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1. Introduction 

Fungi is an extensive group of eukaryotic microorganisms, generally they are microscopic 
and usually filamentous. It is estimated that there are between 70,000 and 1.5 millions 
species of fungi, most of them are being discovering and describing (Agrios, 2005). Most of 
the known hundred thousand fungal species are strictly saprophytic, living on decomposing 
dead organic matter. About fifty species cause disease in human, and more than ten 
thousand species can cause disease in one (obligate parasite) or many kinds of plants (non-
obligate parasites) (Fernández-Acero et al., 2007a).  

Phytopathogenic fungi are able to infect any tissue at any stage of plant growth. Plant 
pathogenic fungi show a complex life cycles, including both sexual and asexual 
reproduction stages (Agrios, 2005). Moreover, complex infection cycles and carbon 
assimilation is displayed (Garrido et al., 2010). These biological variability give them the 
possibility to develop its biological role from very climatologically different environments, 
since dry and desert zones until wet and hot regions in the tropic and equatorial area to the 
capacity to attack all plant tissues, from leaves to roots (Agrios, 2005).  

During the last decades, the development of molecular methods has lead the Scientifics 
community to accumulate a high quantity of information from different molecular 
approaches (Fernández-Acero et al., 2011; Garrido et al., 2009b). Advances into Genomics, 
Transcriptomics, Proteomics, and more recently, Metabolomics are transforming research 
into fungal plant pathology, providing better and more accurate knowledge about the 
molecular biology and infection mechanisms showed by these fungi (Garrido et al., 2010).  

Since 1992, our research group has been working with two of the most aggressive plant 
pathogens, which have been established such a model organisms for molecular and 
phytaphology studies: Botrytis cinerea and Colletotrichum acutatum (Fernández-Acero et al., 
2006b, 2007a; Garrido et al., 2009b, 2010; Perfect et al., 1999). These genera include some of 
the most destructive plant pathogen species known. They induce worldwide diseases as, 
between others, the grey mould on grapes and the anthracnose on strawberries, respectively 
(Coley-Smith et al., 1980; Elad et al., 2004; Sutton, 1992). The losses caused by the 
phytopathogenic fungi Botrytis cinerea and Colletotrichum acutatum have been quantified 
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between 10 and 100 million of Euros per year in Europe (Fernández-Acero et al., 2007a). 
Losses caused by B. cinerea in French vineyards oscillate between 15% and 40%; in Holland, 
B. cinerea generates losses of about 20% of the flower crop; and, in Spain, the losses fluctuate 
between 20% and 25% of the strawberry crops (Fernández-Acero et al., 2007a). Colletotrichum 
spp. causes up to 80% plant death in nurseries and yield losses of >50%, being a major 
disease of cultivated strawberry (Denoyes-Rothan et al., 2004; Garrido et al., 2009a). 

Our group has carried out an intense research activity of the molecular microbiology of 
these plant pathogens. These studies involve several molecular approaches in which the gel 
electrophoresis plays an important role. In this chapter, we will summarize the results 
obtained, and the molecular methods used for the study and characterization of the 
phytopathogen fungi Botrytis cinerea and Colletotrichum spp., all of them strongly related 
with different types of gel electrophoresis approaches and downstream protocols, including, 
between others, Pulse Field Gel Electrophoresis, agarose gel electrophoresis of DNA, 
Restriction Fragment Polymorphism Analyses, Southern-blot, Polyacrylamide Gel 
Electrophoresis and Two dimensional gel electrophoresis of proteins. These electrophoretic 
methods will be used to structure the development of chapter, describing the technical bases 
of each method and showing the approaches carried out and the results obtained.  

2. Chromosomal polymorphism and genome organization in Botrytis cinerea 
and Colletotrichum spp. 

Botrytis cinerea and Colletotrichum acutatum are two species of phytopathogenic fungi that 
show a very high level of phenotypic diversity among isolates. These fungi show complex 
cycles of life and infection, including both sexual and asexual forms (Garrido et al., 2008; 
Vallejo et al., 2002). Also high levels of somatic variability appear when the fungi are grown 
“in vitro”, depending on the medium, temperature, light and other factors, which even 
determine differences in cultural characteristics, production of reproductive structures and 
pathogenicty between others (Bailey & Jeger, 1992; Carbu, 2006; Garrido et al., 2009b; 
Rebordinos et al., 1997, 2000; Vallejo et al., 1996, 2001). These fungi do not show a high level 
of host specificity and they infect many different genera of hosts, adapting their infection 
strategy and metabolism to the environment conditions and kind of plant colonized. They 
are notoriously variable genera about which many fundamental questions relating to 
taxonomy, evolution, origin of variation, host specificity and mechanisms of pathogenesis 
remain to be answered (Bailey & Jeger, 1992; Elad et al., 2004). 

Many research projects are aimed to study the genome organization and chromosomal 
polymorphism trying to find the origin of phenotypic variability showed by these fungi. In 
the past decades, several strategies have been tested on lower fungi such as B. cinerea and 
Colletotrichum spp., i.e. cytological karyotyping, analysis of progeny from crosses between 
strains, sexual hybridizations, etc. These assays looked for a relation between molecular and 
phenotypic variability (Carbu, 2006; Faretra & Antonacci, 1987; Faretra et al., 1988; Vallejo et 
al., 1996). Cytological studies showed a very high level of difficulty in this group of 
microorganisms due to small size and/or the difficulty to condense sufficiently the 
chromosomes to make them visible by microscope. These characteristics made difficult to 
obtain reliable information about the genome organization of these fungi, and the obtaining 
of conclusive results about their biological mechanisms of recombination and chromosomal 
polymorphisms. 
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The development of Pulse- field gel electrophoresis (PFGE) resolved many problems found 
with cytogenetic studies in filamentous fungi. This technique has been widely used since the 
90s for genomic characterization into fungal plant pathogens. PFGE allows the separation of 
large DNA molecules (DNAs from 100 bases to over 10 megabases (Mb) may be effectively 
resolved) which would all co-migrate in conventional agarose gels. This technique has 
proved to be a very useful tool to study aspects of genome organization in several yeast and 
fungi. It has led to the discovery that most species exhibit chromosome-length 
polymorphisms (CLPs), revealing a high level of intraspecific, and even population-level 
variability (Vallejo et al., 2002).  

Technically, PFGE resolves chromosome-sized DNAs by alternating the electric field 
between spatially distinct pairs of electrodes. The electrophoresis cell consists of an array 
with 24 horizontal electrodes arranged in a hexagon. Agarose gels are electrophoresed 
horizontally, submerged under recirculated buffer. The system (CHEF-“Clamped 
Homogeneous Electric Field” and PACE “Programmable Autonomously Controlled 
Electrodes”, from BIO-RAD) provides highly uniform, or homogenous, electric fields within 
the gel, using an array of 24 electrodes, which are held to intermediate potentials to 
eliminate lane distortion. Thus, lanes are straight. The system maintains uniform field using 
patented Dynamic Regulation. The electrodes sense changes in local buffer conductivity due 
to buffer breakdown, change in buffer type, gel thickness, or temperature, and potentials. 

The preparation of samples for resolving chromosomal karyotypes by PFGE is not exempt of 
difficulty due to the biological characteristic of fungal cells. Fungus has to be growth in an 
optimal culture medium and mycelium harvest after determinate time which depends of the 
fungal species. This time is very important because is necessary to obtain the highest number 
of fungal cells in metaphase stage (Carbu, 2006; Garrido et al., 2009b). Chromosomes are 
condensed and highly coiled in metaphase, which makes them most suitable for visual 
analysis. After young mycelium is harvested, it is necessary to produce protoplasts using 
different mixes of lysing enzymes, which digest the fungal cell wall after incubation. 
Protoplast suspensions are mixed with low melting point agarose, adjusted to final 
concentration of 1 x 108 protoplast ml-1, and solidified plugs of agarose containing protoplast 
are digested with proteinase K. The digestion produces pores in the plasma membrane, 
providing the possibility to extract the chromosomal by PFGE (Garrido et al., 2009b). 

Gels are prepared with a special type of agarose. It depends of the DNA molecules sizes 
because there are different commercial preparations, some of them for DNA molecules higher 
than 10 Mb, i.e. PFGE TMMegabase agarose (Bio-Rad). Plugs are cast in the gel, and this is 
placed in the center of the hexagon formed by the 24 electrodes. Many parameters of the 
electrophoresis have to be optimized, since the type and concentration of running buffer, 
temperature of buffer, voltage and time of pulses, angles of electric fields. Depending of 
instrument setup, we can resolve the electrophoretic karyotype (EK) only with one 
experiment, like in the case of Botrytis cinerea; or even it could be necessary two different 
steps/running conditions, due to the high differences in sizes of the chromosomal DNA 
molecules. After electrophoresis, gels are stained using i.e. ethidium bromide and visualized 
using a UV light system.  

PFGE has been widely used by our group to study the genome organization and 
Chromosomal Polymorphisms (CPL) in B. cinerea and C. acutatum. We have determined the 
number and sizes of chromosomes in both species, and therefore we have estimated the 
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genome size for these fungi; the high level of CPL displayed by them, represented in the 
different EK profiles showed by the strains; and PFGE has made possible downstream 
applications such as Southern-blot analysis using different probes. All the results 
accumulated during the last years have provided a better understanding about the genome 
organization and the molecular bases of asexual and sexual reproduction of these fungi. 
They proved that polymorphism has been observed in both asexual and sexual fungi and 
most likely results from both mitotic and meiotic processes, especially in the case of Botrytis 
cinerea (Vallejo et al., 2002). 

When a study of PFGE has made, it is usual to find chromosomal bands of different 
intensity and therefore it is important to consider several technical aspects that can have 
influence in the interpretation of the final results, and the conclusions obtained: i) a double 
band could be composed of two coumpounds of a couple of homologous chromosomes or of 
two heterologous chromosomes of similar size, and ii) two homologous chromosomes can 
differ in size and appear like two heterologous ones. Due to this fact, depending on the aims 
of the study, sometimes further hybridization studies are necessary in order to determine 
the linkage groups of each of the bands (Carbu, 2006; Vallejo et al., 1996). 

Botrytis cinerea strains studied by our group were isolated from different hosts and 
geographical origins. We found different EK profiles between isolates, which did not follow 
any correlation with the host, year of isolation, or phenotypical characteristics. We have found 
that the number of chromosomal bands varied between 5 and 12, and they ranged between 
1.80 and 3.8 Mb. These results made possible to estimate the minimal genome size of B. cinerea 
genome, found between 14.5 and 22.7 Mbp (Carbu, 2006; Vallejo et al., 1996, 2002) (Fig. 1a).  

 

Fig. 1. A.- PFGE chromosomal separation of selected B. cinerea isolates. The molecular sizes 
were estimated using Schizosaccharomyces pombe (line 1 and 10), and Hansenula wingeii (line 6) 
chromosomes as reference molecular markers (Bio-Rad). B.- Southern-blot hybridization 
using a telomeric DNA probe to hybridise the PFGE separated chromosomal bands. 
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The B. cinerea strains showed a high level of CLPs, revealing the facility to support 
chromosomal rearrangements in this species, and could be the basis of the high degree of 
adaptability to the environmental conditions. Our group has also studied crosses between 
strains with different EK profiles. This study had as main aim to analyze the chromosomal 
rearrangements and chromosomal segregation in the crossed strains, in order to clarify the 
controversy appeared about the possibility that a high level of CLPs between strains, could 
inhibit meiosis (Zeigler, 1998), and therefore to be one possible reason to explain the low 
level of sexual reproduction that take place in B. cinerea under natural conditions (Carbu, 
2006; Giraud et al., 1997). 

The crosses between strains produced fertile strains (more than 100 ascopores studied) and 
our results demonstrated that chromosomal rearrangements did not affect the capacity to 
reproduce sexually in B. cinerea. It was observed than only several isolates recovered the 
parental EKs. New chromosomes sizes were identified and some bands were lost from the 
parental to descendants EKs. All these results, along with a segregation analyses carried out 
in the decendants, represented strong evidence that some strains might not be haploid, and 
that aneuploidy and differences in ploidy levels are present in this species (Vallejo et al., 
2002). Our group has also studied how during a long period of time, reproducing the fungus 
“in vitro”, there were not detected changes in the EK of a given strain. All results together, 
proved that mitotic growth does not provide EK variability in this fungus, being the 
chromosomal rearrangements generated after meiotic recombination the causal agent of EK 
variability in B. cinerea (Carbu, 2006). 

In the case of the species C. acutatum, there were not data published about the EKs and CLPs 

among isolates until the last 2009 (Garrido et al., 2009b). PFGE had been used with other 

species of this genus, like C. gloeosporioides (Masel et al., 1993) and C. lindemouthianum 

(O´Sullivan et al., 1998). Colletotrichum spp. displayed an estimated genome sizes higher 

than B. cinerea. Protocols to separate the chromosomes molecules were carried out in two 

different experimental setups, including variations in the pulse of electric field, percentage 

of agarose gels and duration of the assays (Masel et al., 1993), i.e. for separation of larger 

chromosomal molecules in C. gloeosporioides, Masel et al. (1993) optimized an PFGE 

approach running a electrophoresis of seven days long. During this experiment, it was 

necessary to replace the running buffer each two days to obtain a better resolution in the 

final image. Similar protocols were used to resolve EK from C. lindemouthianum 

strains(O´Sullivan et al., 1998). 

The karyotype of C. acutatum was studied by our group in several strains isolated from 
different geographical origins. They had showed differences in the morphological 
characteristics in relation to the color and texture of mycelium, ratio of growth in different 
medium, pathogenicity and level of conidia production (Garrido et al., 2008, 2009b). 
Protocol to obtain C. acutatum protoplasts and the PFGE conditions to separate 
chromosomes were optimized based on our previous experience with B. cinerea. We 
optimized a PFGE running conditions to separate chromosomes between approximatele 0.1 
and 9 Mb after only 72 h. of running. This protocol improved substantially those previously 
described for Colletotrichum spp., which took longer due to the two steps needed to resolve 
the complete karytopyes. Those longer protocols (Masel et al., 1993) were also tested, and 
we got the same number and sizes of chromosomal bands, proving the improvement of our 
optimized 72-hours protocol (Garrido et al., 2009b). 
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C. acutatum strains showed EK profiles containing between six and nine chromosomal bands 
with different sizes ranging from 0.1 and 8 Mb. The total minimal genome size estimated for 
C. acutatum ranged between 29 and 36 Mb, which is similar to that previously described for 
other species of Colletotrichum (Masel et al., 1993; O´Sullivan et al., 1998). We observed CLPs 
between strains studies but further analyses with a high number of isolates could be 
necessary in order to obtain strong conclusions about the CLPs showed by the species and 
how this variability could affect the sexual and asexual reproduction of this species in the 
environment (Garrido et al., 2009b). 

PFGE gels from B. cinerea and C. acutatum were used in downstream applications, like 
Southern-blot analyses. Gels were transferred to Hybond-N membranes and they 
hybridised with a telomeric probe confirming that all the bands represented chromosomes. 
The description of Southern-blot analyses will be described in the next section, but it proved 
how PFGE, not only provides the possibility to obtain interesting conclusions about the 
biology and genome organization of these fungi, but also gel electrophoresis techniques are 
often the starting point for interesting downstream applications that provide more 
information in the researches of these fungi (Fig. 1b). 

In our PFGE studies in B. cinerea and C. acutatum, it has not been observed a higher EKs 
variability that showed by phenotypic characteristics among strains (Carbu, 2006; Garrido et 
al., 2008, 2009a, 2009b; Rebordinos et al., 2000; Vallejo et al., 1996). Phenotypic features were 
very highly variable between strains with the same EKs. Therefore, we cannot conclude that 
there is a direct relation between morphological, physiological and pathogenic variability 
directly related with heterokaryosis, aneuploidy and a variable level of ploidy among 
strains. New proteomics approaches to B. cinerea  and Colletotrichum spp., which will be 
described during next pages, is contributing with very interesting data, that in conjunction 
with genomic information, disclose that phenotypic variation is more related with the 
synthesis of proteins and their post-transductional modifications, and not only by genotypes 
encoding them (Fernández-Acero et al., 2011).  

3. Phylogenetic relationships between strains of Colletotrichum spp. using 
telomeric fingerprinting 

Colletotrichum acutatum is a widely spread species that can be found throughout the world 
(Whitelaw-Weckert et al., 2007). C. acutatum causes anthracnose on a number of 
economically important crops, including woody and herbaceous crops, ornamentals, fruits, 
conifers and forage plants (Sreenivasaprasad & Talhinhas, 2005). It was classified as an 
organism of quarantine significance in Canada from 1991 to 1997, in the UK and the EU 
since 1993, and it can be found widely spread in the southwest region of USA (EPPO/CABI, 
1997; Garrido et al., 2009a; Mertely and Legard, 2004). Investigations of C. acutatum were 
focused in two main aspects of the pathogen: i) cultural and morphological studies 
(Afanador-Kafuri et al., 2003; Denoyes-Rothan & Baudry, 1995; Garrido et al., 2008;) and ii) 
molecular approaches using molecular techniques including isoenzyme comparisons, 
Restriction Fragment Length Polymorphism (RFLP) analyses of mitochondrial DNA, 
Amplified Fragment Length Polymorphism (AFLP), AT rich analyses, Random Amplified 
Polymorphic DNA (RAPD), and ITS sequences analyses for specific PCR sequencing and 
identification (Buddie et al., 1999; Freeman et al., 1993; Garrido et al., 2009a, 2009b; 
Sreenivasaprasad et al., 1996; Talhinhas et al., 2005).  
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Sreenivasaprasad & Talhinhas (2005) studied C. acutatum populations from several hosts 
and different geographical origins. They established molecular groups based on sequences 
analyses of the internal transcribed spacers (ITS) of ribosomal DNA polymorphic regions 
(Sreenivasaprasad & Talhinhas, 2005). ITS regions have been widely used on molecular 
approaches for studying relationship between microorganisms, and it is also very useful 
regions for designing molecular approaches to identification and diagnostic protocols, due 
to the high variability showed by the sequences among species and even strains (Garrido et 
al., 2009a). The classification carried out by Sreenivasaprasad & Talhinhas (2005), 
established eight molecular groups for C. acutatum species. These molecular groups have 
been widely used to study the genotypic and phenotypic diversity of this fungus, and to 
classify isolates from different origin (Whitelaw-Weckert et al., 2007).  

During the last years, we carried out a study to classify a worldwide collection of C. 

acutatum strains isolated from thirteen countries (Australia, Canada, France, Germany, 

Japan, The Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland, USA and 

UK). For this purpose we used two different molecular approaches in order to study the 

phylogenetic relationship between strains: i) a sequencing analysis of the internal 

transcribed spacers (ITS) of the 5.8S ribosomal DNA polymorphic regions; ii) a telomeric 

fingerprinting study by Southern-blot hybridization, using a telomeric probe after RFLP 

digestions of genomic DNA (Garrido et al., 2009b). 

In total, eighty-one 5.8S-ITS sequences were studied, several strains were sequenced by our 

group, and other ones used from databases such as reference sequences for allocating our 

strains in the previously established molecular groups for C. acutatum. ITS regions, 

including 5.8S rDNA, were amplified by conventional PCR using universal primers ITS1 

and ITS4 (White et al., 1990). After PCR amplification, products were loaded in a 

conventional 1% agarose gel for conventional DNA electrophoresis. Products were cut from 

the gels using a purification kit, DNA was quantified, and subsequently sequenced in both 

directions (Garrido et al., 2009b).    

The phylogenetic study carried out with the sequences allowed us to allocate the strains into 

C. acutatum molecular groups described by Sreenivasaprasad & Talhinhas (2005), but the 

analysis of bootstrap in the neighbout-joining phylogenetic tree, published by Garrido et al. 

(2009), showed interesting data about the molecular groups. In base of that analyses, the 

nine molecular groups previously described (Whitelaw-Weckert et al., 2007), could be 

grouped in only four groups. Our results proved that A1, A2, A5 A8 and A9 subgroups 

showed a bootstrap support of 90%, and therefore could be considered such as large group 

in base to the analyses of the sequences of ITS regions (Garrido et al., 2009b). The same 

result was observed for subgroups A6 and A4, since these subgroups clustered together 

with a strong bootstrap support of 91% (Garrido et al. 2009). Our results supported a new 

classification into four molecular groups instead the nine previously described for this 

species in base to the ITS sequences (Garrido et al., 2009b). 

The phylogenetic analyses showed that the majority of the strains studied grouped in the 

group A2. This happened because many strains from Spain were included in the analyses. 

The results proved the high level of similarity between C. acutatum strains isolated from 

Spain. It is also interesting that the A2 group included, principally, isolates from Spain, 

Portugal, France, UK and USA. C. acutatum was first described in the southwest region of 
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the USA, and then it was observed in France and UK at the beginning of the 80s. It is not 

clear how the pathogen was introduced into production fields in Europe, but it is thought 

that the pathogen could have arrived since the American nurseries to the EU (Freeman & 

Katan, 1997). It should have arrived to France, UK and the Iberian Peninsula fields. The 

arrival of the pathogen was facilitated by the intense international trade between these 

countries related with strawberry crop. Therefore the fungus could be introduced by 

infected plants, contaminated soil associated with strawberry crowns at planting,  

and quiescent infections on strawberry leaves or fruits (Garrido et al., 2008, 2009b; Leandro 

et al., 2001, 2003).  

In order to complete the phylogenetic classification of our C. acutatum strain collection, a 
different molecular approach was carried out. The results obtained were compared with 
those from the ITS sequences analyses. We used the profiles obtained after restriction 
enzymes digestions of genomic DNA, and then hybridized with a telomeric probe by 
Southern-blot hybrisization. Genomic DNA of C. acutatum strains were digested to 
completion with several restriction enzymes in independent experiments (BamHI, EcoRI, 
HindIII and PstI).  Gel electrophoresis is an intermediate point of the complete protocol. It 
make possible to separate the DNA fragments obtained after the restriction enzymes 
digestions. In this case, we used a 1.5% agarose gel, and electrophoresis was carried out in a 
conventional horizontal tray for DNA electrophoresis (Bio-Rad). After separation of 
digested fragments, gels were blotting to Hybond-N membrans, being ready for 
subsequently hybridization (Garrido et al., 2009b).  

For Southern-blot hybridization we used a telomeric probe to get hybridization in the 

telomeric regions. These regions are located at the end of the lineal chromosomes of most 

eukaryotic organisms, and they are named telomeres. Telomeres are regions of repetitive 

DNA sequences that protect the end of the chromosome from deterioration or from fusion 

with neighboring chromosomes. The repeated sequences is dependent of the species. For C. 

acutatum telomeres, we produced our telomeric probe, (TTAGGG)n, by PCR in the absence 

of a template using (TTAGGG)5 and (CCCTAA)5 primers as it was described by Ijdo et al. 

(Ijdo et al., 1991). The Hybond-N membranes were allowed to hybridize with the telomeric 

probe; films images were digitalized and telomeric profiles were analysed using 

Fingerprinting II software v3.0 (Bio-Rad). 

The experimental setup described provided the possibility to obtain two different kinds of 
results/conclusions from the study: I) Selected restriction enzymes used for RFLP did not 
produce any cut in the telomeric regions of C. acutatum strains. Each band represents a 
physically distinct telomere extremity. Therefore, taking into consideration the higher 
number of telomeric extremities and then divided into two, we can determine the number of 
chromosomes among strains studied. II) The fingerprinting analyses of the telomeric 
profiles, carried out using Fingerprinting II software, make possible to produce 
phylogenetic trees based in the similarity of the profiles showed among the strains. 
Therefore, these results could be compared with those obtained from phylogenetic groups 
based on ITS sequences.  

Among the fifty-two isolates analysed by telomeric fingerprinting, the number of band or 

telomeres oscillated between twelve and eighteen. Therefore, the minimum number of 

estimated chromosomes was from six to nine among C. acutatum isolates (Garrido et al., 
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2009b). In this study the number of strains studied was higher than those studied by FPGE, 

and although fingerprinting analyses did not make possible to study the chromosomal 

length polymorphisms among the isolates, the minimum numbers of estimated 

chromosomes are coincident with those obtained from FPGE analyses, showed in the last 

section of this chapter.  

The telomeric profiles obtained for each isolate of C. acutatum were analysed. UPGMA 
dendogram showed a representative grouping among the isolates, which was coincident 
with the grouping in the neighbuor-joining phylogenetic tree based on sequences of rDNA 
ITS regions (Garrido et al., 2009b). All the strains previously classified in the A2 molecular 
groups, also clustered in a large group with more than 70% of similarity based in this case in 
the telomeric fingerprinting profiles. These results proved the high level of similarity shows 
by these isolated, not only based in sequence similarity of one specific region but also in 
their genotypes and genome organization among C. acutatum strains, which suggests a 
common origin of the strains among the different molecular groups (Garrido et al., 2009b; 
Talhinhas et al., 2005).  

 

Fig. 2. Left.- Telomeric fingerprinting patterns obtained by telomeric hybridisation of 
Southern blots from HindIII-DNA digestions. Right.- Combined UPGMA dendograms with 
the C. acutatum isolates belonging to A2 group, based on Dice coefficients generated using a 
composite data set from individual experiments of each enzyme digestion (BamHI, EcoRI, 
HindIII and PstI) hybridised with a telomeric probe. 
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4. Develop of molecular methods for detection and identification of 
phytophatogenic fungi – Monitoring of the diseases causing by 

Colletotrichum spp.  

Many fungal plant pathogens produce similar symptoms when they develop diseases 
among different hosts. Currently, the ability to detect, identify and quantify plant pathogens 
accurately is the cornerstone of plant pathology (Garrido et al., 2011). The reliable 
identification of the organism(s) responsible for a crop disease is an essential prerequisite to 
apply the correct disease management strategies and the most appropriate control measures 
to take. Besides, many pathogens are subjected to special regulation through quarantine 
programs agreed among producer countries. For all these reasons, pathogen identification is 
crucial to all aspect of fungal diagnostics and epidemiology in the field of plant pathology, 
but also in medical science, environmental studies and biological control (Alastair 
McCartney et al., 2003; Atkins et al., 2003). 

Since the 1990’s, new methods based on molecular biology have provided new tools for 

more accurate and reliable detection, identification and quantification of plant pathogens. 

These methods are based on immunological and DNA/RNA study strategies, including, 

amongst others: RFLP analyses of mitochondrial DNA (Garrido et al., 2008; 

Sreenivasaprasad et al., 1992), AFLP, AT-rich analyses (Freeman et al., 2000a, 2000b), RAPD-

DNA (Whitelaw-Weckert et al., 2007), genus-specific and species-specific PCR primers 

(Garrido et al., 2008; Martínez-Culebras et al., 2003; Mills et al., 1992; Sreenivasaprasad et al., 

1996), real-time PCR studies (Garrido et al., 2009a), and ELISA assays (Hughes et al., 1997). 

Diagnosis time can be reduced from a period of weeks, typically experienced with culture 

plating, to only a few days, thus allowing the appropriate control methods to implemented 

much sooner and more effectively (Atkins et al., 2003).  

Advances in polymerase chain reaction technology have opened alternative approaches to 

the detection and identification of fungal pathogens. The development of PCR technology 

relies on three fundamental steps: i) the selection of a specific target region of DNA/RNA to 

identify the fungus; ii) extraction of total community DNA/RNA from the environmental 

sample; iii) a method for identifying the presence of the target DNA/RNA region in the 

sample (Garrido et al., 2011). Our group have optimised a very high sensitive protocol for 

diagnosis and identification of the fungal genus Colletotrichum, and the species C. acutatum 

and C. gloeosporioides (Garrido et al., 2009a).  

The sensitivity of PCR-based protocols depends mainly on the instrumentation and 
technique used (i.e. conventional PCR vs. real-time PCR), but in a high proportion of cases 
this sensitivity depends on the quality of the total community DNA/RNA extracted from 
the environmental samples. Garrido et al. (2009) optimized a DNA extraction protocol that 
can be used for samples of strawberry plant material directly, or from fungal colonies 
removed from an agar plate. This method uses sample material physically ground using a 
grinding machine, in the presence of CTAB lysis buffer. The lysated samples are washed in 
various chemical products (chloroform, isopropanol, ethanol, etc.) and then the final step 
involves using Magnesil® beads and GITC lysis buffer (guanidinium thiocyanate buffer) in a 
Kingfisher robotic processor (Kingfisher ML, Thermo Scientific). The new method was 
tested with roots, crowns, petioles, leaves and fruits and the extraction methods always 
showed very high yields of DNA in both quantity and quality. Although, a wide range of 

www.intechopen.com



 
Molecular Microbiology Applied to the Study of Phytopathogenic Fungi 

 

149 

commercial kits are available for extraction of fungal DNA, they can represent a high cost 
per sample analysed, and they are not always totally reliable in not co-extracting PCR 
inhibitors, needed a dilution of samples prior to PCR reactions. The optimised protocol did 
not co-extracted PCR-inhibitors from any samples, and therefore, the sensitivity of the 
detection protocol is improved using this DNA extraction protocols (Garrido et al., 2011). 

To date, conventional PCR has been a fundamental part of fungal molecular diagnosis, but it 
shows several limitations: i.e. gel-based methods, possibility of quantification, sensitivity, 
etc. The development of real-time PCR has been a valuable response to these limitations 
(Garrido et al., 2011). This technology improve the sensitivity, accuracy and it is less time-
consuming that conventional end-point PCR. For development and optimization of 
Colletotrichum diagnosis protocols, the commonly-used ribosomal RNA genes were used, 
because of the highly variable sequences of the internal transcribed spacers ITS1 and ITS2, 
which separate the 18S/5,8S and 5,8S/28S ribosomal RNA genes, respectively (Garrido et 
al., 2009a). Specific genus and species sets of primers and probes were designed for real-time 
PCR amplifications using TaqMan® chemistry technology. This system consists of a 
fluorogenic probe specific to the DNA target, which anneals to the target between the PCR 
primers; TaqMan® tends to be the most sensitive and simply methods for real-time PCR 
detection (Garrido et al., 2009a, 2011). 

The specificity of all assays was tested using DNA from isolates of six species of 
Colletotrichum and from DNA of another nine fungal species commonly found associated 
with strawberry material. All the new assays were highly specific for Colletotrichum spp., C. 
acutatum and C. gloeosporioides, no cross-reactions were observed with either related plant 
pathogens or healthy strawberry plant material. The sensitivity of the new real-time PCR 
assays was compared with that of previously published conventional PCR assays; they were 
confirmed to be 100 times more sensitive than the latter. The C. acutatum-specific real-time 
PCR assay was also compared with an existing ELISA assay for the diagnosis of this 
pathogen. Real-time PCR permitted the detection of the pathogen in samples that gave 
negative results for C. acutatum using ELISA. The real-time PCR assay detected the 
equivalent of 7.2 conidia per plant inoculated with a serial dilution of C. acutatum spores, 
demonstrating the high degree of sensitivity of the method (Garrido et al., 2009a). 

The new protocols were tested for monitoring the development of anthracnose disease in 
strawberry in the field in the south of Spain. The real-time PCR results showed a progressive 
increase of target DNA between January and June. The results showed that an increase in 
lesion development was accompanied by an increase in the amount and incidence of the 
pathogen as the season progressed. These results showed that new methods are suitable for 
diagnosis, identification and monitoring of the disease using field samples of strawberry 
and also, they permitted the detection of the pathogens from artificially infected 
symptomless plant material. Therefore, the methods described, based on real-time PCR, 
proved useful for studying the epidemiological routes of these strawberry pathogens in 
fields and nurseries (Garrido et al., 2009a, 2011). 

5. Proteomics approaches of phytopathogenic fungi 

In spite of the advances done by the described techniques above, nowadays proteomics is 
the most realistic and effective set of tools to unravel complex mixtures of proteins, 
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describing the current molecular biology age as “post-genomic era”. The term proteome was 
coined in 1995 by Wilkins et al (Wilkins et al., 1995), later the term proteomics appeared by 
James et al. (James, 1997). Proteome is defined as the complete set of proteins expressed by 
an organism, in a particular biological state. Proteomics may be introduced as a set of 
techniques that allow to study and to describe the proteome. The impact of the proteomic 
approaches is mainly based in a group of widely used techniques such as liquid 
chromatography or two dimensional gel electrophoresis, to separate complex protein 
mixtures, defining the proteome. However, the increasing relevance of these studies has 
been pushed by the improvements done in mass spectrometry system, allowing the analysis 
of peptides and proteins and/or by the increase number of proteins entries in the databases, 
making easier protein analysis and identification. 

Main proteome characteristic is that it is a high dynamic system. It is even more complex 
than genomics, due to while the genome of an organism is more or less constant, the 
number of obtained proteomes from a specific genome is almost infinite. It depends of the 
assayed cell, tissue, culture conditions, etc. Each change produces a modification in the 
observed proteome. An additional factor of complexity is that there are changes that occur 
in proteome that are not encoded in the genome. These changes are mainly based on two 
sources, (i) the editing of the mRNA and (ii) post-translational modifications (PTMs) that 
normally serve to modify or modulate the activity, function or location of a protein in 
different contexts physiological or metabolic. There are more than 200 different described 
PTMs (phosphorylation, methylation, acetylation, etc.). They transform each single gene into 
tens or hundreds of different biological functions. Before proteomics achievements, the 
differential analysis of the genes, that were expressed in different cell types and tissues in 
different physiological contexts, was done mainly through analysis of mRNA. However, for 
wine yeast it has been proved that there is no direct correlation between mRNA transcripts 
and protein content (Rossignol et al., 2006). It is known that mRNA is not always translated 
into protein, and the amount of protein produced by a given amount of mRNA depends on 
the physiological state of the cell. Proteomics confirms the presence of the protein and 
provides a direct measure of its abundance and diversity. 

In terms of methodology, proteomics approaches are classified in two groups, (i) gel free 
systems, based in the use of different chromatography methods, and (ii) gel based methods, 
using mainly two dimensional polyacrylamide gel electrophoresis (2DE), that will be the 
core of our discussion. As a schematic summary, the typical workflow of a proteomic 
experiment begins with the experimental design. It must be deeply studied, and it will 
delimit the obtained conclusions, even more when comparison between two strains, cultures 
or physiological stages between others, are done. From an optimal point of view, only one 
factor must change between the different assayed conditions (Fernández-Acero et al., 2007a, 
2007b). It must contain the use of different biological replicates depending of the used 
strategy, usually from 3 to 5. The next key step is to obtain a protein extract with enough 
quality to separate the complex mixture of proteins. Usually, the protein extraction is done 
in sequential steps (Garrido et al., 2010). First, the biological sample is disrupted using 
mechanical or chemical techniques. Then, proteins are precipitated and cleaned. Most of the 
protocol use acetone and trichloroacetic acid. During the next step the proteome is defined 
and visualized using electrophoretic techniques. 2DE has been widely used for this purpose. 
Using this technique proteins are separated using two different parameters. During the first 
dimension, proteins are separated by their isoelectric point using an isoelectrofocusing (IEF) 
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device. Then, the focused strips are used to load in a polyacrylamide gel, where the proteins 
are separated by their molecular weight. This system allows the separation of hundreds of 
proteins from a complex mixture. The gels are visualized with unspecific protein stains 
(those that stain total proteins, such as Coomassie, Sypro, Silver, etc.), or specific ones (those 
staining solution prepared to detect specific groups of proteins, mainly post-translationals 
modifications, i.e. Phospho ProQ diamond). The gels are digitalized and analyzed with 
specific software to reveal the significant spots. Those spots are identified using mass 
spectrometry. MALDI TOF/TOF is commonly used for 2DE approaches. The huge list of 
identified proteins obtained is studied to reveal the biological relevance of each 
identification.  

Unfortunately, the number of papers related to fungal proteomics is still poor compared 
with the application of this technology to other biological sources. As an example, a simple 
search in WOK website (web of knowledge, http://www.accesowok.fecyt.es/) get 809 
entries when the terms “proteom*”and “fung*” are used, whereas 51237 entries are 
displayed when “proteom*” is used alone. In spite of the numerical results obtained may 
vary depending of the used keywords and web resource, the fact is that there is a lot of 
work to do to bring fungal proteomic information at the same level that is obtained with 
other biological sources. This lack is mainly caused by (i) the difficulties to obtain proteins 
with enough quality to 2DE separations and (ii) the lack of protein sequences listed in the 
databases. Our research group was pioneer solving these problems and preparing the  
first proteomic approaches to the phytopathogenic fungi Botrytis cinerea (Fernández-Acero  
et al. 2006).  

Fungi posse strong cell walls. This makes difficult the cell breakage using standard 
protocols. Moreover, fungal proteins extract are characterised by its high concentration of 

glycosylated proteins that produces dense extracts, dragging a lot of impurities that disturb 
protein electrofocusing. We optimized a protocol based on a first phosphate buffer 

solubilisation followed by a typical TCA/Acetone precipitation. Using this protocol we 

developed the first proteomic map of Botrytis cinerea (Fernández-Acero et al., 2006b). Using 
this optimized approach we prepared a differential proteomics approach based on 2DE, 

comparing the proteomes of two B. cinerea strains differing in virulence (Fernández-Acero et 
al., 2007b). In spite of this protocol has been widely cited and used (Cobos et al., 2010; 

Fernández-Acero et al., 2010, 2011; Michielse et al., 2011; Moreira et al., 2011; Sharma et al., 
2010; Yang et al., 2011), our recent data suggest that the phosphate buffer solubilisation 

produces an artificial enrichment of soluble proteins in our assayed extracts. For this reason, 
we improved our method using a phenol based protocol preparing a Botrytis cinerea map 

during cellulose degradation (Fernández-Acero et al., 2010). Based on this protocol, adding a 
previous step of precipitation with DOC, we developed the analysis of the main fungal 

subproteome, the secretome. We identified 76 secreted proteins from cultures where the 
virulence was induced with different plant-based elicitors (Fernández-Acero et al., 2010). 

New projects to unravel proteome content of Botrytis cinerea and Colletotrichum acutatum are 
running.  

All the proteomic approaches developed on B. cinerea has been facilitated by the availability 
of fungal genome sequence (Amselem et al., 2011) (http://urgi.versailles.inra.fr/ 
Species/Botrytis, and http://www.broadinstitute.org/annotation/genome/botrytis_ 
cinerea/Home.html). Summarizing all our identified spots, we do not get the 3% of the 
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predicted genome. The method to capture new fungal proteins, its identification by mass 
spectrometry and to determine their biological relevance needs to be determined yet. By 
using our previous experience with B. cinerea, we are developing proteomic approaches to 
C. acutatum. Its conidial germination, mycelia dataset and secretome are characterized by 
2DE. The key challenge is in our opinion, the use of the collected information to develop 
new methodologies to fight against plants pathogens. As a future prospect, the development 
of new environmental friendly proteomics-based fungicides has been discussed (Fernández-
Acero et al., 2011). 
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