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1. Introduction 

Removing noise from signals is possible only if some prior information is available. The 

information is employed by different estimators to recover the signal and reduce noise. Most 

noises in one-dimensional transient signal follow Gaussian distribution. The Bayes estimator 

minimizes the expected risk to get the optimal estimation. The minimax estimator uses a 

simple model for estimation. They are the most popular estimators in noise estimation.  

No matter which estimator is used, the risk should be as small as possible. Donoho and 

Johnstone have made a breakthrough by proving that thresholding estimator has a small risk 

which is close to the lower bound. Thereafter, threshold estimation was studied extensively and 

has been improved by more and more researchers. Besides the universal threshold, some other 

thresholds, for example SURE threshold and minimax threshold, are also widely applied.  

In wavelet denoising, the thresholding algorithm is usually used in orthogonal 

decompositions: multi-resolution analysis and wavelet packet transform. Wavelet 

thresholding faces some questions in its application, for example, the selection of hard or 

soft threshold, fixed or level-dependent threshold. Proper selection of those items helps 

generating a better estimation. 

Besides the influence of thresholding, the influence of wavelets is also an important factor. 

In most applications, the wavelet transform uses a few non-zero coefficients to describe a 

signal or function. Producing only a few non-zero coefficients is crucial in noise removal 

and reducing computing complexity. Choosing a wavelet with optimum design to produce 

more wavelet coefficients close to zero is crucial in some applications.  

2. Noise estimation 

The output acquired by sensing devices, for example transformer and sensor, is a 

measurement of analogue input signal ( )f x . The output can be modelled as in (1). The 

output [ ]X n  is composed by a filtered ( )f x  with the sensor responses ( )x  and an added 

noise [ ]W n . The noise W  contains various types of interferences, for instance, the radio 

frequency interferences from communication systems. It also includes the noises induced by 

measurement devices, such as electronic noises from oscilloscope and transmission errors. 

In most cases, the noise W is modelled by a random vector that often follows Gaussian 

distribution. 
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 [ ] , [ ]X n f W n    (1) 

If the analogue-to-digital data acquisition is stable, the discrete signal can be denoted by 

[ ] ,f n f   . The analogue approximation of ( )f x  can be recovered from [ ]f n . The noisy 

output in (1) is rewritten as 

 [ ] [ ] [ ]X n f n W n   (2) 

The estimation of [ ]f n  calculated from (2) is denoted by [ ]F DX n , where D  is the 

decision operator. It is designed to minimize the error f F  . For one-dimension signal, the 

mean-square distance is often employed to measure the error f F  . The mean-square 

distance is not a perfect model but it is simple and sufficiently precise in most cases (Mallat, 

2009d). The risk of the estimation is calculated by (3): 

 || ||
2( , ) { }r D f E f F    (3) 

The decision operator D  is optimized with the prior information available on the signal 

(Mallat, 2009d). Two estimation methods: Bayes estimation and minimax estimation are the 

most commonly used ones. The Bayes estimator minimizes the risk to get optimal estimation. 

But it is difficult to obtain enough information to model prior probability distribution. The 

minimax estimator uses simple model. But the risk cannot be calculated. The section 2.1 and 

section 2.2 introduce the fundamental of Bayes estimator and minimax estimator. 

2.1 Bayes estimation 

In Bayes estimation, the unknown signal f  which is denoted by a random vector F  is 

supposed to have a probability distribution   which is also called prior distribution. The 

noisy output in (2) can be rewritten as 

 [ ] [ ] [ ]X n F n W n   for 0 n N   (4) 

The noise W  is supposed to be independent with F  for all n . The distribution of 

measurement X  is the joint distribution of F  and W . It is called posterior distribution. 

Thus, F DX  is an estimator of F  from measurement X . Then the risk is the same as in (3). 

The Bayes risk of F  with respect to the prior probability distribution   of the signal is:  

 || ||
1

2 2

0

( , ) { ( , )} { } {| [ ] [ ]| }
N

r D E r D F E F F E F n F n


      . (5) 

The estimator F  is said to be a Bayes estimator if it minimizes the Bayes risk among all 

estimators. Equivalently, the estimator which minimizes the posterior expected loss 

{ ( , )| }E r D F X  for each X  also minimizes the Bayes risk and therefore is a Bayes estimator 

(Lehmann & Casella, 1998). 

The risk function is determined by choosing the way to measure the distance between the 

estimator F  and the unknown signal F . In most applications, the mean square error is 

adopted because of its simplicity. But some alternative estimators are also used such as 
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linear estimation. In this chapter, most estimations use mean square error to measure 

estimation risk. 

2.2 Minimax estimation 

It is possible that we have some prior information for a signal, but it is rare to know the 
probability distribution of complex signals. For example, there is not an appropriate model 
for the stochastic transient signals in power system or the sound signals from nature 
environment. In this case, we have to find a “good” estimator whose maximal risk is 
minimal among all estimators. The prior information forms a signal set  . But this set does 
not specify the probability distribution of signals in  . The more prior information, the 
smaller the set   (Mallat, 2009d). 

For the signal f  , the noisy output is as shown in (2). The risk of estimation F DX  is 

|| ||2( , ) { }r D f E DX f  . Since the probability distribution of signal in set   is unknown, the 

precise risk cannot be calculated. Only a possible range is calculated. The maximum risk of 

this range is (Donoho & Johnstone, 1998): 

 || ||2( , ) sup { }
f

r D E DX f


    (6) 

In minimax estimation, the minimax risk is the lower bound of risk in (6) with all possible, 

no matter linear or nonlinear, operators D : 

 ( , ) inf ( , )n
D n

r D r D


    (7) 

Here, n  denotes the set of all operators.  

3. Threshold estimation in bases 

Threshold is the estimated noise level. The values larger than threshold are regarded as 
signal, and the smaller ones are regarded as noises. When the noisy output is decomposed 
in a chosen base, the estimator of noises can also be applied because the white noises remain 
as white noises in all bases. It is proved in section 3.1. Two thresholding functions: hard 
thresholding and soft thresholding are introduced in section 3.2.  

3.1 Estimation in orthogonal basis 

When the noisy output is decomposed in an orthogonal basis 0{ }m m NB g   , the 

components in (2) is rewritten as [ ] ,B mX m X g  , [ ] ,B mf m f g  , and 

[ ] ,B mW m W g  . The sum of them gives 

 [ ] [ ] [ ]B B BX m f m W m  . (8) 

If the noise W  is a zero-mean white noise with variance 2 , then 

2{ [ ] [ ]} [ ]E W n W k n k   . Thus the noise coefficients 
1

*

0

[ ] [ ] [ ]
N

B m
n

W m W n g n



   also represent 

a white noise of variance 2 . This because, 
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1 1

2 2

0 0

{ [ ] [ ]} [ ] [ ] { [ ] [ ]} , [ ]
N N

B B m p p m
n k

E W m W p g n g k E W n W k g g p m  
 

 

      . (9) 

From the analysis above, one can see that the noise remains as white noise in all bases. It is 
not influenced by the choice of basis (Mallat, 2009d). 

3.2 Thresholding estimation 

In the orthogonal basis 0{ }m m NB g   , the estimator of f  in X f W   can be written as: 

 
1

0

( [ ]) [ ]
N

m B B m
m

F DX a X m X m g




   . (10) 

Here, ma  is the thresholding function. It could be hard thresholding or soft thresholding. 

3.2.1 Hard thresholding 

A hard thresholding function is shown as follows (Mallat, 2009d): 

 
1 if| |

( )
0 if| |m

x T
a x

x T


  

. (11) 

By substituting ( )ma x  into (10), we can obtain the estimator with hard thresholding function 

 
1

0

( [ ])
N

T B m
m

F X m g



   with  

if| |
( ) ( ) *

0 if| |T m

x x T
x a x x

x T



   

. (12) 

Then the risk of this thresholding is  

 
1

2

0

( ) ( , ) {| [ ] ( [ ])| }
N

th B T B
m

r f r D f E f m X m



   . (13) 

3.2.2 Soft thresholding 

A soft thresholding function is implemented by (Mallat, 2009d) 

 0 ( ) max(1 ,0) 1
| |

m

T
a x

x
    . (14) 

The resulting estimator F  for this case can be written as in (12) with the thresholding 

function T  replaced by a soft thresholding function as shown in (15). 

 ( )

0
T

x T

x x T


 



  

if

if

if| |

x T

x T

x T


 


. (15) 

Reducing the magnitude of coefficients BX  that are greater than threshold usually makes 

the amplitude of the estimated signal F  be smaller than the original F . This is intolerable 
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for some applications where precise recovery is required such as noise reduction of partial 

discharge signal, since the pulse magnitude and shape in such applications are needed for 

further analysis (Zhang et al., 2007). For other cases where precise recovery of signal 

magnitude is not required, for example, image noise reduction, the soft thresholding is 

widely used since it can retain the regularity of signal (Donoho, 1995). 

The ( )T x  of hard thresholding and soft thresholding are portrayed in Fig.1. 

 

Fig. 1. Thresholding function ( )T x , (a) original signal, (b) hard thresholding, (c) soft 

thresholding 

3.3 Threshold estimation and its improvement 

As depicted in (13), the risk of thresholding is closely related to the thresholding 

function T . The appropriate choice of threshold T  is an important factor to reduce the risk 

of estimation. Several famous thresholds were proposed and proved by different estimation 
methods. 

3.3.1 Universal threshold 

Donoho and Johnstone (Donoho & Johnstone, 1994) proposed a universal threshold T . 
They proved that the risk of thresholding, no matter hard or soft, is small enough to satisfy 
the requirements of most applications. 

If the thresholding function | |( ) ( ( ))T xx x sign x      is a soft thresholding, for a Gaussian 

random variable X  of mean   and variance 1, then the estimation risk is 

 2( , ) {| ( ) | }r E X     . (16) 

If X  has a variance 2  and a mean  , then the following formula can be verified by 

considering /X X    

 2 2{| ( ) | } ( , )E X r
   
 

  . (17) 

Since the projection [ ]Bf m  in basis 0{ }m m NB g    is a constant, the [ ]BX m  is a Gaussian 

random variable with mean [ ]Bf m  and variance 2 . The risk of estimation by soft 

thresholding with a threshold T  is 
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1
2

0

22 21
2 2

2 2
0

[ ]
( ) ( , )

| [ ]|
( ,0) min( , )

N
B

th
m

N
B

m

f mT
r f r

f mT T
N r


 

 
  











 




. (18) 

Donoho and Johnstone proved that for 2 log eT N  and 4N  , the upper bound of the 

two parts of risk in (18) are (Donoho &Johnstone, 1994) 

 2 2( ,0) (2 log 1)e

T
N r N 


  , (19) 

and 

 

22 21 1
2 2 2

2 2
0 0

| [ ]|
min( , ) (2 log 1) min( ,| [ ]| )

N N
B

e B
m m

f mT
N f m

 
 

 

 


   . (20) 

Then, the risk of estimator with threshold 2 log eT N  and all 4N   is  

 
1

2 2 2

0

( ) (2 log 1)( min( ,| [ ]| ))
N

th e B
m

r f N f m 




    . (21) 

Donoho and Johnstone also mentioned in (Donoho &Johnstone, 1994), the universal 
threshold is optimal in certain cases defined by (Donoho &Johnstone, 1994). 

3.3.2 SURE threshold 

The thresholding risk is often reduced by decreasing the value of threshold, for instance, 
choosing a threshold smaller than universal threshold in section 3.3.1. Sure threshold was 
proposed by Stein (Stein, 1981) to suit this purpose.  

As depicted in (Mallat, 2009d), when | [ ]|BX m T , the coefficient is set to zero by soft 

thresholding. Then the risk of estimation equals 2| [ ]|Bf m . Since 2 2 2{| [ ]| } | [ ]|B BE X m f m   , 

the 2| [ ]|Bf m  can be estimated with 2 2| [ ]|BX m  . But if | [ ]|BX m T , the soft thresholding 

substracts T  from | [ ]|BX m . Then the risk is the sum of noise energy and the bias 

introduced by the reduction of the amplitude of [ ]BX m  by T . The resulting estimator of 

( )thr f  is  

 
1

0

( , ) ( [ ])
N

B
m

Sure X T C X m



  , (22) 

with 

 
2 2

2 2
( )

u
C u

T





  


 
if

if

u T

u T




. (23) 
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The ( , )Sure X T  is called Stein unbiased risk estimator (SURE) and was proved unbiased by 
(Donoho & Johnstone, 1995). Consider using this estimator of risk to select a threshold: 

 arg min ( , )
T

T Sure X T  (24) 

Arguing heuristically, one expects that, for large dimension N , a sort of statistical regularity 
will set in, the Law of Large Numbers will ensure that SURE is close to the true risk and that 
T  will be almost the optimal threshold for the case at hand (Donoho & Johnstone, 1995).  

Although the SURE threshold is unbiased, its variance will induce errors when the signal 

energy is smaller than noise energy. In this case, the universal threshold must be imposed to 

remove all the noises. Since || || || ||2 2 2{ }E X f N  , || ||2f  can be estimated by || ||2 2X N  

and compared with a minimum energy level 2 1/2 3/2(log )N eN N  . Then the SURE 

threshold is (Mallat, 2009d) 

 
2 log e N

T
T

 
 

  
|| ||

|| ||

2 2

2 2

if

if

X N N

X N N

 

 

 

 
. (25) 

3.3.3 Minimax threshold 

The inequality in (21) shows that the risk can be represented in the form of a multiplication 

of a constant 2 log 1e N   and the loss for estimation. However, it is natural and more 

revealing to look for ‘optimal’ thresholds   which yield smallest possible constant   in 

place of 2 log 1e N  . Thus, the inequality in (21) can be rewritten as 

 
1

2 2 2

0

( ) ( min( ,| [ ]| ))
N

th B
m

r f f m 




    . (26) 

The minimax estimation introduced in section 2.2 is a possible method to find the 

appropriate constant   that satisfies 2log 1e N   , and the threshold 2 log e N  . 

Donoho and Jonestone (Donoho & Johnstone, 1994) defined the minimax quantities 

 
1 2

( , )
inf sup

min( ,1)
T

N 

  
 


, and the largest  attaining  aboveT   . (27) 

They also proved that   attains its maximum 0  at 0  . Then T is the largest   
attaining 0 . Since ( , )    is strictly increasing in   and ( ,0)   is strictly decreasing in 
 , so that the solution of (27) is 

 ( 1) ( ,0) ( , )T TN       . (28) 

Then with this solution, the minimax threshold T  is  

 2 log eT N , 2 2 log ( 1) 4 log (log ( 1)) log 2 (1) ( )e e e eT N N o N        . (29) 

Usually, for the same N , the risk of universal threshold is larger than SURE threshold and 
minimax threshold. All the three thresholds mentioned in section 3.3.1 to section 3.3.3 are 
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applied to denoise the same noisy data and are evaluated by signal-to-noise ratio (SNR), 
which is measured in decibels: 

 
|| ||

|| ||

2

10 2

{ }
10 * log ( )

{ }
dB

E F
SNR

E F F


 
, (30) 

where F  is the original data without noise and F  is the estimation of F . 

Fig.2 shows the estimation of a synthesized signal with different thresholds. The noisy  

data is decomposed in a biorthogonal basis. Since hard thresholding is adopted, setting a 

wavelet coefficient to zero will induce oscillations near discontinuities in estimation. The 

estimation with universal threshold in Fig.2(c) shows small oscillations at the smooth parts.  

 

Fig. 2. Estimation with different thresholds. (a) original data, (b) noisy data (SNR=23.59dB), 
(c) estimation with universal threshold (SNR=31.98dB), (d) estimation with SURE threshold 
(SNR=34.82dB), (e) estimation with minimax threshold (SNR=33.63dB) 
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The oscillations result in a smaller SNR (31.98dB). The oscillations are less obvious in 

estimations in Fig.2(d) and Fig.2(e). But noise with very small magnitude is still found. As 

mentioned before, universal threshold is usually larger than the other two thresholds. Its 

risk of estimation || ||2{ }r E F F    is therefore greater than that of the other two. This can be 

deduced by values of SNR. 

4. Wavelet thresholding 

The signals carry a large amount of useful information which is difficult to find. The 

discovery of orthogonal bases and local time-frequency analysis opens the door to the world 

of sparse representation of signals. An orthogonal basis is a dictionary of minimum size that 

can yield a sparse representation if designed to concentrate the signal energy over a set of 

few vectors (Mallat, 2009a). The smaller amount of wavelet coefficients reveals the 

information of signal we are looking for. The generation of those vectors is an 

approximation of original signal by linear combination of wavelets. For all f  in 2( )L R , 

 1 , ,,j j j k j kP f P f f      , (31) 

where ,, j kf   stands for the inner product of f  and ,j k , jP  is the orthogonal projection 

onto jV . In orthogonal decomposition, jV  is the subspace which satisfies 

2 1 0 1 2V V V V V      , 2( )j
j

V L




   and {0}j

j
V





  (Daubechies, 1992). 

Thresholding the wavelet coefficients keeps the local regularity of signal. Usually, wavelet 
thresholding includes three steps (Shim et al., 2001; Zhang et al., 2007): 

1. Decomposition. A filter bank of conjugate mirror filters decomposes the discrete signal 

in a discrete orthogonal basis. The wavelet function , [ ]j k n  and scale function , [ ]j k n  

both belong to the orthogonal basis , ,,0 2 0 2
[{ [ ]} , { [ ]} ]j jj k J kL j J k k

B n n       
 . The scale 

parameter 2 j  varies from 12L N  up to 2 1J  , where N  is the sampling rate of 

signal X . 
2. Thresholding. After decomposition, the threshold is selected. A thresholding estimator 

in the basis B  is written as 

 

2 2

, , , ,
1 0 0

( , ) ( , )

j JJ

T j k j k T J k J k
j L k k

F X X     
 

   
       

, (32) 

where T is either a hard threshold or a soft threshold. Normally, the selected threshold is 

applied on all coefficients except the coefficients contain the lowest frequency energy 

,, J kX   . This aims to keep the regularity of reconstructed signal. The difference between 

keeping and not keeping the lowest-frequency approximate coefficients is illustrated by 
Fig.3. Universal threshold with hard thresholding is used in estimation. The original data in 
Fig.3(a) has a wide frequency range. It contains both low frequency regular component and 
high frequency irregular components. Fig.3(c) shows when lowest-frequency part is kept, 
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the regular component is still included in reconstructed signal. But if the lowest-frequency 
part is removed, only the high-frequency irregular components left as in Fig.3(d). 

3. Reconstruction. After thresholding, all the coefficients are reconstructed to form the 
denoised signal. 

 

Fig. 3. Difference between keeping lowest-frequency approximates and not keeping it. (a) 

original data, (b) noisy data (SNR=22.93dB), (c) estimation with ,, J kX    kept 

(SNR=34.83dB), (d) estimation without ,, J kX    kept (SNR=0.24dB) 

Multi-resolution analysis and wavelet packet transform are the most widely employed 
orthogonal analyses. The wavelet thresholding by using multi-resolution analysis and 
wavelet packet are introduced in section 4.1 and section 4.2. 

4.1 Multi-resolution analysis 

Multi-resolution analysis is discrete wavelet transform using series of conjugate mirror filter 

pairs. The signal f  is projected onto a multi-resolution approximation space jV . This space 

is then decomposed into a lower resolution space 1jV   and a detail space 1jW  . The two 

spaces satisfy 1 1j jV W  , and 1 1j j jV W V   (Daubechies, 1992). The orthogonal basis 

( 2 )  
j

j nt n  of f  in jV  is also divided into two new orthogonal bases 1

1( 2 ) 
  

j

j k
t k  of 

1jV  , 

and 1

1( 2 ) 
  

j

j kt k  of 
1jW  .  

This decomposition process is realized by filtering f  by a pair of conjugate mirror filters 

[ ]h k  and 1[ ] ( 1) [1 ]kg k h k   . The [ ]h k  and [ ]g k  are also called low pass filter and high 
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pass filter, respectively. They usually denote the filter banks at reconstruction. At 

decomposition, the wavelet coefficients are calculated with [ ]h k  and [ ]g k  where 

[ ] [ ]h k h k   and [ ] [ ]g k g k  . Accordingly, the coefficients generated by low pass filter and 

high pass filter are called approximates and detail, respectively (Mallat, 2009b) 

1[ ] [ 2 ] [ ] [2 ]j j j
k

a p h k p a n a h p





    , and 1[ ] [ 2 ] [ ] [2 ]j j j
k

d p g k p a n a g p





    .  (33) 

At the reconstruction, 

 
1

1 1

[ ] [ 2 ] [ ] [ 2 ] [ ]

[ ] [ ]

j j j
k k

j j

a p h p n a n g p n a n

a h p d g p

 


 

 

   

   

 


. (34) 

Fig.4 shows the thresholding procedure with multi-resolution analysis. 

 

Fig. 4. Thresholding procedure with multi-resolution analysis (the lowest-frequency 

approximate 2a  is kept) 

4.2 Wavelet packet transform 

Different time-frequency structures are contained in complex signals. This motivates the 
exploration of time-frequency representation with adaptive properties. Although similar to 
multi-resolution analysis, wavelet package can divide the frequency axis in separate interval 

of various sizes. Its spaces jW  are also divided into two orthogonal spaces. In order to 

discriminate the detail spaces of wavelet packet from those of multi-resolution analysis, the 

jW  is represented as p
jW . Thus, the relation between detail spaces is 2 2 1

1 1
p p

j jW W 
  , and 

2 2 1
1 1
p p p

j j jW W W
   . The orthogonal bases at the children nodes can be represented as 

2
1( ) [ ] ( 2 )p p j

j j
k

t h k t k 





   of 2
1
p

jW  , and 2 1
1 ( ) [ ] ( 2 )p p j

j j
k

t g k t k 






   of 2 1

1
p

jW 
  (Mallat, 

2009c). 

Wavelet packet coefficients are computed with a filter bank that is the same as multi-
resolution analysis. The wavelet packet transform is an iteration of the two-channel filter 
bank decomposition presented in section 4.1. At the decomposition, the wavelet coefficients 

of wavelet packet children 2
1

p
jd   and 2 1

1
p

jd 
 are obtained by subsampling the convolutions of 

p
jd with low-pass filter [ ]h k  and high-pass filter [ ]g k :  
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 2
1[ ] * [2 ]p p

j jd k d h k  , and 2 1
1 [ ] * [2 ]p p

j jd k d g k
  . (35) 

Iterating the decomposition of coefficients along the branches forms a binary wavelet packet 
tree with 2 1L   leaves (0 2 1)n L

Ld n    at level L . Then, at the reconstruction, 

 2 2 1
1 1[ ] * [ ] * [ ]p p p

j j jd k d h k d g k
  

 
. (36) 

The decomposition and reconstruction of wavelet packet transform are illustrated in Fig.5. 
The thresholding procedure is added before reconstruction. 

 

Fig. 5. Thresholding procedure by using wavelet packet transform (the lowest-frequency 
approximate 0

2d  is kept) 

Both multi-resolution analysis and wavelet packet transform are used in estimation of a 
same noisy signal. The estimations are shown in Fig.6. The coiflet 2 is used to calculate 
wavelet coefficients and the hard threshold is set as 2 log eT N  .  

 

Fig. 6. Estimation with different wavelet transforms, (a) original data, (b) noisy data 
(SNR=23.56dB), (c) estimation with multi-resolution analysis (SNR=35.3dB), (d) estimation 
with wavelet packet transform (SNR=33.22dB) 
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4.3 Noise variance estimation 

In threshold estimation discussed in section 3, the variance 2 of noise W  is an important 

factor in threshold T . In practical application, the variance is unknown and its estimation is 

needed. When estimating the variance 2 of noise [ ]W n  from the data [ ] [ ] [ ]X n f n W n  , 

the influence from [ ]f n  must be considered. When f  is piecewise regular, a robust 

estimator of variance can be calculated from the median of the finest-scale wavelet 
coefficients. Fig.7 depicts the wavelet transforms of three functions: blocks, pulses and 
heavisine. They are chosen because they often arise in signal processing. It is easy to find the 
large-magnitude coefficients only occur exclusively near the areas of major spatial activities 
(Donoho &Johnstone, 1994).  

 

Fig. 7. Three functions and their wavelet transform, (a) blocks (left) and its wavelet 
coefficients (right), (b) pulses (left) and its wavelet coefficients (right), (c) heavisine (left) and 
its wavelet coefficients (right) 
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If f  is piecewise smooth, the wavelet coefficients ,| , |l kf    at finest scale l  are very 

small, in which case , ,, ,l k l kX W    . As mentioned in section 3.1, the wavelet 

coefficients ,, l kW    are still white if W  is white. Therefore, most coefficients 

contribute to noise with variance 2 and only a few of them contribute to signal. Then, a 

robust estimator of 2  is calculated from the median of wavelet coefficients ,| , |l kW   . 

Different from mean value, median is independent of the magnitude of those few large-

magnitude coefficients related with signal. If M  is the median of absolute value of 

independent Gaussian random variables with zero mean and variance 2
0 , then one can 

show that 

 0{ } 0.6745E M 
 (37) 

The variance of noise W  is estimated from the median XM  of absolute wavelet coefficients 

,| , |l kW    by neglecting the influence of f  (Mallat, 2009d): 

 0.6745
XM 

 (38) 

Actually, piecewise smooth signal f  is only responsible for a few large-magnitude 

coefficients, and has little impact on the value of XM . 

4.4 Hard or soft threshold 

As mentioned in section 3.2, the estimation can be done with hard and soft thresholding. 

The estimator F  with soft threshold is at least as regular as original signal f  since the 

wavelet coefficients have a smaller magnitude. But this will result in a slight difference in 
magnitude when comparing estimation with original signal. This is not true if hard 

threshold is applied. All the coefficients with large-amplitude above threshold T  are 
unchanged. However, because of the error induced by hard-thresholding, oscillations or 
small ripples are created near irregular points. 

Fig.8 shows the wavelet estimation with hard and soft thresholding. The original data 
consists of a pulse signal and a sinusoidal. It includes both piecewise smooth signal and 

irregular segments. The wavelet coefficients are calculated with a coiflet 2. The variance 2  

of white noise is calculated with (38) and the threshold is set to 2 log eT N  . In Fig.8(c), 

the hard thresholding removes the noise in the area where the original signal f  is regular. 

But the coefficients near the singularities are still kept. The SNR of estimation with hard 
thresholding is 36.47dB. Compared with hard thresholding, the magnitude of coefficients 
with soft thresholding is a little smaller. The soft thresholding estimation attenuates the 
noise affect at the discontinuities, but it also reduces the magnitude of estimation. The SNR 
of soft-thresholding estimation reduces to 31.98dB. The lower SNR of soft thresholding 
doesn’t mean poor ability of signal estimation. The two thresholdings are selected in 
different applications.  
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Fig. 8. Wavelet thresholding with hard and soft threshold, (a) original data (left) and its 
wavelet transform, (b) noisy data (SNR=23.58dB) (left) and its wavelet transform, (c) 
Estimation with hard thresholding (SNR=36.47dB) (left) and its wavelet coefficients (right), 
(d) Estimation with soft thresholding (SNR=31.98dB) (left) and its wavelet coefficients 
(right). 
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4.5 Fixed or level-dependent variance estimation 

If the influence of level is neglected, the estimated variance   of white noise can be set as 

the estimation of finest scale, or 1d  in Fig.9. As discussed in section 4.3, most wavelet 

coefficients at finest scale contribute to noise, and only a few of them contributes to signal. 

The use of fixed estimator   reduces the influence of signal and edge effect in wavelet 

transform. But when the added noise is no longer white noise, for example, colored 
Gaussian noises, the noise variance should be estimated level by level (Johnstone & 
Silverman, 1997). Fig.9 gives the estimation of original signal in Fig.8(a).  

In Fig.9, a Gaussian noise is added. Section 4.3 explains how to calculate the threshold value 

from the wavelet coefficients. Here, the universal threshold 2 log eT N   proposed in 

section 3.3.1 is used. In Fig.9(a), we estimate the noise variance with the median formula in 

(38) at the finest scale. Only one threshold T  is produced. In level-dependent estimation, 
the estimation of noise variance (38) is done for each scale. That is to say, six scales in 

Fig.9(b) will generate six estimated variances   and thus six thresholds T . Each threshold 

is applied on each scale accordingly. The SNR of estimation with level-dependent estimation 
(36.7dB) is greater than that of fixed estimation (36.4dB).  

 

 

Fig. 9. Wavelet thresholding with fixed and level-dependent variance estimation, (a) 
Estimation with fixed estimation (SNR=36.4dB) (left) and its wavelet transform (right), (b) 
Estimation with level-dependent estimation (SNR=36.7dB) (left) and its wavelet transform 
(right). 
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5. Selection of optimal wavelet bases 

Wavelet thresholding explores the ability of wavelet bases to approximate signal f  with 

only a few non-zero coefficients. Therefore, optimal selection of wavelet bases is an 

important factor in wavelet thresholding. This depends on the properties of signal and 

wavelets such as regularity, number of vanishing moments, and size of support. 

5.1 Vanishing moments 

The number of vanishing moments determines what the wavelet doesn’t “see” (Hubbard, 

1998). Usually, the wavelet   has p  vanishing moments if  

 ( ) 0kt t dt



    for 0 k p  .  (39) 

This means that   is orthogonal to any polynomial of degree 1p  . Therefore, the wavelet 

with two vanishing moments cannot see the linear functions; the wavelet with three 

vanishing moments will be blind to both linear and quadratic functions; and so on. If f is 

regular and kC , which means f  is p  times continuously differentiable function, when 

k p  then the wavelet can generate small coefficients at fine scales 2 j  (Mallat, 2009b). But it 

is not the higher the better. Too high vanishing moment may miss the useful information in 

signal, and leave more useless information such as noise. The proper number of vanishing 

moments is thus important in optimal wavelet selection. 

5.2 Size of support 

The size of support is the length of interval in which the wavelet values are non-zero.  

If f  has an isolated singularity at 0t  and if 0t  is inside the support of 

)2(2)( ,
2/

, ktt
j

kj

j

kj    , then  kjf ,,  may have a large amplitude. If   has a compact 

support of size N , at each scale j2  there are N  wavelets kj ,  whose support includes 

0t (Mallat, 2009b). In wavelet thresholding application, the signal f  is supposed to be 

represented by a few non-zero coefficients. The support of wavelet should be in a smaller 

size. 

If an orthogonal wavelet   has p  vanishing moments, its support size must be at least 

12 p . The Daubechies wavelets are optimal to have minimum size of support for a given 

number of vanishing moments. When choosing a wavelet, we have to face a trade-off 

between number of vanishing moments and size of support. This is dependent on the 

regularity of signal f . 

A polynomial function with degree less than 4 is shown in Fig.10. The noisy data and 

estimations with Daubechies wavelets are also listed.  Here, level-dependent threshold is set 

as NT elog2
~ . The estimation with wavelet Daubechies 3 whose vanishing moments p  is 

3 has larger SNR than others. 

www.intechopen.com



 
Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology 

 

76

 

Fig. 10. The estimations by using wavelets with different vanishing moments,  
(a) original data, (b) noisy data (SNR=22.4dB), (c) estimation with Daubechies 3 
(SNR=35.5dB), (d) estimation with Daubechies 7 (SNR=34.6dB), (e) estimation with 
Daubechies 11 (SNR=33.8dB), (f) estimation with Daubechies 15 (SNR=32.8dB) 

5.3 Regularity 

The regularity of wavelet induces an obvious influence on wavelet coefficients in 

thresholding. When reconstructing a signal from its wavelet coefficients  kjf ,, , an error 

  is added. Then a wavelet component kj ,  will be added to the reconstructed signal. If   

is smooth, kj ,  is a smooth error. For example, in image-denoising, the smooth error is 

often less visible than irregular errors (Mallat, 2009b). Although the regularity of a function 
is independent of the number of vanishing moments, the smoothness of some wavelets is 
related to their vanishing moments such as biorthogonal wavelets. 
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5.4 Wavelet families 

Both orthogonal wavelets and biorthogonal wavelets can be used in orthogonal wavelet 
transform. Thus, Daubechies wavelets, symlets, coiflets and biorthogonal wavelets are 
studied in this chapter. Their properties are listed in Table 1 (Mallat, 2009b).  

 

Wavelet name Order 
Number of 

vanishing moments
Size of support Orthogonality 

Daubechies }1{ NN  N  12 N  Orthogonal 

Symlets }2{ NN  N  12 N  Orthogonal 

Coiflets }51{ NN  N2  16 N  Orthogonal 

Biorthogonal 
wavelets 

}81{ NdN  for dec.

}61{ NrN  for rec. rN  
12 dN  for dec.

12 rN  for rec. 
Biorthogonal 

Table 1. Information of some wavelet families, ‘dec’. is short for decomposition, ‘rec’. is 
short for reconstruction 

Choosing the suitable wavelet in wavelet thresholding depends on the features of signal and 
wavelet properties mentioned in section 5.1, 5.2 and 5.3. For different applications, the 
optimal wavelets change. For instance, the irregular wavelet Daubechies 2 induces irregular 
errors in wavelet thresholding of regular signal processing. But it achieves better estimation 
when applied to estimate transient signal in power system which are often composed by 
pulses and heavy noises (Ma et al., 2002). As illustrated in Fig.11 and Fig.12, two original 
datasets are tested with an irregular wavelet Daubechies 2 and a regular wavelet coiflet 3. 

 

Fig. 11. Estimation of regular data, (a) original data, (b) noisy data (SNR=13.03dB), (c) 
estimation with ‘db2’ (SNR=24.75dB), (d) estimation with ‘coif3’ (SNR=36.96dB) 
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Fig. 12. Estimation of irregular data, (a) original data, (b) noisy data (SNR=10.38dB), (c) 

estimation with ‘db2’ (SNR=21.68dB), (d) estimation with ‘coif3’ (SNR=20.61dB) 

6. Conclusion 

This chapter focuses on wavelet denoising. It starts with the introduction of two major noise 

estimation methods: Bayes estimation and Minimax estimation. In orthogonal bases, 

thresholding is a common method to remove noises. The estimations show that oscillations 

or ripples will be induced by hard thresholding. Nevertheless, the SNR of estimation with 

hard thresholding is higher than soft thresholding since the magnitude of coefficients 

decreases after soft thresholding. Then the thresholds that developed by different noise 

estimations are proposed. The larger threshold removes more noises but it generates greater 

estimation risk. 

The wavelet denoising methods are usually realized by orthogonal decomposition. The most 

commonly used orthogonal decompositions are multi-resolution analysis and wavelet 

packet transform. The influence of wavelet decomposition algorithms, hard or soft 

thresholdings, and fixed or level-dependent thresholds are studied and compared. For 

different application, the optimal wavelet thresholding method should be considered 

carefully. 

The wavelet transform is to use a few large magnitude coefficients to represent a signal. 

The selection of wavelet is another important factor that needs consideration. The 

properties, for example regularity and degree, of signal should be studied when choosing 

optimal wavelet that has matching features such as vanishing moments, size of support, 

and regularity. 
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