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1. Introduction 

The term ontology was originally used in philosophy from the 19i-th century. In this area, it 
refers to the study of what exists, ie, the body of knowledge about the world (Welty et al., 
2001). In the field of knowledge representation, ontologies are considered as relating to 
different fields of knowledge. They respond to problems of representation and 
manipulation of knowledge. Ontology is "is an explicit specification of a conceptualization" 
(Gruber, 1993). Ontologies are widely used in knowledge representation on the Web 
(Charlet et al., 2004). Nowadays, ontology embodies expert knowledge of a domain. Based 
on the fact that knowledge can take many different representations, there are nowadays 
several domain ontologies for the same scope. The alignment techniques represent a general 
framework in which several ontologies can be exploited. 

The alignment also allows the exchange of a semantic point of view, the view of many 
people (Bach et al., 2004). Although some work on ontologies show the necessity of using 
domain knowledge (Aleksovski et al., 2006) in certain situations, several methods for 
ontology alignment that do not have domain knowledge been developed. The main 
methods are cited: ANCHORPROMPT (Noy et al., 2001), IF-MAP (Kalfoglou et al., 2003), 
ASCO (Bach et al., 2004), GLUE (Doan et al., 2004), QOM (Ehrig et al., 2004a) and OLA 
(Euzenat et al., 2004b). These main methods1 exploit ontologies in format markup languages 
(XML, RDF (S) and OWL-Lite2). In addition, most of these methods exploit similarity 
measures that cover more or less the whole structure of ontologies to align. These methods 
generally exploit a threshold of stability provided by the user, to ensure the cessation of the 
alignment process. 

However, this level of stabilization does not spread wide for the calculation of similarity. 
The OLA is the only method to have the advantage of support for OWL ontologies format-
Lie. The OLA method uses a threshold of stabilization to calculate the alignment. Alignment 
method proposed in this research can implement a new algorithm for automatic alignment 
of ontologies OWL-Lite. In each pair of entities belonging to the same category, the 
alignment algorithm calculates the similarity measures. It defines two models for calculating 
the similarity (local and global), while addressing the problem of circularity and user 
intervention in the alignment process. The experimental results show an improvement of 
evaluation metrics from OLA. 

The paper is organized as follows. The second section provides a comparative study of the 
main methods of ontology alignment chosen. In the third section, our method of aligning 
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ontologies OWL-Lite is described. The fourth section shows an experimental evaluation. The 
conclusion and future work are the subject of the last section. 

2. Comparative study of methods of alignment 

Ontologies created can be described in several languages, eg, XML (Marsh, 2001), RDF (S) 
(Klyne et al., 2004), DAML + OIL (Connolly et al., 2001) and OWL (Smith et al., 2004). The 
purpose of these languages is to represent the ontologies in a common language. OWL also 
enables the sharing, import and export ontologies. It is considered the standard ontology for 
the domain of Semantic Web (Berners-Lee et al., 2001). For these reasons any ontology that is 
not described in OWL drawbacks. The alignment of two ontologies is to find a match 
between their entities that are semantically similar (Ehrig et al., 2004b). In a formal way, 
alignment is defined by the map function as follows: 

Map : O  O’ such that map(e1) = e1’  if sim(e1, e1’) > t, 

Where O and O’ are the two ontologies to align, means a minimum threshold of similarity 
belonging to the interval [0,1], e1 Є O and e1 Є O’. This threshold indicates the minimum 
level for two entities are similar. Each entity ei is more aligned to a single entity ej’. Several 
criteria were used for the comparison of alignment methods, eg, the input format, output 
format, the measures of similarity and the quality of alignment (Do et al., 2002). 

In the remainder of this section we detail the formats for input and output measures of 
similarity and the quality of alignment. 

2.1 Formats in entry and exit 

The type of data used must be specified for each method of alignment. Ontologies to be 
aligned can be represented with languages with beacons or the format of the conceptual 
graphs. The languages with beacons are XML, RDF(S), DAML+OIL and OWL. The 
dictionaries of synonymies or lexicons are extra information sometimes being able to be 
added and which necessary for the improvement of are returned process of alignment. 

The format and the structure of the result of alignment are specified for each method. It 
should be specified if alignment is carried out between the whole structures or couples of 
entities of two ontologies. The result for the majority of the existing methods is a fi to shit of 
alignment (generally in format XML), indicating which are the ontological couples entities 
which correspond. All the methods of alignment determine correspondences between the 
ontological entities by using measurements of similarity. 

2.2 Measurements of similarity 

Following taxonomy are proposed for the classification of various measurements of 
similarity (Rahm and Al, 2001):  

i. Terminological method (T): compare the labels of the entities. It is broken up into 
purely syntactic approaches (TS) and those using a lexicon (TL). The syntactic approach 
carries out the correspondence through measurements of dissimilarity of the chains 
(e.g., EditDistance). While, the lexical approach carries out the correspondence through 
the lexical relations (e.g., synonymy, hyponymy, etc.);  
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ii.  Method of comparison of the internal structures (I): compare the internal structures of 
the entities (e.g., interval of value, cardinality of attributes, etc.);  

iii.  Method of comparison of the external structures (S): compare the relations between 
entities and others. It is broken up of methods of comparison of the entities within their 
taxonomies (ST) and methods of comparison of the external structures by holding 
account of cycles (SC);  

iv.  Method of comparison of the authorities (E): compare the extensions of the entities, i.e., 
it compares the whole of the other entities which are attached to him (authorities of the 
classes);  

v.  Semantic method (M): compare interpretations (or more exactly the models) of the 
entities. 

2.3 Quality of alignment 

Measurements of Precision, Recall and Fallout (Do and al, 2002) were the metric ones 

largely exploited to estimate the quality of alignments obtained. The EON “Evaluation of 

Ontology-based Tools” (EON, 2004, EON, 2006, Euzenat and al, 2006) retains these 

measurements for the evaluation of the quality of alignment. The main aim of these 

measurements is the automation of the process of comparison of the methods of alignment 

as well as the evaluation of quality of produced alignments. The first phase in the process of 

evaluation of the quality of alignment consists in solving the problem manually. The result 

obtained manually is regarded as the alignment of reference. The comparison of the result of 

the alignment of reference with that of the pairing obtained by the method of alignment 

produces three units: Nfound, Nexpected and Ncorrect. The unit Nfound represents the pairs aligned 

with the method of alignment. The Nexpected unit indicates the whole of the couples paired in 

the alignment of reference. The Ncorrect unit is the intersection of the two units Nfound and 

Nexpected. It represents the whole of the pairs belonging at the same time to alignment 

obtained and the alignment of reference. The precision is the report/ratio of the number of 

found relevant pairs, i.e., “Ncorrect”, reported to the full number of pairs, i.e., “Nfound”. It 

returns thus, the part of the true correspondences among those found. Thus, the function 

precision is defined by: precision = |Ncorrect|/|Nfound|. The recall is the report/ratio of the 

number of found relevant pairs, “Ncorrect”, reported to the full number of relevant pairs, 

“Nexpected”. It specifies thus, the share of the true found correspondences. The function recall 

is die fi denies by: recall=|Ncorrect|/|Nexpected|. Fallout measurement makes it possible to 

estimate the percentage of errors obtained during the process of alignment. It is defined by 

the report/ratio of the erroneous pairs, “(Nfound − Ncorrect)”, brought back to the full number 

of the found pairs, “Nfound”, i.e., Fallout = 1-(|Ncorrect|/|Nfound|)  

Table 1 presents summary and transverse review principal know-discussed methods of 
alignment. The first entry of table 1 presents the formats of ontologies dealt with by each 
method of alignment. These formats are as a majority of the languages of beacons except for 
KIF and OCML. The second entry of table 1 indicates the nature of the fi to shit result which 
is a fi to shit XML or a fi to shit RDF(S). The third entry of table 1 gathers the various 
measurements of similarity exploited on the level of each method. The last entry of table 1 
puts forward the terminals of measurements of precision for each method within the 
framework of the tests carried out by EON (EON, 2004). Thus, method OLA compared has a 
light advantage to method QOM. The “qualitative” performances of these methods are 
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almost similar, since they take into account all the characteristics of ontology to knowing, 
the terminological similarity, and structural of entities of ontologies. Moreover, the quality 
of alignment produces by OLA is better. Indeed, the value of the minimal precision and the 
value of the maximum precision are higher than those provided by QOM. To note that, OLA 
proposes a method of calculating of similarity who solves the problem of circularity 
between the concepts during the process of alignment (Euzenat and Al, 2004b). The result of 
alignment is appeared as a file RDF/XML. 

 

 GLUE OLA IF-MAP ASCO 

Input XML OWL-Lite KIF, OCML, RDF(S) RDF(S) 

Output XML RDF RDF RDF 

Similarity E T, TS, I, S, ST, SC, E ST, E T, TS, TL, ST 

Precision [0,3-0,6] [0,6-0,8] - - 

Table 1. Comparative table of the principal methods of alignment. 

In the majority of the principal methods of alignment of ontologies, the stabilization of the 

measurement of similarity is exploited. This measurement of stability is provided by the 

user through a threshold. This threshold allows the propagation of the similarity to reach 

optimal alignment. This propagation is likely not to suitably exploit the vicinity of the 

various ontological entities. In this way, the method of alignment can stop without 

exploring of advantage the vicinity. This stop is due to the fact that the treatment of two 

successive neighbors does not bring a profit lower than the specified threshold. In the same 

way, the stop limits the treatment of the interesting entities and risk to harm the result of 

alignment obtained. These disadvantages encouraged us to propose a new method of 

alignment. The main advantage lies in the fact that it eliminates the intervention from the 

user by exploiting a wider vicinity of the entities to be paired. The following section 

introduces the new method of alignment of OWL-Lite ontologies developed which we then 

compare with method OLA. 

3. Our approach to ontology alignment 

The method of ontology alignment that we propose takes as input ontologies described in 

OWL-Lite. OWL-Lite ontologies are transformed to match the form of an OWL-GRAPH that 

we introduce. The OWL-GRAPH can represent all the information contained in the ontology 

OWL-Lite (Smith et al., 2004). Classes, properties and instances are nodes in the graph 

proposed. Nodes in the OWL-GRAPH represent the six types of entities that exist in an 

ontology OWL-Lite: concepts, instances of concepts, data types, values, data types and 

properties of classes (such purpose and nature of data type). Relations between entities in the 

ontology OWL-Lite are the arcs between nodes of the graph. Arcs that exist in the OWL-

GRAPH reflect the semantic relationships between entities of an ontology. The OWL-GRAPH 

is used to represent four categories of specialized links, attribution, instantiation and 

equivalence. Figure 1 shows an example of two ontologies represented through two separate 

graphs OWL-Graph. The first ontology indicates that a teacher supervising a student who 

achieves his memory. The second ontology indicates that a memory is made by a student who 

is supervised by a teacher. OWL Graphs-Graph obtained by the construction module operated 
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by the alignment module ontologies OWL-Lite. Indeed, the alignment module performs the 

course of two ontologies represented in the form of two graphs OWL-Graph. This course 

compares the nodes and arcs of graphs to determine the correspondences between different 

ontological entities operating in the diameter of the nodes. The diameter of a node is the 

number of nodes separating the end of the graph (instances). 

The new method of alignment proposed is an approach basing itself on a model of 

calculation of the similarities local and total. This model follows the structure of the OWL-

Graph graph to calculate measurements of similarity between the nodes of two ontologies. 

The module of alignment associates for each category of nodes a function of aggregation. 

The function of aggregation takes into account all measurements of similarities between the 

couples of nodes close to the couple to node to be paired. Thus, this function exploits all the 

descriptive information of this couple. Table 2 presents the notations used in the developed 

algorithms. The algorithm which implements the method of alignment proposed takes in 

entry two ontologies to be aligned in the form of two files OWL-Lite and produces a result 

in the form of a fi shitting XML. 

 

Fig. 1. Example of two OWL-Graph graphs of two ontologies. 

 O1, O2: two ontologies to be aligned 

 VST: terminological vector of similarity 

 VS: semantic vector of similarity 

 VD: vector of the respective diameters minimum to each couple of nodes 

Each node of ontology presents among its characteristics the following fields: 

 type: the type of the node 

 diameter: the diameter of the node 

Each element of the vectors V ST and V S is characterized by the following fields: 

 the node of ontology O1 

 the node of ontology O2 

 the value of similarity 

Table 2. Notations used in algorithms PHASE1_SIMTERM and PHASE2_SIMSEM. 
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It should be noted that our method operates in two successive stages. The first stage, 
implemented by the means of function PHASE 1_SIMTERM, makes it possible to calculate 
the local similarity (terminological). The second phase, c.f. function PHASE2_SIMSEM, 
makes it possible to calculate the similarity total, known as semantic. 

3.1 Calculation of local similarity 

The calculation of the local similarity is carried out only once for each couple of nodes. The 
measurement of local similarity of the couples of entities is calculated via algorithm 1 (c.f., 
function PHASE1_SIMTERM). The calculation of the similarity local (or terminological) is 
carried out between the descriptors of entities like the names, the comments, etc. the 
terminological similarity is made up of the syntactic similarity and the lexical similarity. 
Thus, the syntactic similarity is calculated via the functions of LEVEINSTEIN or 
EditDistance (Euzenat and Al, 2004a). While the API of WORDNET (Miller, 1995) is 
exploited for calculation of lexical similarity. Function PHASE1_SIMTERM makes it possible 
to calculate the terminological similarities of the couples of nodes of two ontologies. It takes 
in entry two ontologies O1 and O2 to be aligned, represented in the shape of two OWL-
Graph graphs, as well as the function of terminological similarity to use and gives in return 
a vector of terminological similarity of each couple of nodes. 

The function CalculSimTerm (Algorithm 1, line 8) takes in entry two nodes N1 and N2, and 
turns over a value of similarity. This function is provided by one of the methods of 
calculating of following similarity: the measurement of LEVENSHTEIN, the distance from 
the under-chains or the API of WORDNET. The local similarity for the various couples of 
entities is exploited thereafter for the calculation of the total similarity. The following section 
describes in detail the computing process of the total similarity. 

1 
 
 
 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

 

Function: PHASE1_SIMTERM
Data1: Two ontologies O1 and O2  
Data2: terminological Function of similarity 
Results: Vector of local similarity VST 

Begin  
/* course of the nodes of O1 ontology */ 
For each (N1 ∈ O1) make 

/* course of the nodes of ontology O2 */ 
For each (N2 ∈ O2) make 
If N1.type=N2.type then 

SimT=calculSimTerm(N1,N2) 
/* add: 2 nodes and the value of the terminological 
similarity*/ 
add ((N1, N2, SimT), VST) 

return (VST) 
End 

Fig. 2. Algorithme1.PHASE1_SIMTERM. 

3.2 Calculation of total similarity 

The calculation of the similarity total, known as semantic, is done between the whole of 
close nodes by categories. Function PHASE2_SIMSEM organizes, by categories, the adjacent 
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nodes with the couple of entities to be paired. Then, it calculates the measurement of 
similarity between each of the same pair category. To carry out this calculation, the 
measurement of similarity “Match-Based similarity” is used: 

,ࡱሺ࢓࢏ࡿࡹ ᇱሻࡱ = ∑ ,࢏ሺ࢓࢏ࡿ ,|ࡱ|ሺ࢞ࢇࡹᇲሻࡱ,ࡱሺ࢘࢏ࢇ࢖∋ᇲሻ࢏,࢏ᇱሻሺ࢏ ሻ|′ࡱ|  (1)

where E and E’ represent two whole of the same nodes category. This function, requires that 
the local similarities of the couples (i,i') are already calculated, gives like result the couples 
of the unit P = E×E’. The couples (i, i'), intervening in calculation, must present best 
measurements of similarity. To choose them, there exist two approaches: the algorithm 
glouton and dynamic programming (Boddy, 1991). The algorithm glouton carries out local 
choices. Indeed, when he is confronted with a choice, he takes what seems to him the best to 
advance, and hopes then that the succession of local choices contributes to an optimal 
solution. While the dynamic programming try to lead to an approach of global optimization. 
In our algorithm of alignment the algorithm glouton is implemented. Indeed, the algorithm 
glouton chooses a couple of entities having the greatest similarity and which is higher or 
equal to the fixed threshold. Then, it removes the two entities of the couple of the table of 
the similarities. The algorithm continues the checking for each couple until there does not 
exist anymore couples having a measurement of similarity higher than the threshold. 

 

1 
 
 
 
 

2 
3 
4 
5 
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10 

 
11 
12 
13 
14 
15 
16 

Function: PHASE2_SIMTERM
Data1: Two ontologies O1 and O2  
Data2: terminological vector of similarity VST 
Data3: Weight of terminological similarity ΠL 
Results: Vector of global similarity VS 

Begin  
/* calculation of the minimal diameter for each couple of nodes */ 
For each (e ∈ VST) make 

VDi =min (e1O1.diametre, e2O2.diametre) 
/*iterate until reaching the maximum of the diameters belonging 
to VD*/ 
For (it=1; it ≤ Max j∈ [1, V D.size] VDj; it++) make 

/*to traverse the vector of the similarities of the 
preceding iteration, the vector of similarity of the first 
iteration is VST*/ 
For (j=0; J < VS.size; j++) make 
/* verify number iteration and minimum diameter of 
nodes to be aligned*/ 
If it < VDj then 

Simvois = CalculSimVois (VSj.NO1, VSj.NO2) 
Sim = ΠL × VST (j) + Simvois 
V Sj = (NO1, NO2, Sim) 

Return (VS) 
End 

Fig. 3. Algorithme2.PHASE2_SIMTERM. 

In order to solve the problem of the dependences of similarity, the method of the system of 
equations at fixed point (Euzenat and al, 2004b) is exploited. It uses a quasi-linear function 
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which formally allots to each category of nodes a weight Π., being given a category of nodes 
X and the whole of the relations implied N(X), the measurement of total similarity SimX:  
X → [0, 1] is defined by: 

 ܵ݅݉௑ሺݔ, ᇱሻݔ = ∑ Πி௑ܵ݅݉௒൫ܨሺݔሻ, ᇱሻ൯.ி∈ேሺ௫ሻݔሺܨ  (2) 

The function is standardized since ∑ߎி௑ = 1. In our approach of alignment, which we 
propose, the weights are fixed by defect for each category of nodes. This does not prevent 
that the user can assign the weights which it wishes. By using the equation (2), to calculate 
the total similarity of the various categories, a system of linear equations is obtained. The 
variables of this system are the similarities of the couples of nodes deduced from the 
equation (1). The resolution of the system of the equation (2) is done by iterations. Iteration 0 
of algorithm 2 (c.f. line 10) exploits the terminological similarities, already calculated by 
intermediary of the algorithme1. Then, iteration 1 of algorithm 2 uses the equation (2) to 
calculate the total similarities between couples of the same entities categories. 
Measurements of similarities of the categories intervening in calculation of the similarity of 
a couple result from the preceding iteration. Thus, the iteration J functions in the same way 
as the preceding iteration. The calculation of the total similarity of each couple is based to 
the measures of similarities calculated with the iteration (j-1). In each iteration, the number 
of candidates to be aligned falls according to the minimum diameter of the couple of node to 
pair. The exploration of the diameter of each node allows the propagation of the similarity 
through the vicinity. The principle of this propagation is explained in what follows. 

3.3 Propagation of the similarity through the vicinity 

Our method carries out a propagation of similarity definitely better than that of OLA. 
Indeed, in its process of alignment, all the vicinity of the couple of entity to be aligned is 
integrated in the calculation of similarity. For example, let us consider the figure 1 which 
presents two ontologies O1 and O2. Being given the couple of entities (Student (O1), Student 
(O2)), the calculation of the similarity includes the close entities which enter in plays. The 
calculation of similarity of the couple in question evokes in this example the objectProperty 
type and varies for two algorithms our algorithm and OLA. Thus, table 3 presents the entities 
close to the couple (Student(O1), Student(O2)) for, respectively, our algorithm and OLA. Thus, 
our method integrates measurements of similarity of the couples of entities (supervise (O1), 
is_supervised(O2)) and (realize(O1), is_realized(O2)) in the calculation of similarity of the 
couple (Student(O1), Student(O2)), while OLA, is limited to calculate the measurement of 
similarity between (realizes(O1), is_supervised(O2)). Consequently, the measurement of 
similarity for this couple is encircled better with our algorithm than with OLA. 

Moreover, our method, contrary to OLA, is not based on the stability of the measurement of 
similarity, by using a threshold die fi nor by the user. Indeed, algorithm OLA carries out 
successive iterations and in each iteration, measurements of similarities of the entities to be 
aligned are compared with those of the preceding iteration. If the variation is lower than the 
threshold, the entities in question are not treated more in the iterations which follow. 

neighboring entities Student (O1) Student (O2) 

For “our method” Supervise, realize Is_supervised, is_realized 

For OLA Realize Is_supervised 

Table 3. Table of the entities close to the couple (Student(O1), Student(O2)). 
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However, this method is likely to make lose couples of entities, whose measurements of 
similarity can increase the value of the similarity in the iterations later. To cure this problem, 
our method uses the notion of the diameter, i.e., the depth of the entity in the OWL-Graph 
graph. Thus, our method does not stop reiterating on a couple of entities only after having 
exploited all its neighboring structure. 

The measurement of similarity of each couple of nodes varies from an iteration to another 
until it converges. The iteration count in our method is equal at least maxima of the 
diameters of the candidates to pair. In each iteration, algorithm 2, (c.f., line 12), check 
candidates to be aligned. The couples of nodes, whose minimum diameter is lower than the 
number of the current iteration, will not be treated. However, the diameter of each node in 
the graph must be given. To determine the diameter of a node, two aspects should be 
considered. The first consists in checking if the graph is directed or not. The second consists 
in taking account of the circular relations. The algorithm of the calculation of the diameter 
uses the representation of the OWL-Graph graph of ontology, and makes it possible to 
determine the diameters of the existing nodes. Moreover, the OWL-Graph graph considered 
is a graph not directed. However, there exist categories of nodes for which a diameter equal 
to zero is given. Indeed, these nodes must be only treated in the iteration of algorithm 2 (c.f., 
line 10), i.e., in the iteration of calculation of the terminological similarity. 

These nodes are of nature standard of data (string, non-negative integer, etc.), or value of 
data (a numerical value, a character string, etc.). The measurement of similarity of each 
couple of nodes varies from an iteration to another to deal with the information 
incorporated in the vicinity. The iteration count in our method is equal to the maximum of 
the minima of the diameters of the candidates to pair. 

In the following section, an experimental evaluation of our method is presented. 

4. Experimental evaluation of ontology alignment method 

Experimental evaluation of the proposed alignment method was conducted on two 
complementary aspects. The aspect of "intra-method" will focus on evaluating performance, ie, 
execution time, method vs. the change in the size of the ontologies to align, and the similarity 
measure used. The second aspect, called "inter-method" to compare the qualitative results 
obtained by the proposed method vs. the other methods, eg, OLA. As part of experiments 
conducted some tests provided in the benchmark base available to the community through 
competition EON (EON, 2004) are used. These tests are described by table 4 (EON, 2004). The 
ontology base consists of a set of references. It represents a simplified version number of 
ontological entities compared with real ontologies. Each test case benchmark base highlights a 
feature of the second ontology to align with the test database. The purpose of the test base is to 
take care of all aspects that exist in an ontology OWL-Lite and that could have a significant 
impact on the evaluation metrics of the result of alignment. 

4.1 The aspect “intra-method” 

In what follows, we will try to measure the evolution of the performances of our method 
compared to the increase of the composition structural of ontology. Table 5, presents the 
statistics raised as for three series of tests which were carried out. Indeed, same ontology 
was used, i.e., the ontology 101 described in table 4. Each test brings an incremental aspect 
of the composition structural of ontology. The tests carried out are three types of tests. In the  
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Test Characteristics of ontology
101 Same basic ontology
103 The not recognized axioms are replaced by their generalization
205 The names of the entities are replaced by their synonyms
222 The hierarchy of the classes is strictly reduced
225 The restrictions of classes expressed by properties were removed
301 Ontology to be compared is real and similar to basic ontology
304 Ontology is also real and similar to basic ontology

Table 4. Ontologies of tests. 

TEST1, the ontology of reference is only made up of classes. Thus, it is made up of 33 entities 
to align. In the TEST2, the 24 properties of nature object are added to the classes. 

The number of entities thus becomes 57. In the TEST3, complete ontology is used, i.e., 
ontology is made up of 97 entities distributed as follows: 33 classes, 24 properties of nature 
object and 40 properties of standard nature of data. According to the results presented in 
table 5, the performances of the process of alignment depend on the two following aspects: 
size of ontologies to be aligned and the choice of the function of terminological similarity. 
Indeed, the time of execution increases considerably when the number of entities to be 
aligned increases and conversely. This increase is more considerable on the level of the 
module of alignment than on the level of the module of construction of the OWL-Graph 
graph. The choice of the terminological function of similarity also influences over the execution 
time of the module of alignment. Indeed, the use of a simple function, like that of 
LEVENSHTEIN, for the calculation of the terminological similarity reduced the time 
execution. On the other hand, the use of a function more complex as the WORDNET increases 
considerably the execution time of the process of alignment. This variation is due to the time 
spent by the algorithm of alignment for obtaining the value of syntactic or lexical similarity. 
This time this is much more important with the use of WORDNET than with another 
function of syntactic calculation of similarity like that of LEVENSHTEIN. Indeed, the use of 
the API WORDNET requires accesses expensive disc to seek synonymies. 

 

 TEST1 TEST2 TEST3 

TE: Construction OWL Graph 3,450 4,700 6,780 

TE: Our method (LEVENSHTEIN) 110,465 225,677 357,561 

TE: Our method (WORDNET) 148,542 301,978 455,843 

Table 5. Execution time of OWL-Graph construction and our method in seconds. 

4.2 The aspect “inter-methods” 

While being based on the quality of alignment (measurement of precision), method OLA 
had better results (c.f., table 1). In the same way, method OLA exploits ontologies with the 
OWL-Lite format. For these reasons, method OLA would be used as method of reference in 
the facet intra-method. Within this framework, it is important to recall that our method carries 
out a propagation of similarity on all the vicinity of the entities. It exploits the concept of 
diameter of the ontological entities has fixed to explore the totality of the structure of ontology. 
The alignment, produced by our algorithm with each test, is compared with the alignment of 
reference. Thus, the results of measurements of qualities are calculated. Table 6 recapitulates 
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the results obtained by the two methods of alignment” our method” and OLA (EON, 2004). 
The best results of the values of precise details of “our method” are obtained when the 
structures of ontologies are similar or identical, i.e., tests 101, 103, 222 and 225. Thus, “our 
method” obtains values of precision for these tests which are higher than 0,910. This is 
explained by the fact why our approach is more effectively exploits the structures of the 
entities to be aligned. From where, the entities which have almost the same structure are 
correctly aligned. The results of the tests where the value of precision is less good explains 
by two aspects. Firstly, our algorithm calculates measurements of similarities of the same 
entities category. This induces that certain couples of entities are not taken into account by 
the process of alignment, from where the whole of the pairs belonging at the same time to 
alignment obtained and the alignment of reference, NCorrect, is weak. Consequently, the 
value of precision is weakened. Moreover, the couples which were excluded from the 
process of alignment can help with the increase measurements of similarities of the couples 
of close entities and consequently, to increase the number of correctly aligned couples. 
Secondly, our algorithm does not use in its process of alignment a comparison between the 
wording or the comments of the entities. 

 

  Precision Recall Fallout 

Test Similarity 
“our 

method” 
OLA 

“our 
method” 

OLA 
“our 

method” 
OLA 

101 LEVENSHTEIN 1,000 0,587 1,000 0,970 0,000 0,400 

103 LEVENSHTEIN 0,985 0,540 0,985 0,901 0,011 0,430 

205 WORDNET 0,500 0,470 0,500 0,802 0,493 0,500 

222 WORDNET 0,917 0,530 0,957 0,901 0,063 0,430 

225 WORDNET 0,953 0,570 0,953 0,967 0,027 0,400 

301 WORDNET 0,610 0,483 0,740 0,607 0,347 0,493 

304 WORDNET 0,592 0,428 0,680 0,618 0,353 0,541 

Table 6. Comparison between "our method" and OLA. 

In order to evaluate the results of the approach of alignment proposed, table 6 compares the 

results of two algorithms “our algorithm” and OLA. The statistics obtained are presented in 

table 6. Starting from the data presented in table 6, our method of alignment is better 

compared to method OLA. Indeed, our method of alignment provides measurements of more 

powerful qualities on almost the majority of the tests. These best results are explained by the 

two following aspects. The first is the fact that “our method” carries out a propagation of 

similarity definitely better than that of OLA. The second aspect is that our method, contrary 

to OLA, is not based on the stability of the measurement of similarity by using a threshold ε 
define by the user. The default value of this threshold is fixed to 0,01 in OLA. 

5. Conclusion 

In this paper, we presented our method for aligning ontologies OWL-Lite. Alignment 
method performed to search the best matching pairs by exploiting their respective graphs 
OWL-Graph. The results obtained by the alignment module are satisfactory compared with 
results obtained by other methods of alignment. In addition, the proposed method provides 
better results on most tests compared to the OLA method. A comparison of the execution 
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time of both methods will be considered to study the scalability of real and complex 
ontologies. Several improvements are possible on the proposed alignment method to make 
it more relevant. These improvements include: the calculation richer and fuller of the 
similarity of terminology, the calculation of inter-category similarity and alignment of 
ontologies more complex. Finally this method will be integrated into a system of perception 
of learning activity by a tutor via e-learning platform. 
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