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1. Introduction  

In recent years, the wavelet transform emerged in the field of image/signal processing as an 
alternative to the well-known Fourier Transform (FT) and its related transforms, namely, the 
Discrete Cosine Transform (DCT) and the Discrete Sine Transform (DST). In the Fourier 
theory, a signal (an image is considered as a finite 2-D signal) is expressed as a sum, 
theoretically infinite, of sines and cosines, making the FT suitable for infinite and periodic 
signal analysis. For several years, the FT dominated the field of signal processing, however, 
if it succeeded well in providing the frequency information contained in the analysed signal; 
it failed to give any information about the occurrence time. This shortcoming, but not the 
only one, motivated the scientists to scrutinise the transform horizon for a “messiah” 
transform. The first step in this long research journey was to cut the signal of interest in 
several parts and then to analyse each part separately. The idea at a first glance seemed to be 
very promising since it allowed the extraction of time information and the localisation of 
different frequency components. This approach is known as the Short-Time Fourier 
Transform (STFT). The fundamental question, which arises here, is how to cut the signal?  
The best solution to this dilemma was of course to find a fully scalable modulated window 
in which no signal cutting is needed anymore. This goal was achieved successfully by the 
use of the wavelet transform. 

Formally, the wavelet transform is defined by many authors as a mathematical technique in 
which a particular signal is analysed (or synthesised) in the time domain by using different 
versions of a dilated (or contracted) and translated (or shifted) basis function called the 
wavelet prototype or the mother wavelet. However, in reality, the wavelet transform found 
its essence and emerged from different disciplines and was not, as stated by Mallat, totally 
new to mathematicians working in harmonic analysis, or to computer vision researchers 
studying multiscale image processing (Mallat, 1989).  

At the beginning of the 20th century, Haar, a German mathematician introduced the first 
wavelet transform named after him (almost a century after the introduction of the FT, by the 
French J. Fourier). The Haar wavelet basis function has compact support and integer 
coefficients. Later, the Haar basis was used in physics to study Brownian motion (Graps, 
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1995). Since then, different works have been carried out either in the development of the 
theory related to the wavelet, or towards its application in different fields. In the field of 
signal processing, the great achievements reached in different studies by Mallat, Meyer and 
Daubechies have allowed the emergence of a wide range of wavelet-based applications. In 
fact, inspired by the work developed by Mallat on the relationships between the Quadrature 
Mirror Filters (QMF), pyramid algorithms and orthonormal wavelet bases (Mallat, 1989), 
Meyer constructed the first non-trivial wavelets (Meyer, 1989). However, the most 
important work was carried out by Ingrid Daubechies. Based on Mallat’s work, Daubechies 
succeeded to construct a set of wavelet orthonormal basis functions, which have become the 
cornerstone of many applications (Daubechies, 1988). Few years later, the same author, in 
collaboration with others (Cody, 1994), presented a set of wavelet biorthogonal basis 
function, which later found their use in different applications, especially in image coding. 
Recently, JPEG2000, a biorthogonal wavelet-based compression has been adopted as the 
new compression standard (Ebrahimi et al., 2002). 

2. Continuous Wavelet Transform 

Different ways to introduce the wavelet transform can be envisaged (Starck et al., 1998).  
However, the traditional method to achieve this goal remains the use of the Fourier theory 
(more precisely, STFT). The Fourier theory uses sine and cosine as basis functions to analyse 
a particular signal. Due to the infinite expansion of the basis functions, the FT is more 
appropriate for signals of the same nature, which generally are assumed to be periodic. 
Hence, the Fourier theory is purely a frequency domain approach, which means that a 
particular signal f(t) can be represented by the frequency spectrum F(w), as follows: 

 
  jǚ tF ǚ f(t)e dt

 


 
 

(1)   

The original signal can be recovered, under certain conditions, by the inverse Fourier 
Transform as follows: 

 




 


 deFtf tj)()(

2

1

 
(2)   

Obviously, discrete-time versions of both direct and inverse forms of the Fourier transform 
are possible. 

Due to the non-locality and the time-independence of the basis functions in the Fourier 
analysis, as represented by the exponential factor of equation (1), the FT can only suit signals 
with “time-independent” statistical properties. In other words, the FT can only provide 
global information of a signal and fails in dealing with local patterns like discontinuities or 
sharp spikes (Graps, 1995). However, in many applications, the signal of concern is both 
time and frequency dependent, and as such, the Fourier theory is “incapable” of providing a 
global and complete analysis. The shortcomings of the Fourier transform, in addition to its 
failure to deal with non-periodic signals led to the adoption by the scientific community of a 
windowed version of this transform known as the STFT. The STFT transform of a signal f(t) 
is defined around a time  through the usage of a sliding window w (centred at time ) and 
a frequency  as (Wickerhauser, 1994; Graps, 1995; Burrus et al., 1998; David, 2002 & 
Oppenheim & Schafer, 2010): 
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




 dtθ)ef(t)w(tw),STFT( jwt
 

(3)   

As it is apparent from equation (3), even if the integral limits are infinite, the analysis is 

always limited to a portion of the signal, bounded by the limits [-,  ] of the sliding 
window. The time-frequency plane of a fixed window STFT transform is illustrated in 
Figure 1. 

 

Fig. 1. Fourier time-frequency plane (Graps, 1995) 

Although, this approach (using STFT transform) succeeds well in giving both time and 
frequency information about a portion of the signal, however, as its predecessor, it has a 
major drawback. The fact is that the choice of the window size is crucial. As stated by Starck 
and al (Starck et al., 1998): ” The smaller the window size, the better the time-resolution. 
However, the smaller the window size also, the more the number of discrete frequencies 
which can be represented in the frequency domain will be reduced, and therefore the more 
weakened will be the discrimination potential among frequencies”.  This problem is closely 
linked to the Heisenberg’s uncertainty principle, which states that a signal (e.g. a very short 
portion of the signal) cannot be represented as a point in the time-frequency domain.  

This shortcoming brings us to rise the fundamental question: how to size then the sliding 
window? Not surprisingly, the answer to this question leads us by means of certain 
transformations to the wavelet transform. In fact, by considering the convolution of the 
sliding window with the time-dependant exponential e-jwt within the integral of equation (3): 

 
jwt

ǚθ, θ)ew(t(t)K 
 

(4)    

And replacing the frequency  by a scaling factor a, and the window bound   by a shifting 
factor b, leads us to the first step leading to the Continuous Wavelet Transform (CWT), as 
represented in equation (5): 

 

*
a,b

1 t b
K (t) Ǚ ( ) a R , b R

aa


  

 

(5)     
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The combination of equation (5) with equation (3), leads to the CWT as defined by Morlet 
and Grossman (Grossman & Morlet, 1984). 

 

*1 t b
W(a,b) f(t)Ǚ ( ) dt

aa






 

 

(6)   

Where f(t) belongs to the square integrable functions space, L2(R). In the same way, the 
inverse CWT can be defined as (Grossman & Morlet, 1984): 

 
20

Ǚ

dadb1 1 t b
f(t) W(a,b) ( )

C aa a


 




    (7)   

The Cψ factor is needed for reconstruction purposes. In fact, the reconstruction is only 
possible if this factor is defined. This requirement is known as the admissibility condition.  
In a more general way, ψ(t) is replaced by ǘ(t), allowing a variety of choices, which can 
enhance certain features for some particular applications (Starck et al., 1998; Stromme, 1999 
& Hankerson et al., 2005). However, the CWT in the form defined by equation (6) is highly 
redundant, which makes its direct implementation of minor interest. The time-frequency 
plane of a wavelet transformation is illustrated in Figure 2. The differences with the STFT 
transform are visually clear. 

 

Fig. 2. Wavelet time-frequency plane ((Graps, 1995) with minor modifications) 

At this stage and after this brief introduction, it is natural to ask the question: therefore what 
are wavelet Transforms?  

Although wavelet transforms are defined as a mathematical tool or technique, there is no 
consensus within the scientific community on a particular definition. This “embarrassment” 
has been stated by Sweldens as (Sweldens, 1996): “Giving that the wavelet field keeps 
growing, the definition of a wavelet continuously changes. Therefore it is impossible to 
rigorously define a wavelet”. According to the same author, to call a particular function a 
wavelet system, it has to fulfil the three following properties: 
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 Wavelets are building blocks for general functions: They are used to represent signals 

and more generally functions. In other words, a function is represented in the wavelet 

space by mean of infinite series of wavelets. 

 Wavelets have space – frequency localisation: Which means that most of the energy of a 

wavelet is confined in a finite interval and that the transform contains only frequencies 

from a certain frequency band.  

 Wavelets support fast and efficient transform algorithms: This requirement is needed 

when implementing the transform. Often wavelet transforms need O(n) operations, 

which means that the number of multiplications and additions follows linearly the 

length of the signal. This is a direct implication of the compactness property of the 

transform. However, more general wavelet transforms require O(nlog(n)) operations 

(e.g. undecimated wavelet). 

To refine the wavelet definition, the three following characteristics have been added by 

Sweldens and Daubechies (Sweldens, 1996 & Daubechies, 1992, 1993) as reported in (Burrus 

et al., 1998): 

 Oneness of the generating function: Refers to the ability of generating a wavelet system 

from a single scaling function or wavelet function just by scaling and translating. 

 Multiresolution ability: This concept, which has first been introduced by Mallat, states 

the ability of the transform to represent a signal or function at different level, by 

different weighted sums, derived from the original one. 

 Ability of generating lower level coefficients from the higher level coefficients. This can 

be achieved through the use of tree-like structured chain of filters called Filter Banks. 

3. Multiresolution  

The multiresolution concept has been introduced first by Mallat (Mallat, 1989). It defines 

clearly the relationships between the QMF, pyramid algorithms and orthonormal wavelet 

bases through basically, the definition of a set of nested subspaces and a so-called scaling 

function. The strength of multiresolution lies in its ability to decompose a signal in finer and 

finer details. Most importantly, it allows the description of a signal in terms of time-

frequency or time-scale analysis. 

3.1 Nested subspaces 

The basic requirement for multiresolution analysis is the existence of a set of approximation 

subspaces of L2(R) (square integrable function space) with different resolutions, as 

represented schematically for the three intermediate subspaces in Figure 3 and stated by 

equation (8): 

 
2

1 0 1. . . . . . . . ( )V V V V V L R      
 

(8)   

In such a way that, if jVf(t)  then 1jVf(2t)  . Which means that the subspace containing 

high resolution will automatically contains those of lower resolution. In a more general case, 

if 0Vf(t) , then k
k Vt)f(2  . This implication is known as the scale invariance property. 
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Fig. 3. Nested subspaces 

3.2 Scaling function 

The existence of a so-called scaling function (t) is primordial in order to benefit from the 
multiresolution concept.  In this context, let us define the scaling function first and then 
define the wavelet function through it (Burrus et al., 1998). Let the scaling function be 
defined by the following equation: 

  2
kǗ (t) Ǘ(t k) k Z Ǘ L (R)   

 
(9) 

Which forms with its translates an orthonormal (The orthogonality is not necessary, since a 
non orthogonal basis (with the shift property) can always be orthogonalised (Sweldens, 
1995)) basis of the space V0: 

 0 k
k

V span{Ǘ (t)}  (10) 

This means that any function belonging to this space ( 0f(t) V ) can be expressed as a linear 

combination of a set of so-called expansion coefficients, with the scaling function and its 

consecutive translates (since kǗ (t) are the basis functions): 

 

k k
k k

f(t) c Ǘ (t) c(k)Ǘ(t k)   
 

(11) 

Where the expansion coefficients kc (or c(k) ) are calculated using the inner product:  

 k kc f(t),Ǘ (t)  
 

(12) 

By simply scaling and translating, a two-dimensional scaling function is generated from the 
original scaling function defined in equation (9): 

 
j,k

1 t bǗ (t) Ǘ( )
aa




 
(13) 

Where a and b are, the scaling and the shifting factors as defined in equation (5), 
respectively. To ease the implementation of a wavelet system, the translation and the scaling 
factor have been adopted to be a factor of two. In fact (Graps, 1995): 
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.k2b,2a jj  

 
(14) 

These values are adopted for the remaining of the chapter.  Thus equation (13) can be 

rewritten as:  

 
k)tǗ(22(t)Ǘ j2j

kj, 
 

(15) 

Identically, the two-dimensional scaling function forms with its translates an orthonormal 

space over k: 

 
ZjandZk(t)}{ǗspanV kj,

k
j 

 

(16) 

And as such any function f(t) of this space can be expressed as: 

 
j

k

f(t) c(k)Ǘ(2 t k)   (17) 

As a consequence, if 0VǗ(t) , then since 10 VV  , Ǘ(t) can be expressed as a linear 

combination of the scaling function Ǘ(2t)  spanning the space 1V : 

 

k)Ǘ(2t2h(k)Ǘ(t)

k



 

(18) 

Where the coefficients h(k) are the scaling function coefficients. The value 2  ensures that 

the norm of the scaling function is always equal to the unity. This equation is fundamental 

to the multiresolution theory and is called the multiresolution analysis equation. 

4. Wavelet function 

What has been done so far to define the scaling function, its translates and the 

corresponding spanned spaces, can also be applied in the same way to the so-called wavelet 

function. Let us suppose for this purpose that the subspace 0 1V V  has an orthogonal 

complement 0W , such as 1V can be represented as a combination of 0V  and 0W  as follows: 

 001 WVV   
(19) 

Where the complementary space 
0W  is spanned also by an orthonormal basis: 

 (R)LǙZkk)Ǚ(t(t)Ǚ 2
k 

 
(20) 

The function Ǚ(t) is known as the mother wavelet, the wavelet prototype or the wavelet 

function. The same properties, which apply to the scaling function, are also applicable to the 

wavelet function. In other words, a function 0Wf(t)  can be expressed as: 
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k)Ǚ(td(k)(t)Ǚdf(t)

k

k

k

k  
 

(21) 

Where, the expansion coefficients kd (or d(k) ) are calculated using the inner product: 

 
 (t)Ǚf(t),d kk . 

(22) 

Likewise, since 10 VW  , Ǚ(t)can also be expressed in terms of the scaling function Ǘ(2t) of 

the higher space 1V : 

 

k)Ǘ(2t2g(k)Ǚ(t)

k


 

(23) 

Where g(k) are the wavelet coefficients. This leads to a dyadic decomposition as represented 

by the grid of Figure 5. The equation (19) can be generalised to an arbitrary number of 

subspaces, such as, 2V  is represented in terms of 1V and 1W , 3V in terms of 2V and 2W , and 

so on. The whole decomposition process is illustrated in Figure 4.  

 

 

V
- 2

V
- 1

V
0

V
1

W
- 2

W
- 1

W
0

W
1

 

Fig. 4. Space decomposition 

More generally, a subspace jV  is spanned by 1jW  and 1jV  . Thus, the (R)L 2
space can be 

decomposed as follows: 

 
....W....WWWWV(R)L 102j1jjj

2  
 

(24) 

The index j represents the depth or the level of decomposition, which is arbitrary in this 
case. As for the scaling function, a two-dimensional scaled and translated wavelet function 
is defined as: 

 

j 2 j
j,kǙ (t) 2 Ǚ(2 t k) 

 
(25) 

In such way that: 

 

(t)}Ǚ{spanW kji,
k

j 
 

(26) 
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Fig. 5. Dyadic wavelet transform space representation 

5. Series expansions and Discrete Wavelet Transforms 

According to equation (24), a function f(t) belonging to the 2L (R)  space can be expanded in 

series in terms of the scaling function spanning the space jV  and the wavelet functions 

spanning the spaces j j 1 j 2 0 1W , W , W ,...., W , W ....   as follows: 

 

j j,k n n.kn j k
k

f(t) c (k)Ǘ (t) d (k)Ǚ (t)
 
 

   
 

(27) 

Where j,kǗ (t) is defined by equation (15) and n.kǙ (t) is defined by equation (25). In this case, 

the index j, which is arbitrary, represents the coarsest scale, while the remaining are the high 

resolution details. Equation (27) represents the wavelet expansion series of the function f(t) , 

which plays a major role when deriving a more practical form of the wavelet transform. 

The coefficients in the wavelet expansion series jc (k) and nd (k)  (or k)c(j, and k)d(n, ) are 

the so-called discerete wavelet transform of the function f(t) . Since the basis functions are 

orthonormal, they can be calculated using equations (12 and 22), respectively. We will see 
later in this chapter that the orthonormality condition can be relaxed allowing the 
implementation of another important basis, namely, the biorthogonal basis. 

6. Filter banks and wavelet implementations 

In general, wavelet transform-based applications involve discrete coefficients instead of 
scaling and/or wavelet functions. For practical and computational reasons, discrete time 
filter banks are required. Such structures decompose a signal into a coarse representation 
along with added details. To achieve this representation, the relationship between the 
expansion coefficients at lower and higher scale levels need to be defined. This can be easily 
done by using a scaled and shifted version of equation (18) along with simple 
transformations as reported in (Burrus et al., 1998). This relation is defined by: 

 

 
n

1jj (n)2k)ch(n(k)c

 

(28) 
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And 

 
 

n

1jj (n)2k)cg(n(k)d   (29) 

Where Zn  and Zk . The computation of such equations is achieved through the use of 

the well-established digital filtering theory. In particular, for finite length signals (which is 
the case for digital images), the use of a Finite Impulse Response filter (FIR) is the most 
appropriate choice. However, since equations (28 and 29) compute one output for each two 
consecutive inputs, a modification needs to be made. The basic operation required here, is 
derived from the multirate signal processing theory (Fliege, 1994; Hankerson et al., 2005; 
Cunha et al., 2006; Lu & Do, 2007; Nguyen & Oraintara, 2008 & Brislawn,  2010). It simply 
consists of using a down-sampler or decimator by a factor of two. In practice, it consists of 
applying a pair of FIR filters; each followed by a decimator as illustrated by Figure 6:  

g(n)

h(n)

2

2

j+1

c
j

d
j

 

Fig. 6. Analysis Filter Bank 

The filter bank is defined as a combination of a low pass filter and high pass filter, both 
followed by a factor of two decimation (Strang & Nguyen, 1996). Thus, the decomposition is 
reduced to two basic operations from the digital signal processing theory: a filtering and a 
down sampling.  

The structure in Figure 6 is generally used to implement Mallat’s algorithm. To allow 
further level of decomposition, identical stages are cascaded leading to a multiresolution 
analysis. This analysis scheme is known as the Subband Coding structure (Burrus et al., 
1998) and is illustrated in the following figure. 
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Fig. 7. Three-Stage analysis Subband Coding 
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At each stage, the spectrum frequency of the analysed signal is halved by a factor of two. 
This leads to a logarithmic set of bandwidths as illustrated by Figure 8. 



 





 

 

 

Fig. 8. Frequency Spectrum of a three-stage Subband Structure 

To recover the original signal from the previously analysed one, a reversed version of the 
analysis filter bank of Figure 6 is required. This can be achieved by using two basic 
operations: a filtering and an up sampling or interpolating process. In multirate digital 
signal processing, appending a zero sample between two consecutive samples performs the 
up sampling. Thus, for each input sample, we get two output samples. A three-stage 
synthesis subband coding is illustrated in Figure 9. 
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Fig. 9. Three-Stage synthesis Subband Coding 

7. Algorithms for Wavelet Transform computation 

This section is concerned with a review of variety of algorithms dedicated to implement 
wavelet transforms. We focus on both 1-Dimensional and 2-Dimensional systems. 
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7.1 Burt’s Pyramid 

Dedicated initially to lossless image coding, the pyramid algorithm was first introduced by 
Burt (Burt & Adelson, 1983). Basically, it decomposes a signal in a low-resolution signal 
along with some higher resolution signals through a repetition of reduction and expansion 
processes. At each level, the reduced and expanded signal is compared with the original 
signal and the difference is stored. In the same time, the reduced signal is repeatedly 
decomposed by further using the reducer block in the chain. The analysis/synthesis process 
is shown in Figure 10.  
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Fig. 10. Pyramidal analysis and synthesis 

The reduction block performs the two basic operations of a low pass filtering and 
decimating by a factor of 2. The expansion block up samples the signal first, then filters it 
through the use of a synthesis low pass filter. To reconstruct the original signal, the 
difference signal at each level is added to a previously expanded signal. Repeatedly, the 
resulting signal is expanded and added to the corresponding difference signal. 

.

.

 

Fig. 11. 2-D  Pyramidal Structure 
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The decomposition and the reconstruction processes for a 2-D signal, as in image processing, 
is achieved through the use of a 2-D filtering process. In this case, only 1/4 of the original 
signal is obtained at the output of the reducer (the decimation is performed twice). This 
scheme can be represented by the pyramidal structure of Figure 11.  

This type of decomposition makes this algorithm suitable for a progressive image 
transmission scheme. 

7.2 Mallat’s Pyramidal algorithm 

Mallat’s pyramid is a direct consequence of the multiresolution concept developed by the 
same author and presented in section 6. Up to date, it is the most widely used approach - 
both in software and hardware - for implementing the wavelet transform (Masud, 1999). 
Since the one-dimensional decomposition and reconstruction schemes have been already 
introduced in section 6, we will focus in this section on two-dimensional schemes, which are 
more suitable for image analysis and synthesis. The two-dimensional decomposition 
approach is based on the property of separation of the functions into arbitrary x and y 
directions. The first step is identical to the one-dimensional approach, however, instead of 
keeping the low-level resolution and processing the high level resolution, both are 
processed using two identical filter bank after a transposition of the incoming data. Thus, 
the image is scanned in both horizontal and vertical directions. This result in an average 
image (or subimage) and three detail images generated by the following 2-D scaling 

function Ǘ(x)Ǘ(y)y)Ǘ(x,   and the vertical, the horizontal and the diagonal wavelet 

functions: Ǘ(x)Ǚ(y)y)(x,Ǚ1  , Ǚ(x)Ǘ(y)y)(x,Ǚ2   and Ǚ(x)Ǚ(y)y)(x,Ǚ3  , respectively. To 

recover the original image, the inverse process is applied. Figure 12 illustrates the analysis 
and synthesis stages built using three filter banks each.  
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Fig. 12. Two-dimensional Mallat’s analysis and synthesis tree 

In this case, the frequency band is halved at each stage by a factor of four as represented by 
Figure 13. 
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Fig. 13. Frequency Bands of Mallat’s 2-D Analysis Algorithm  

7.3 Feauveau’s non-dyadic structure 

Based on Adelson’s work (Adelson et al., 1987), this approach has been introduced by 

Feauveau (Feauveau, 1990). This decomposition is also known as Quincux. It differs from 

Mallat’s two-dimensional approach by the fact that only the decimated output from the low 

pass filter is transposed and then processed through a “similar” filter bank. The result is a 

low resolution average image along with two different detail images from two different 

resolution levels. The fact is that the decomposition is not dyadic and the initial resolution of 

a factor of 2 is replaced by a 2  factor leading to an asymmetrical support. Figure 14 shows 

an analysis and synthesis stage of a Quincux structure. 
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Fig. 14. Feauveau’s analysis and synthesis tree 

Due to the removal of the filter bank at the output of the high pass filter - as reported in 

(Starck et al., 1998) only a wavelet image is involved at each stage. Recently, this approach 

has been used in an image compression scheme and found to give often better overall 

performances than other approaches (Stromme, 1999; Ebrahimi et al, 2002; Smith, 2003; 
Hankerson et al., 2005; Xiong & Ramchandran, 2005; Nai-Xiang et al., 2006; Raviraj & 

Sanavullah, 2007 & Oppenheim & Schafer, 2010). The frequency bands of a Quincux analysis 

is shown in Figure 15. 
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Fig. 15. Frequency bands of Feauveau’s Quincux decomposition 

7.4 Swelden’s lifting scheme 

Unlike the three previous methodologies, the lifting scheme follows another philosophy. 
The fact is that the Fourier theory is not involved anymore and the construction of any 
wavelet system lies only in the spatial domain. If the explanation of the theory relies on the 
works of Sweldens (Sweldens, 1995, 1996 & Valens, 2004) the lifting approach has links with 
many other schemes (Burrus et al., 1998; Do & Vetterli, 2003, 2005; Cunha et al., 2006; Lu & 
Do, 2007; Nguyen & Oraintara, 2008 & Brislawn, 2010). The lifting-based wavelet transform 
can be seen as a succession of three operations: split, predict and update. In the first 
operation, data is the split into even and odds parts (known also as the lazy wavelet 
transform).  Then, differences or details are calculated through the usage of a predictor. 
Finally, to compute the average, the even part is updated using the details previously 
calculated. Figure 16 shows an analysis and synthesis lifting-based wavelet transform. 
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Fig. 16. Lifting-based Wavelet Transform 

The reconstruction operation does exactly the same, but using the reverse process. The data 
is first predicted, then updated and finally merged. Figure 17 illustrates split and merge 
operations using the polyphase property (Fliege, 1994). 
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Fig. 17. Lazy Wavelet Transform: (a) Split, (b) Merge 

8. The Wavelet Transform revisited 

In many practical problems, both the orthonormal basis (Daubechies, 1988, 1992, 1993) and 
the biorthogonal basis (Cody, 1994) can be used. The two bases (or families) present 
similarities and differences. Another scheme, called wavelet packet, which involves either 
orthonormal basis or biorthogonal basis is also possible (Wickerhauser, 1994).  The following 
briefly describes the main features of orthonormal and biorthogonal bases together with 
extension to the wavelet packet scheme. It is worth mentioning that other schemes like 
undecimated wavelet, adaptive wavelets and multiwavelets exist and are beyond the scope 
of this brief overview.  

8.1 Orthonormal basis 

The orthonormal basis emerged from the work initiated by Mallat and Daubechies (Mallat, 
1989 & Daubechies, 1988, 1993). The orthonormality property is somewhat seen as the 
discrete version of the orthogonality property (Masud, 1999). However, the basis functions 
are further normalised. These concepts have been mentioned when the multiresolution 
feature and the scaling function have been introduced. The admissibility and the 
orthogonality conditions ensure the existence and the orthogonality feature of the scaling 
function, defined by equation (18). This is achieved if: 

 

2h(n)

n


 

(30) 

And 

 

δ(k)2k)h(nh(n)

n


 

(31) 

Furthermore, using the two equations above alongside with equation (23), which defines the 
wavelet function, the orthogonality of the scaling function and the wavelet function at the 
same scale can be derived. This can be achieved only if the following equality is verified: 

 
n)h(11)(g(n) n 

 
(32) 
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The orthogonality between the wavelet coefficients and the scaling coefficients is then only a 
simple implication: 

 

0g(n)h(n)

n


 

(33) 

The scaling coefficients, which satisfy equation (33), are called Quadrature Mirror Filters 
(QMF).  

To achieve perfect reconstruction, the analysed signal has to be identical to the synthesised 

one. In other words, (n)c~(n)c jj  , where (n)c j  and (n)c~j  are the input and the output of a 

two-band filter (or filter bank) as shown in Figure 18, respectively. 

 

2

2

+

g

h

2

2 g
~

h
~

c
j
(n)

c
j-1
(k)

d
j-1
(k)

c
j
(m)~

 

Fig. 18. Two-band analysis and synthesis filter bank 

8.2 Biorthogonal basis 

Biorthogonal wavelet basis can be seen as a generalisation of the orthogonal wavelet basis 
where some imposed restrictions on the latter have been relaxed. Unlike the case of 
orthogonal basis, the scaling and the wavelet functions need be neither of the same length, 
nor even numbered. Hence, the quadrature mirror property is not applicable and is replaced 
with a dual property. For the perfect reconstruction equation to hold, the scaling and the 
wavelet coefficients have to fulfil the following equations: 

 n)h(11)((n)g~ n   
(34) 

 
n)(1h

~
1)(g(n) n 

 
(35) 

It is clear that when the analysis and the synthesis filters are similar, the system becomes 
orthogonal. The “orthogonality” condition in this case is defined by: 

 

δ(k)2k)h(n(n)h
~

n


 

(36) 

Previously, in orthogonal basis, only the analysis scaling coefficients (or wavelet 
coefficients) along with their shifted versions were used. In biorthogonal case, the analysing 
scaling coefficients are kept unchanged, while their shifted versions are replaced by the 
shifted versions of the synthesis dual filter. In other words, the analysis filter is orthogonal 
to its synthesis dual filter. The biorthogonal denomination comes from this feature. 
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At the expense of the energy partitioning property stated by Perseval’s equality, which is a 
direct consequence of the lack of orthogonality, a greater flexibility can be achieved by using 
the basis and dual basis (Burrus et al., 1998). One of the most “important” features in the 
biorthogonal basis is the linear phase property, which leads to the filter coefficients (when 
implementing a wavelet system) being symmetric. In addition, the difference of length 
between dual filters must be even, leading either to odd or even length of the low pass and 
the high pass filters. In general, biorthogonal wavelet systems present the following features 
(Daubechies, 1992): 

 The coefficients of the filters are either real numbers or integers; 

 The filters in this family present either even or odd orders; 

 The low pass and the high pass filters used in the filter bank have not the same length; 

 The low pass filter is always symmetric; 

 The high pass filter is either symmetric or antisymmetric. 

8.3 Wavelet packets 

In contrast to the “traditional” Mallat’s decomposition, which leads to narrow frequency 
bandwidths (low frequencies) and wide frequency bandwidths (high frequencies), the 
wavelet packet approach emerged first as a way of adjusting high frequency resolutions. 
Hence, the Mallat’s decomposition scheme is applied to both parts of a filter bank leading to 
the split of frequencies in progressive finer resolutions. The generic structure of wavelet 
packet decomposition is shown in Figure 19 and the frequency bandwidths illustrated by 

Figure 20. In this scheme, the number of filters increases by a factor of )2(2 ji  at each 

successive subband, where i and j represent two consecutive resolutions and 1ji  . 
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Fig. 19. Three-stage Wavelet Packet Decomposition 
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In comparison to classical wavelet approach, the wavelet packet scheme presents the 
following features (Daubechies, 1992): 

 Possibility of using different wavelet from a level to another. This strategy has been 
used in (Masud, 1999) to implement a two-level orthonormal wavelet packet and a 
three-level biorthogonal wavelet packet. 

 Possibility of choosing a particular wavelet packet decomposition from the general 
generic structure of Figure 19. Thus, one can choose either to preserve the 
orthonormality feature of the decomposition (Wickerhauser, 1994), or highlight the 
peculiarities of the signal (Masud, 1999). A binary search for the best decomposition 
tree is also possible (Burrus et al., 1998). 

However, there is a cost to be paid. In this case, the computational complexity of a wavelet 

packet structure is O(nlog(n))
 
in contrast to the O(n) of the classical wavelet transform. 


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


 

Fig. 20. Two-band analysis and synthesis filter bank 

9. Wavelet-based applications 

Recently, The wavelet transform is being increasingly used, not only in the field of image and 
signal processing applications but also in many other different areas, ranging from 
mathematics, physics, astronomy to statistics and economics. In image processing based 
applications, image compression, image denoising and image watermarking are at the cutting 
edge, and as such, a brief description of these wavelet-based applications is given in the 
following subsections (Strang & Nguyen, 1996; Burrus et al., 1998; Stromme, 1999; Ebrahimi et 

al, 2002; Nibouche et al., 2000, 2001a, 2001b, 2001c, 2001d, 2002, 2003; Smith, 2003; Do & 

Vetterli, 2003, 2005; Hankerson et al., 2005; Nai-Xiang Yap-Peng, 2005; Xiong & Ramchandran, 
2005; Chappelier & Guillemot, 2006; Cunha et al., 2006; Nai-Xiang et al., 2006; Raviraj & 
Sanavullah, 2007; Hernandez-Guzmane et al., 2008; Firoiu et al., 2009; Mallat, 2009; Brislawn, 
2010; Oppenheim & Schafer, 2010; Ruikar &  Doye, 2010 & Chen & Qian, 2011). 
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9.1 Image compression  

Even though the wavelet transforms have been widely used in image coding since the late 
80s, they only gained their notoriety in the field by the adoption of the first wavelet-based 
compression standard scheme, known as the FBI fingerprint compression standard Bradley, 
et al., 1993). Recently, what did Sweldens state in (Sweldens, 1996) as a need of 
standardising a wavelet-based compression scheme under the header “problems not 
sufficiently explored with wavelets”, has seen the day, by the adoption of the JPEG2000 new 
compression standard (Ebrahimi et al., 2002). The block diagram of the JPEG2000 standard 
does not really differ from the JPEG standard one. The discrete wavelet transform, which 
replaces the DCT, is applied first to the source image. The transformed coefficients are then 
quantised. Finally, the output coefficients from the quantiser are encoded (using either 
Huffman coding or arithmetic coding techniques) to generate the compressed image (Smith, 
2003; Do & Vetterli, 2005; Hankerson et al., 2005; Xiong & Ramchandran, 2005; Chappelier & 
Guillemot, 2006; Nai-Xiang et al., 2006; Raviraj & Sanavullah, 2007; Mallat, 2009; Oppenheim 
& Schafer, 2010). To recover the original image the inverse process is applied. Figure 21 
shows the basic JPEG2000 Encoding Scheme (Ebrahimi et al., 2002).  
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Fig. 21. Wavelet-based encoding scheme 

9.2 Image denoising 

Image manipulation, includes a wide range of operations like digitising, copying, 
transmitting, displaying … etc. Unfortunately, such manipulations generally degrade the 
image quality by spanning many types of noise. Hence, to recover the original structure of 
the image, the undesired added noise needs to be localised and then removed.  In image 
processing, noise removal is achieved through the usage of filtering-based denoising 
techniques (Nai-Xiang & Yap-Peng, 2005; Chappelier & Guillemot, 2006; Firoiu et al., 2009; 
Mallat, 2009; Nafornita et al., 2009; Ruikar &  Doye, 2010; Oppenheim & Schafer, 2010 & 
Chen & Qian, 2011). Traditionally, image denoising or image enhancement is performed 
using either linear filtering or non-linear filtering. Linear filtering is achieved either by using 
spatial techniques, as low pass filtering, or frequency techniques, as the Fast Fourier 
Transform (FFT). On the other hand, statistical and morphological filters are typical 
examples of non-linear filtering.  However, the filtering techniques lead in some cases to 
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baneful effects when applied indiscriminately to an image. In fact, if it is not the whole 
image that is blurred, some of its important features (e.g. edges) are.  

A solution to overcome this problem has been introduced by Denoho and Johnstone 
(Donoho & Johnstone, 1994). Instead of exploiting either linear or non-linear filtering, their 
technique consists of using the DWT followed by a thresholding operation. This method 
exploits the energy compaction ability of the wavelet transform to separate the image from 
the added noise. The role of the threshold is to eliminate the noise present in the image. 
Finally, the enhanced ”denoised” image is recovered by applying the inverse DWT. This 
method is also known as the wavelet shrinkage denoising, and is classified as a nonlinear 
processing technique due to the thresholding operation involved in the process as illustrated 
in Figure 22. 
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Fig. 22. Wavelet-based denoising system 

Another method, which achieves better performances when compared to the previous one, 
consists of using an undecimated version of the DWT (Donoho & Johnstone, 1995) This 
choice is motivated by the fact that originally, the DWT is not a shift-invariant transform, 
and as such, visual artifacts can be spanned by the transform. This like-noise is more 
apparent around discontinuities in the image. However, in this particular case the inverse 
transform is not unique. As a solution, it is appropriate to take the average of the possible 
reconstruction. The computational complexity of this approach is O(nlog(n)). 

9.3 Image watermarking 

Image watermarking emerged in the mid 90s as a discipline, among the wide range of 
multidisciplinary field of data hiding, as a methodology of protecting digital images from 
any piracy act. It consists of embedding a watermark (a trace) within a digital image before 
using or publishing it. The efficiency of a watermarking method lies generally in its ability 
to fulfil three requirements: robustness, security and invisibility.  

Watermarking techniques can be classified into two categories; spatial domain methods and 
transform-based methods. The wavelet-based watermarking technique falls into the latter. 
In  (Kundur & Dimitrios, 1997, 1998 & Hernandez-Guzman et al., 2008) both the original 
image and the watermark are first transformed to the wavelet domain, then the resulting 
image pyramids are fused according to certain rules, which take into account the 
characteristics of the Human Visual System (HVS). The wavelet in this case facilitates a 
simultaneous spatial localisation and frequency spread of the watermark within the source 
image. It has been shown that the method is robust under compression, additive noise and 
filtering (Kundur & Dimitrios, 1997, 1998) 

To the best of our knowledge, there is no general baseline framework for a wavelet-based 
watermarking system. However, in most cases, the multiresolution feature of the transform 
is exploited to achieve robust image watermarking implementations (Kundur & Dimitrios, 
1997, 1998; Tsekeridou & Pitas, 2000;  Wu et al., 2000 & Hernandez-Guzman et al., 2008). 
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Fig. 23. Wavelet-based watermarking system 

10. FPGA implementation 

Quick time-to-market, low cost and high performance are typically the treble that digital 
system designers wish to achieve when developing new products. Although, each goal 
taken individually is possible, the set of three is generally beyond the capabilities of 
traditional design and implementation approaches (Villasenor et al., 1995; Villasenor & 
Mangione-Smith, 1997; Barr, 1998; Ritter & Molitor, 2000; Chrysafis & Ortega, 2000; Lafruit 
et al., 2000; Russel & Wayne, 2001; Ebrahimi et al., 2002; Nibouche, et al., 2000, 2001a, 2001b, 
2001c, 2001d, 2002, 2003; Katona et al., 2006; Angelopoulou et al., 2008 & Lande et al., 2010). 
Versatile hardware such as general purpose processors (GPP), for example, can perform a 
wide range of operations and tasks, but fails to reach the system speed of a more specialised 
hardware. On the contrary, an oriented application-specific hardware, such as Application 
Specific Integrated Circuits (ASICs), can perform a restricted set of operations/tasks more 
quickly, however, at the cost of losing in generality. Hence, reconfigurable computing, 
generally in the form of Field Programmable Gate Arrays (FPGAs), appears to be the 
promising land for hardware designers. This is old/new paradigm allies the flexibility of 
software while preserving the hardware performances. This leads to a good trade-off 
between speed and generality.  Unlike the case of custom hardware in the form of ASICs, 
which cannot be reused for a slightly different problem to the one they were designed for, 
configurable hardware based FPGAs allows modifications at almost any stage of the design 
process. In fact, configurable hardware is easily upgraded (due to its inherent nature) to suit 
any changes of a primal design. Used in a desktop, reconfigurable hardware can be tailored 
to speed up or accelerate applications, which require a system speed superior to that offered 
by general purpose processors.  The hardware here needs to adapt itself to continual 
changes in response to end users needs. Obviously, the reconfigurable capabilities of such 
hardware will not eliminate the need for general-purpose microprocessors running on 
today’s Personal Computers (PCs). In fact, “FPGAs will never replace microprocessors for 
general-purpose computing tasks”, as stated by Villasenor J. and Mangione-Smith W. in 
(Villasenor & Mangione-Smith, 1997).  

The idea of reconfigurable computing was introduced first at the late 60s at the University of 

California at Los Angeles (UCLA) (Villasenor & Mangione-Smith, 1997 & Barr, 1998). 
However, the real emergence of this new paradigm for hardware computation was piloted 
by the commercialisation of the first SRAM-based FPGA by Xilinx Corporation in 1986 
(Russel & Wayne, 2001). The first configurable devices from both Xilinx Corporation and 
Altera Corporation, composed typically of a fine grained structure, allowed a system speed 
in the range of 2MHz – 5MHz and a chip area of less than a 100 of logic blocks (Russel & 
Wayne, 2001). The efforts deployed by academicians and industrials since then brought to 
light new developments but also new challenges. In fact, the reconfigurable hardware field 
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has dramatically maturated either by the developments in the microelectronic technology, 
which led to the emergence of a new range of devices providing a system gate beyond a 
million (e.g. Xilinx Virtex family) or by the continual emergence of a wide range of FPGA 
based system.  

In general, FPGA devices are organised as 2D arrays of configurable logic blocks or logic 
elements. The parallel nature of FPGA devices make them very good targets for application 
that require parallel processing such as in image and video processing. In such applications, 
these FPGA devices are used either as co-processors or accelerators (real time applications).  
It is not the aim of this section to survey the field of wavelet based FPGA implementation 
but rather to highlight some implementation of the DWT for application in the field of 
image/video processing (in line with section 9). 

Due to its high computational complexity, real time video compression has always been a 
very challenging topic for digital system designers. The implementation of such systems on 
FPGAs does not fail to the rule. In probably one of the earliest works in the field, Villasenor 
et al. in  (Villasenor et al., 1995) investigated wavelet transforms based video compression 
algorithms for use in low-power wireless communications. Using this previous work as a 
basis, the same authors have further described two implementations using a single FPGA 
(Schoner et al., 1995). In the first approach, the proposed video compression scheme is 
directed towards low-complexity implementations using a single in system reprogrammable 
FPGA. The optimisation of the algorithm to fit the system results in an efficient 
implementation, however, the system is limited to only a single compression algorithm. In 
the second approach, to allow more flexibility, the FPGA chip is combined with an external 
special purpose Video Signal Processor (VSP). The FPGA/VSP combination allows the 
implementation of four common compression algorithms and their execution in real time. 
The proposed design schemes were both implemented on a Xilinx FPGA. The first design 
runs at 20 frames per seconds (fps) when processing a 256x256 frames with a spacial 
precision of 8-bits. It includes a wavelet transform, a simplified quantiser and a run-length 
encoder. The second scheme is capable of implementing a DCT, a 2-D FIR, a Vector 
Quantisation scheme (VQ) and the wavelet transform using a single generic equation. It 
delivers different performances: 13.3 fps for 7x7 mask 2-D filter, 55 fps for an 8x8 block DCT, 
7.4 fps for a 4x4 VQ (at 1/2 bit per pixel) and 35.7 fps for a single wavelet stage.  

Partitionning images prior to computation is a well known technique in the field of image 
processing. It has been widely used in DCT-based image compression schemes. In the last 
decade, this technique has been adopted in the wavelet-based  JPEG2000 new compression 
standard (Ebrahimi et al., 2002). In (Ritter & Molitor, 2000), a biorthogonal Cohen-
daubechies-Fauveau (CDF) 5/3 wavelet pair followed by Embedded Zerotree Encoding 
(EZT) technique is used in a lossy and a lossless compression schemes, respectively. Since 
the 5/3 pair is an integer-to-integer wavelet, a lifting scheme based architecture is used for 
the implementation. In the lossless compression scheme, the image is partitioned into a set 
of 32x32 tiles before processing. The system is then implemented onto an FPGA prototyping 
board. The system achieved an operating speed of 20MHz. In the second scheme, in order to 
avoid excessive increase of the internal memory, a rearrangement of the filtered and 
decimated outputs is proposed (interlocked external memory access. Because of its integer 
nature (integer to integer), as well as, for its adoption in the JPEG 2000 standard, the 
biorthogonal 5/3 wavelet is the focus of many studies. Since the wavelet transform 
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algorithms are inherently multi levels, requiring complex computation schedule in 
hardware, a comparison of different computation schedule algorithms is presented in 
(Angelopoulou et al., 2008). The most widely used schedule algorithms such as the row 
column based algorithm (Mallat, 1989), the line based algorithm (Chrysafis & Ortega, 2000) 
and the block based algorithm (Lafruit et al., 2000) are implemented in FPGA using the 
lifting scheme and 2D DWT architecture. The 2D DWT FPGA implementation is fully 
parameterised. Based on the lifting scheme, Lande et al. in (Lande et al., 2010) introduce a 
robust invisible watermarking method to be used with still images. The scheme is 
incorporated in the JPEG 2000 lossless algorithm, featuring an integer to integer 
biorthogonal 5/3 CDF wavelet filters. The proposed algorithm targets the consumer 
electronics market. The objectives of the proposed FPGA implementation of this wavelet 
based watermarking scheme include low power usage, real time performance, robustness 
and ease of integration.  

Denoising still images and video sequences is another field of predilection of the wavelet 
transform (see section 9). Katona et al. (Katona et al., 2006) suggest a real time wavelet based 
video denoising system and its implementation in FPGA. The method adopts a parallel 
approach to implement an advanced wavelet domain noise filtering algorithm, which uses a 
non-decimated wavelet transform. The approach relies on the wavelet “a trous” algorithm 
and the Daubechies minimum phase wavelet (Daub4). The proposed implementation is 
decentralised and distributed over two FPGAs. As a proof of concept, digitised television 
signals are adopted as real time video sources.  

11. Conclusion 

Since the late 80s, the wavelet transform has been widely used in different scientific 
applications including signal and image processing. This ongoing growing success, which 
has been characterised by the adoption of some wavelet-based schemes, is due to features 
inherent to the transform, such as time-scale localisation and multiresolution capabilities. In 
this chapter, the basic concepts of the wavelet transform have been introduced. First, the 
historical development of the wavelet transform and its advent to the field of signal and 
image processing were reviewed. Then, its features and the mathematical foundations 
behind it were reviewed. To ease the understanding of the wavelet theory, the related 
notations and terms, such as the scaling function, multiresolution, filter bank and others 
were described and then briefly explained.  

Depending on the application at hand, different algorithms for implementing the wavelet 
transform have been developed. Four of these algorithms, namely, Burt’s pyramid, Mallat 
algorithm, Feauveau’s scheme and the lifting scheme were briefly described. Finally, some 
wavelet based image processing applications were also given. 
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