development and comparison of 
such coding systems is needed in order to experimentally validate the conclusions of this 
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information-theoretic analysis of wavelet-based mesh coding designs, which is presented 
next. 

5. Scalable mesh compression overview 

In this section, we give a brief overview of the scalable mesh compression systems. Based on 
the design choices established earlier, we designed intraband and composite mesh coding 
systems which provide state-of-the-art compression performance, together with resolution 
as well as quality scalability of the compressed mesh. 

5.1 Progressive Geometry Compression (PGC) 

The first scalable wavelet-based geometry compression technique is the progressive 

geometry compression (PGC) codec proposed by Khodakovsky et al. in (Khodakovsky et al., 

2000). PGC makes use of the well-know zero-tree coding (Shapiro, 1993) of wavelet 

coefficient’s bitplanes in order to encode the decomposed mesh structure. Significant 

improvements in the compression performance against the contemporary scalable as well as 

non-scalable mesh coding systems were reported in (Khodakovsky et al., 2000). However, a 

major drawback of PGC schemes is their inability to provide resolution scalability. This is 

caused by the zero-tree structure which, for a given bitplane, spans all the wavelet 

decomposition levels. For a detailed understanding of the PGC system we refer to 

(Khodakovsky et al., 2000). 

5.2 Scalable Intraband Mesh Compresion (SIM) 

Despite of the great success of zerotree-based coding techniques in image coding, the choice 

of an interband codec design is not necessarily the best option in the context of scalable 

mesh coding. This was illustrated in Section 4 where different types of dependencies among 

wavelet coefficients were studied. Based on this analysis, we opt for an intraband 

dependency model in our codec design. As mentioned before, favoring intraband models 

over interband models brings along the additional benefit of resolution scalability. 

Specifically, by following an intraband codec design, only those wavelet subbands that are 

needed in order to reconstruct a target mesh resolution-level need to be encoded, while the 

others can be discarded.  

In the designed scalable intraband mesh (SIM) compression system (Denis et al., 2010b) each 

resolution subband is encoded independently of the others. Similar to (Shapiro, 1993), SAQ 

is applied to each resolution subband to determine the significance of the wavelet 

coefficients with respect to a series of monotonically decreasing thresholds. Based on the 

significance outcome, a tree node is split into eight equal volume nodes. The resulting octree 

nodes may contain an unequal number of wavelet coefficients. In general, the number of 

coefficients in all nodes of a same tree-depth is roughly the same. This way, an octree is 

constructed for each resolution subband, wherein the depth of the tree (number of levels in 

the octree) is equal to the number of bitplanes of the subband. All magnitude bitplanes are 

sequentially coded using the non-significance, the significance and the refinement coding 

passes. For a detailed presentation of the SIM codec the interested reader is referred to 

(Denis et al., 2010b).  
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Using the octree-based bitplane coding, separate symbol streams are first generated for  
all bitplanes of each resolution subband. Depending on the type of scalability, i.e., 
resolution or quality scalability, the encoded symbol streams are entropy coded using a 
predefined progression order of bitplanes. For quality scalability, bitplanes of certain 
significance, from all resolution subbands, are first encoded before encoding the bitplanes 
of lower significance. However, in resolution scalability mode, all bitplanes of a lower 
resolution subband are progressively encoded before encoding the next higher resolution 
subband. 

We compared the SIM codec with the PGC codec for both normal and non-normal  
3D meshes. The decoded meshes are compared against the original semi-regular input 
meshes using the peak signal-to-noise ratio (PSNR) as the distortion metric, which is defined 
as: 

 dBs1020 log
    
 

peak
PSNR

RMS
, 

where peak and RMS denote the size of the bounding box and the root mean squared error 
calculated on the distances between the decoded vertex positions with respect to the original 
ones, respectively. 

Fig. 9 depicts PSNR versus bitrate (bits per semi-regular vertex) plots, evaluated for the semi-
regular non-normal Venus and Bunny meshes using the Butterly transform. The results 
demonstrate that for both meshes, SIM yields superior performance when compared to PGC. 

  

(a) (b) 

Fig. 9. PSNR versus bitrate for non-normal mesh models in the quality scalability mode:  
(a) Venus, (b) Bunny . The lifted Butterly transform is employed for all three codecs. 

The averaged gain in PSNR when compressing the Venus and Bunny meshes goes up to 
2.22 dB and 2.35 dB, respectively. One may also notice the increasing performance difference 
with increasing bitrates; this indicates that the SIM coder tends to code the high frequency 
information more efficiently. For the spatially adaptive wavelet transform (SAWT) the 
compression results are reported in (Denis et al., 2010a). 
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(a) (b) 

Fig. 10. PSNR versus bitrate for normal mesh models in the quality scalability mode: (a) 
Skull, (b) Dino. The un-lifted Butterly transform is employed for all three codecs. 

Fig. 10 shows compression performance plots for two normal meshes, Skull and Dino. One 
notices that at low bitrates, PGC tends to compress better. However, the ability of SIM to 
capture and code more efficiently the high-frequency components is noticeable at high 
bitrates and leads to an improved performance when compared to PGC.  

5.3 Composite Context-conditioned Compression (3xC) 

The mutual information analysis presented earlier showed that the composite dependencies 

between the wavelet coefficients are by far the strongest. However, one may notice that, 

employing composite models may hinder, similar to interband models, the possibility of 

providing resolution scalability. Thus one must be careful in exploiting the parent-children 

dependencies within composite models. A careful observation reveals that exploiting 

parent-children dependencies in a causal fashion (Denis et al., 2010b) does not limit 

resolution scalable decoding of the compressed mesh. Following this observation, we 

proposed a scalable composite mesh compression system in (Denis et al., 2009), (Denis et al., 

2010b). The bitplane coding modules of the SIM codec and the 3xC codec are identical. The 

two designs differ at the entropy coding level. In particular, for 3xC, parent coefficient based 

context-conditioning is employed in the entropy coding module. For context-conditioning, 

significant, non-significant as well as sign information is entropy coded using the designed 

context tables. The refinement information is encoded without context-conditioning; this is 

because including the parental information when entropy coding the refinement symbols 

does not improve compression performance. For a detailed presentation of the 3xC codec 

the interested reader is referred to (Denis et al., 2009). 

Fig. 9 also depicts the PSNR curves computed for the non-normal Venus and Bunny meshes 

using our implementation of the un-lifted butterfly based 3xC mesh compression system. 

The figure clearly demonstrates that, when dealing with non-normal meshes, 3xC 

systematically yields superior performance compared to PGC as well as SIM.  
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In the case of normal meshes (Fig. 10) our coder employs the same transform as PGC. Both 
codecs perform the same at very low bitrates. However, overall, 3xC yields the best 
compression performance. 3xC gives approximately equivalent results when compared with 
the intraband SIM codec for normal meshes. This is because the context-conditioning is only 
possible for the normal component of vector valued wavelet coefficients. Overall, it is clear 
that the proposed 3xC codec produces similar, and in almost all cases, superior performance 
compared to PGC and SIM codecs. 

5.4 Visual comparison: PGC vs 3xC 

Visual comparisons of Bunny and Skull meshes, compressed and reconstructed using 3xC at 
different bits per vertex (bpv), are presented in Fig. 11 and Fig. 12, respectively. The colored 
regions highlight the distortions introduced by lossy compression. For low-to-medium 
bitrates, the pure red color indicates areas where the distance between the original and 
decoded vertex is larger than 0.1% of the diagonal of the bounding box of the semi-regular 
mesh. For high bitrates, the distortion is visualized with respect to 0.02% of the diagonal. The 
mesh is shaded greener as the distortion lowers, with pure green indicating no distortion. 

When visually comparing the compressed Bunny and Skull meshes produced by 3xC and 
PGC, it is very clear that 3xC yields superior performance for all bitrates. Taking the result 
at 0.050 bpv as an example, we observe that many areas which are shaded red for PGC are 
green for 3xC. At high rates, the differences between the mesh geometries may not be 
visually significant, yet the colors reveal that 3xC is able to approximate the original mesh 
much more accurately compared to the PGC system. 

 

 

0.050 bpv, 51.3 dB 0.098 bpv, 55.0 dB 0.178 bpv, 58.7 dB 0.314 bpv, 62.5 dB 0.540 bpv, 66.3 dB 

 

0.050 bpv, 47.6 dB 0.098 bpv, 51.4 dB 0.178 bpv, 55.4 dB 0.314 bpv, 59.2 dB 0.540 bpv, 63.1 dB 

Fig. 11. Visual comparison of non-normal Bunny mesh using (top row) the 3xC codec and 
(bottom row) the PGC codec. The red color intensity reflects the distortion with respect to 

the uncompressed semi-regular mesh. The rate for the base mesh (i.e., 0M  - see section 

2.1.2) is not included in the reported rate values. 
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0.036 bpv, 54.6 dB 0.121 bpv, 62.4 dB 0.179 bpv, 65.5 dB 1.073 bpv, 84.8 dB 1.384 bpv, 90.7 dB 

     

0.036 bpv, 53.9 dB 0.121 bpv, 61.9 dB 0.179 bpv, 65.2 dB 1.073 bpv, 83.4 dB 1.384 bpv, 88.9 dB 

Fig. 12. Visual comparison of normal Skull mesh using (top row) the 3xC codec and (bottom 
row) the PGC codec. The red color intensity reflects the distortion with respect to the 
uncompressed semi-regular mesh. The rate for the base mesh is not included in the reported 
rate values. 

The visual comparisons of the normal mesh Skull at different bpv are shown in Fig. 12. 
Though, at first glance it may appear that both codecs perform very similar, small 
differences are noticeable when investigating the meshes more closely. When examining the 
comparison at 0.036 bpv, we notice that the PGC codec preserves more details in Skull’s 
teeth. The green shade for 3xC at rate 0.179 bpv, however, seems more pure compared to 
PGC for which it is rather yellowish green. We also observe that no red regions are present 
for 3xC at rate 1.073 bpv, whereas some are visible for PGC at the same rate. 

6. Conclusions 

In this book chapter, we propose a constructive methodology for the design of scalable 
wavelet-based mesh compression systems. Our design strategy differs from conventional 
designs which simply opt for reusing methods from wavelet-based image coding for the 
design of mesh coding systems. In particular, our methods are motivated by an information-
theoretic analysis of the statistical dependencies between wavelet coefficients which shows 
that, intraband dependencies are systematically stronger than interband ones for both 
normal and non-normal meshes, and that composite models are the best. We also 
investigate the optimality of successive approximation quantization, commonly used in 
scalable compression, in the context of wavelet-based mesh compression. Using a Laplacian 
mixture model, it is shown that successive approximation quantization is an acceptable, but 
in general not an optimal solution. Anchored in these results, novel intraband and 
composite coding systems are presented which improve the state-of-the-art in scalable mesh 
compression, both in terms of scalability and compression efficiency.  
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7. Appendix 

The output distortion LD  of a Laplacian PDF, quantized using an n  level EDSQ and 

reconstructed using midpoint reconstruction, can be written as: 

 (1 ) ( 1 ) 22
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where DZD  and RESTD  denote the distortion contributions of the deadzone and the other 

quantization cells, respectively. By proper substitution and letting 
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the following closed-form expression for the distortion is obtained: 
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where 1  n n . 

Similarly, the output rate LR  of a Laplacian PDF, quantized using an n  level EDSQ can be 

written as: 
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Again making use of the summation reduction identity of (27) along with the identity 
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the expression for the rate can be reduced to the following closed-form: 
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where  
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c e (hence 1
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