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1. Introduction 

The atomic arrangements of solids fall into two broad categories. First refers to long range 
translational order giving rise to sharp diffraction patterns. Second relates to an atomic 
order that displays diffuse halos. Prior to the discovery of Quasiperiodic translational order 
in rapidly solidified Al-Mn alloys [1], sharp diffraction peaks were considered to be 
synonymous to possession of periodic translational orders in solids. The electron diffraction 
patterns reported in reference [1] were found to be invariant under icosahedral point group 
(mぬ博の博) symmetry. Any elementary text on crystallography begins by showing that 5-fold 
symmetry is incompatible with periodic lattice translations. Thus, it was proved beyond 
doubt that Shetchman et al.[1] have discovered a new state of order in solids. Readers may 
go through the notes given in annexure A for the excitement and importance of this 
discovery. The underlying atomic arrangement [1] was believed to possess “Quasiperiodic” 
translational order and due to invariance of diffraction patterns under icosahedral point 
group, such a class of solids was later termed as icosahedral quasicrystals (IQC). If one 
observes the location of diffracted spots in this class of solids then it is not periodic but all of 
them are as sharp as any crystalline diffraction patterns. These observations clearly 
established the fact that IQC displays new type of long range translational order known as 
Quasiperiodic translational order. We refer the readers to the annotations and reprints of 
papers in reference [2] for getting familiar with all the terminologies in this area. Having 
recorded diffraction patterns, the first step is to index them. For indexing, we need a set of 
basis vectors that are integrally independent. All three dimensionally periodic solids need 
three integrally independent basis vectors to index their diffraction patterns. The minimum 
number of integrally independent basis vectors is known as rank of any solids possessing 
long range translational orders [3-4]. Thus, all 3d periodic solids have rank equals to three. 
Remember, one uses four basis vectors for hexagonal crystals in Miller-Bravais (MB) scheme 
but all of them are not independent. As a consequence of this, assignment of indices to a 
diffracted spot in MB scheme is made unique by invoking condition that sum of indices 
along the three planar basis vectors is zero. We shall deliberate on this aspect further while 
discussing indexing of decagonal quasicrystals (DQC).  

All Quasiperiodic structures possess rank greater than three. This is true even for 
incommensurate structures. However, quasicrystals diffraction patterns are invariant under 
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non-crystallographic point groups that are incompatible with periodic lattice translations. 
We do not propose to discuss this aspect further and interested readers may refer to 
international tables on crystallography [5] for subtle distinction between these phases. IQC 
are three dimensional (3d) quasicrystals whose diffraction patterns are invariant under 
icosahedral point group. For the purpose of indexing, one requires six integrally 
independent basis vectors parallel to the vertex vectors of an icosahedron. Thus, 3d IQCs 
have rank equals to three. We shall demonstrate that all the diffraction spots can be indexed 
with the help of sextuplets of indices. For spanning the entire reciprocal space one has to 
follow the rules of addition and subtraction. This is true for all reciprocal lattices. In addition 
to this, Quasiperiodic reciprocal lattices require inflation and deflation of vectors. We shall 
show this as we progress. The Quasiperiodic lattice constant is determined with the help of 
first strongest diffraction spots along the basis vectors. Owing to quasiperiodicity, 
Quasiperiodic lattice constant is scale dependent. The concepts of inflation/deflation and 
scale dependent lattice constant are reflection of the fact that we are dealing with a new state 

of order. In fact both these concepts are related to golden mean 酵 噺 √泰袋怠態  which is one of the 
roots of the equation 捲態 伐 捲 伐 な 噺 ど. Please note that the golden mean has many interesting 
properties like 酵態 噺 酵 髪 な, 岾怠邸峇 噺 酵 伐 な, 酵戴 噺 に酵 髪 な	欠券穴	嫌剣	剣券.  IQC phases are related to such 
a number. This is due to the presence of 5-fold rotational symmetry. There are three 6d 
Bravais lattices for IQC and they are expected to give rise to three distinct icosahedral 
phases. These are (i) Simple IQC (SI), (ii) Body centered IQC (BCI) and (iii) Face centered 
IQC (FCI). Both SI and FCI phases are reported in literature but we shall restrict our 
discussion on SI only. The need of 6d cubic lattice in the structural description of IQC has 
been found to be essential and convenient in higher dimensional crystallography. It is 
therefore essential that we get familiarize with the concept and methodology related to 
higher dimensional crystallography. We shall demonstrate all the necessary aspects 
pertaining to this as we proceed. 

Following the discovery of IQC, a new class of quasicrystals was found. This class of 
quasicrystals has 2d quasiperiodicity and 1d periodicity. Four popularly known DQCs have 
2,4,6 and 8 layer periodicities along 10-fold axis and are designated as T2, T4, T6 and T8 
phases respectively. The diffraction pattern displayed the presence of a unique 10-fold 
symmetry axis. Hence, this class of 2d QC was christened as decagonal quasicrystals. The 
discovery of decagonal phases [6-7] posed novel problems to their structural description and 
indexing. The rank of such a solid is five. Four basis vectors oriented with respect to each 
other by 720 and the fifth one perpendicular to this plane are sufficient to map the entire 
reciprocal space. However, a set of vectors related by five -fold symmetry may not possess 
quintuplet of indices that are permuted. These aspects are dealt extensively in references [8-
9]. To attain permuted indices to refer to a set of vectors related by 5-/10-fold symmetries 
one uses six basis vectors [10]. The additional vector required to preserve symmetry in the 
indices for a family of directions/planes during indexing gives rise to the problem of 
redundancy. This refers to the non-unique assignment of indices to a diffraction spot. This 
can be surmounted by putting condition on indices akin to those of MB scheme for 
hexagonal crystal. We have recently discussed many novel aspects pertaining to this [9] by 
revisiting the MB indexing schemes of hexagonal [10-11], decagonal [8] and their related 
phases with the help of higher dimensional approach. For indexing diffraction patterns, one 
has to follow the approach of Copernican crystallography developed in Fourier space [3, 4]. 

www.intechopen.com



 
Indexing of Electron Diffraction Patterns of Icosahedral and Decagonal Phases 29 

In contrast, the canonical cut and project scheme [12-17] is capable of providing information 
about the atomic positions as well as the intensity of Quasiperiodic structures.  We will not 
be deliberating on these in this chapter excepting succinctly dealing with the concepts of 
higher dimensional crystallography in the next section. Higher dimensional crystallography 
utilizes a mathematical construct for structural modeling of Quasiperiodic phases in a 
convenient way. 

2. Elements of quasicrystallography 

We need to remember that diffraction patterns offer the best way to define a lattice. We may 
understand this in the following way. If we ignore the intensity variation and replace all the 
diffracted spots by a point (for example, selected area electron diffraction pattern from a 
single grain) then we get arrangement of points in 2d section of a 3d reciprocal lattice. The 
prefix reciprocal before lattice appears because the distances are measured in terms of Å-1. 
For describing atomic arrangements of solids one has to express distances in terms of Å and 
the underlying lattice is known as direct lattice. A lattice has a set of basis vectors whose 
integral linear combination helps us reach any diffracted spot with respect to the 
transmitted beam. Similar concept will hold for direct primitive lattice. The minimum 
number of integrally independent basis vectors required to accomplish this task is known as 
the rank of solids. Please note that the way we have introduced lattice does not demand 
anything other than the existence of diffraction patterns. Latter is a hard verifiable 
experimental fact. Selected area diffraction is the most convenient way to record single 
crystal like diffraction patterns from a polycrystalline specimen. Developing crystallography 
with the help of reciprocal space was central philosophy advocated earlier [18]. This concept 
was emphasized and extended further by N.D.Mermin (1992) after the discoveries of IQC, 
DQC and many other related phases [3-4]. If we observe three dimensional periodicities in 
diffraction patterns then we are dealing with the crystals of rank 3.  The observation of 
incommensurate structures in 1977 [12] and their interpretation demanded four basis 
vectors instead of three. Incommensurate structures display crystallographic point group 
symmetry but their diffraction patterns possess aperiodicity in one of the three directions. In 
contrast, quasicrystals discovered by Shetchman et al. in 1984 displayed icosahedral point 
group symmetry [1] and aperiodicity of a special type. We call this as quasiperiodicity. In 
general, the existence of aperiodic order in a direction, demands at least two length scales 
that are relatively incommensurate. This is said in other words means the ratio of two 
fundamental lengths cannot be expressed as a rational number. We may understand this in 
a mathematical way as given below. 

Let us consider a point on the line whose distance from an arbitrary origin is Xn . We define 
this by 

 ( )( )1 / ( / )nX a n nτ τ= + ⎢ ⎥⎣ ⎦  (1) 

Where the floor function⎿捲⏌ of any number x is defined by the number x minus the 
fractional part of x. This means that floor function is basically the lowest possible integer of 
that number. As a consequence of this we realize that the two terms in the above equation 
are periodic independently with a period of a and ( /a τ )  respectively. H.Bohr has shown 
that equation (1) generates points that are almost periodic or Quasiperiodic [19-20]. The 
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floor function also ensures that the two consecutive points are not coming arbitrary close to 
each other. This is important for a real solid. There has to be a minimum distance of 
separation between two atoms.  

Thus, we may write a general expression having aperiodicity as  

 ,m nX a m nτ= +⎡ ⎤⎣ ⎦  (2)  

Where, m and n are integers. 

A simple calculation of nX  based on equation (1) generates points on a line that is well 
known Fibonacci series for τ = 1.618…….(golden mean). This is a quadratic irrational. As 
mentioned earlier, this is one of the two roots of equation 2 1 0x x− − = . Golden mean τ has a 
continued fraction representation: τ = 1+1/1+…..=1/1;2/1;3/2;5/3;8/5;13/8;21/13 and so 
on. These are the successive approximants of τ. One way to generate periodic structures of 
varying periods is by replacing τ by one of the above rational values. Such structures are 
known as rational approximants. We proceed to give alternative discussion of equations (1) 
and (2) in terms of higher dimensional crystallography. 

Let us consider a set of points on one dimension of the type that we have been discussing so 
far. If we have to index each of the points on the lattice generated by equation (1) then we 
will do it conveniently by specifying two integers (m,n). Thus the rank of such a lattice is 2. 
Please note that the points are lying on a line. If this happens for a three dimensional solids 
in all the three directions then we will require 6 indices to indicate a point for such cases. 
Thus, the rank of such a solid will be 6. This is the case for IQC phase. Let us translate this 
discussion in terms of basis vectors. We shall first do it for the one dimensional 
Quasiperiodic case.  

Let us consider two vectors 1V and 2V  along a direction with unit vector xpar such that  

1V = cosθ xpar and 2V  = sinθ xpar.  Any vector on the line terminating at a lattice point is 
given by: 

 1(R a m= 1V + 2m 2V )    and   1(1 / )(G a n= 1V + 2n 2V )  (3)  

Where R and G are direct and reciprocal space lattice vectors; m1; m2 and n1; n2 are set of 
integers and a is spacing in Å. For direct space there has to be a minimum separation 
between two points as every lattice point is a probable location of atom. For reciprocal space 
this is not at all essential. If we choose (cos /sin )θ θ τ= , then we have 

 1 2 1 2sin ( )   and   (1 / ) ( )R a m m G a Sin n nθ θ= τ + = τ +  (4) 

The form of set of equations now resembles with those of equations (1) and (2). If we choose 
integers that are a combination of positive and negative both then there is an important 
difference between periodic solids and aperiodic ones. The set of points generated on the 
line is uniformly and densely filled. For R , this is obviously inconsistent. We commented 
earlier about the minimum distance of separation between two points. We also know from 
the experimental observations of IQC that in reciprocal space, we do observe sharp Bragg 
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peaks at discrete locations just like periodic crystals. Let us attempt to understand this 
through the language of higher dimensional crystallography. We construct a projection 
matrix (P) through the dot products of the basis vectors. 

{ ijP P= }={Vij} ={Vi.Vj} where P11=cos2θ; P22=sin2θ;P12=cosθsinθ  

 

2

2

cos cos sin

cos sin sin
P

θ θ θ

θ θ θ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

  (5) 

Equation (5) satisfies 2P P= . This is an important property of a projection matrix. Please 
note that the determinant of this matrix is zero and the trace is equal to 1. We can also define 
a matrix Q by the following relation: 

 
2

2

sin sin cos

sin cos cos
Q I P

θ θ θ

θ θ θ

⎡ ⎤−
⎢ ⎥= − =
⎢ ⎥−⎣ ⎦  

(6) 

Where I is an identity matrix of order 2. Please see that 2Q Q=  and 0PQ = . All other 
properties of P are displayed by Q also. The space generated by this matrix is orthogonal to 
that of P. 

If we choose another set of basis vectors 1W  and 2W  then we are in a position to define 
these on a line such that they are anti-parallel or at 180o with each other. Please note that in 
parallel space V1 and V2 are parallel. From the learning of matrix representation theory, we 
call the two spaces to be orthogonal. In terms of a unit vector xperp we may write 1W =sinθ 
xperp and 2W =-cosθ xperp.  

We may define a orthonormal basis such that i i iV W e+ =  where i =1 to 2 and i j ije e δ=  with 
1ijδ = for i=j and 0ijδ = for i j≠ . The two basis vectors e1 and e2 are orthonormal and 

clearly represent the bases for a two dimensional space. With the help of two matrices given 
in equations (5 and 6), we can also write  Vi = Pij ej and Wi = Qij ej  for i, j to vary from 1 to 2 
only. The two dimensional direct lattice vector R2 and reciprocal lattice vectors G2 can now 
be written as: 

 R2 = a (m1e1+m2e2) and G2 =(1/a)(n1e1+n2e2)  (7) 

Where a can be identified as two dimensional lattice parameter of a square lattice. Let us 
designate now R and G as the components of Equation (7) in “V” space or “physical space” 
or “par space” and S and H as the components of Equation (7) in “W” space or “pseudo 
space” or “complementary space” or “perp space”. All these terminologies are used in 
Quasicrystalline literature and we need not get frightened by them. They are given by 

 R = a (m1 V1+m2V2)   and   G = (1/a)(n1V1+n2V2)  (8) 

 S = a (m1W1+m2W2)   and   H = (1/a)(n1W1+n2W2)  (9) 

We get after substituting for Vi and Wi the following expressions: 

 R = asinθ (m1 τ+m2) xpar  (10a)  
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 G = (1/a)sinθ (n1 τ+n2) Xpar (10b) 

 S = asinθ (m1  - m2τ) xperp (11a) 

  H = (1/a)sinθ (n1  - n2τ) xperp  (11b)                       

We observe that the terms within the parentheses of equations (10a) and (10b) are of the 
same form as we have written earlier in equations (1) and (2). Are we getting any extra 
information by following the path that we have adopted in the latter part of the discussion? 
Yes, we can ensure minimum separation between two points in the direct lattice if we put a 
condition on the set of indices m1 and m2 with the help of equation (11a). Please recall that 
the floor function in equation (1) was helping us accomplish this task. The matrix 
formulation presented here can be generalized without any difficulty for two and three 
dimensional aperiodic structures or Quasiperiodic structures for our discussion.  

As mentioned above, we demonstrate the method of ensuring minimum distance of 
separation between two points in parallel or physical direct space. We have a square 2d 
lattice (we call them as hyperlattice) having basis vectors e1 and e2 with lattice parameter a. 
We attach a line element to each of the lattice points. The length of the line element is 
Lperp(say). Please note that (Lperp/a2) is the linear density of points. We choose this based on the 
density of the points required for the purpose. This can be arrived at by referring to the 
density of the points needed for the related approximant structures. As stated earlier, 
structures that are generated by substituting τ by its successive approximants are termed as 
rational approximant structures. The α-Al-Mn(Fe)-Si cubic structure with space group Pm3 
having lattice parameter of ~12.68Å and 138 atoms in the unit cell is one such example. This 
is described as (1/1) approximant of icosahedral structures in Al-Mn system. Please see 
annotations in reference [2] and also consult [21] for further details. 

In cut and project scheme, the length of such a line element is taken as Lperp = a (sinθ + cosθ). 
This is the external boundary of the shape in W-space obtained by projecting all the vertices of 
the higher dimensional unit cell on to it. We place it on the lattice point such that it is parallel 
to perp.space and is symmetric around it. This means the line element is extending both sides 
from +( Lperp/2) to –( Lperp/2). We may also work with the asymmetric setting by placing the line 
element having its extent from 0 to Lperp .  The physical space line will cut this line element 
selectively and minimum separation between the two consecutive points can be ensured [14-
16]. Now we would like to understand the Fourier Transform (F.T.) of the structure that we 
have generated. It is a combined effect of two distinct entities: the 2d square hyperlattice and 
the line element Lperp  that is serving as motif in crystallographic parlance. Hence the F.T. of the 
1d quasicrystals in physical space will be given by the convolution of the two functions. The 
F.T. of the 2d lattice will be a delta function and the weight of the delta function will be 
modulated by the F.T. of the line element. We therefore write: 

F.T.of the 1d Quasicrystals = F.T. of the 2d lattice ×  F.T. of the line element 

 

( )
( /2)

( /2)

. . 1 (1 / ) ( 2 . )

perp

perp

L
perp

L

F T G L Exp iH S dSπ

−

= × −∫
 

(12) 

www.intechopen.com



 
Indexing of Electron Diffraction Patterns of Icosahedral and Decagonal Phases 33 

This reduces to 

 ( ). . (sin ) /( )perp perpF T G HL HLπ π=  (13) 

For a given G, there is an unique H and are given by indices of reflection  

(n1 n2). The intensity is given by the following equation: 

 ( ) ( ) ( )I G   F.T. G   F.T. G *= ×  (14) 

Where F.T.(G)* is the complex conjugate of F.T.(G). Please note that G and H are implicitly 
and uniquely related. The right hand side of the equation (13) will try to attain maximum 
value for those G for which H is close to zero. In experimental condition, the instrument has 
a cut off limit below which it will merge with the background. Hence most of the intensities 
may not be significant. The observed G with reasonable intensity shall correspond to only 
those G’s for which n1/n2 is nearing to τ. This is the reason why we observe sharp Bragg 
peaks at discrete locations in physical or parallel reciprocal space under experimental 
condition. Having explained the philosophy for 1d case, we come back to the indexing of 
diffraction patterns again-the primary aim of this paper. We reproduce the two expressions 
again: 

G = (1/a)sinθ (n1 τ+n2) xpar and H = (1/a)sinθ (n1  - n2τ) xperp 

Please note that (n1 - n2τ) → 0 when (n1/n2) → τ. Thus all the diffracted vectors having 
significant observable intensities will be indexed as (1,1);(2,1);(3,2);(5,3) and so on. If we 
follow similar arguments for 3d or 2d Quasiperiodic solids, we may conclude that 
icosahedrally related structures will display strong intensity spots separated by τ or its 
power dependent on the symmetric direction(s). All those solids having τ or its successive 
approximants playing a role in the diffraction patterns are important for icosahedrally 
related structures. We advise readers to consult books and reviews available in this area 
through various scientific databases for further details on this aspect.  

3. Icosahedral quasicrystals 

As mentioned above, we have 3d quasiperiodicity for IQC and we need 6 integrally 
independent basis vectors to index the diffraction patterns. The rank of this class of solids is 
six. Recall that icosahedron is one of the five platonic solids having 20 equilateral triangles 
giving it a convex shape. It has 6 (or 12) five-, 10 (or 20) three- and 15 (or 30) two- fold axes. 
They are respectively the vertex, face and edge vectors of an icosahedron. The angular 
relationships amongst them can be known by referring to stereographic projection of 
icosahedral point group symmetry given in Figure 1. The icosahedral point group is ( 3m 5 ) 
and the order of the group is 120. If we ignore inversion then it is of order 60. Please note 
that number of vertex vectors and rank are the same. Hence six vertex vectors of an 
icosahedron can serve as the six integrally independent basis vectors. All the diffracted 
spots are indeed seen to be expressible in terms of six integers. We shall designate such a 
sextuplet of indices as (n1n2n3n4n5n6) and six basis vectors (vertex vectors) by V1, V2, V3, V4, 

V5  and V6. We may express these in relation to three Cartesian bases (xpar, ypar and zpar) in 
physical or parallel space by the following matrix relation.   
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Fig. 1. Stereographic projection of the symmetry elements of the icosahedral point group  

 

1

2

3
24

5

6

1 0
0 1
1 01

0 12(1 )
1 0

1 0

par

par

par

V

V x
V

y
V

zV

V

τ

τ

τ

ττ
τ

τ

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥

⎛ ⎞⎜ ⎟ ⎢ ⎥
⎜ ⎟⎜ ⎟ ⎢ ⎥− ⎜ ⎟=⎜ ⎟ ⎢ ⎥

− ⎜ ⎟⎜ ⎟ + ⎢ ⎥
⎜ ⎟⎜ ⎟ ⎢ ⎥− ⎝ ⎠⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

  (15) 

It is obvious that the magnitudes of all the vertex vectors are equal. 1V = 2V = 3V = 4V =

5V = 6V = ( )1 / 2 . V6 is the polar vector in this setting and  
5

6
1

(2 1)iV Vτ= −∑ . Thus a 

vector represented by the sextuplets (111112) is a five-fold vector parallel to V6 with a 
magnitude of τ3 times that of V6. There are five distinct set of equivalent choices for choosing 
a set of three Cartesian bases as there are fifteen two fold vectors in icosahedron. The 
orientation and magnitude of vectors are known directly by the projection matrix Picos . One 
may write the elements of this matrix by dot or scalar product of basis vectors (Cf. section 2) 
and is given by 

 

5 1 1 1 1 1

1 5 1 1 1 1

1 1 5 1 1 11
20 1 1 1 5 1 1

1 1 1 1 5 1

1 1 1 1 1 5

icosP

⎛ ⎞− −
⎜ ⎟
⎜ ⎟− −
⎜ ⎟

− −⎜ ⎟⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠ − −⎜ ⎟

⎜ ⎟− −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (16) 
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Please note all the diagonal elements are equal and Vi.Vi = (1/4) and the trace of the matrix is 
3. The projection matrix Picos has the property as mentioned in section 2. The angle between 

Vi (i=1 to 5) with V6 is 潔剣嫌貸怠 磐な √の斑 卑.	 The matrix elements in Equation (16) has all the 

information about the metrical and symmetrical properties of basis vectors. We shall 
extensively utilize this equation for knowing a direction of SADP of IQC. We can also write 
the projection matrix Qicos in the complementary or pseudo or perpendicular space as: 

  

5 1 1 1 1 1

1 5 1 1 1 1

1 1 5 1 1 11    
20 1 1 1 5 1 1

1 1 1 1 5 1

1 1 1 1 1 5

icos icosQ I P

⎛ ⎞− − −
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟

− − −⎜ ⎟⎛ ⎞
= − = ⎜ ⎟⎜ ⎟⎝ ⎠ − − −⎜ ⎟

⎜ ⎟− − −⎜ ⎟
⎜ ⎟− − − − −⎝ ⎠

 (17) 

Please note that trace of  Qicos is 3 and we can see that polar vector W6 (complementary 
vector of V6 in perp.space) is inverted with respect to other vectors in perp. space. We 
designate the perp.space basis vectors by W1, W2, W3, W4, W5  and W6. We may express these 
in relation to three Cartesian bases (xperp, yperp and zperp) in physical space by the following 
matrix relation.   

 

1

2

3
24

5

6

1 0
0 1

0 11
0 12(1 )
1 0

0 1

perp

perp

perp

W

W x
W

y
W

zW

W

τ

τ

τ

ττ
τ

τ

−⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥

− ⎛ ⎞⎜ ⎟ ⎢ ⎥
⎜ ⎟⎜ ⎟ ⎢ ⎥
⎜ ⎟=⎜ ⎟ ⎢ ⎥

− − ⎜ ⎟⎜ ⎟ + ⎢ ⎥
⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎜ ⎟ ⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎣ ⎦

 (18) 

The magnitude of all the vectors (W1, W2, W3, W4, W5   and W6) is same and is equal to  
( 1 / 2 ). This is just like that of par space basis vectors mentioned earlier. V– and W– spaces 
possess vector like and non-vector like representations respectively. Any 5- fold rotation 
around V6 takes V1 → V2 → V3 → V4 → V5 → V1 whereas that around W6 takes W1 → W3 → 
W5 → W3 → W4 → W1. Such spaces are said to be orthogonal in matrix representation [see 
annotations in reference 2]. Please note the way, we have defined the projection matrices 
here, permits us to write the decomposition of the 6d hyperspace orthonormal basis vectors 
ei (i=1 to 6) in terms of two complementary 3d spaces basis vectors as explained in section 2. 
This is given by 

 ei = Vi+Wi  (19)  

 Vi=Picosijej and Wi=Qicosijej  (20) 

 Picosij + Qicosij = Iij (21) 

Where,  Iij is an identity matrix of order 6. 
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The 6d direct hypercubic lattice vector is given by 

 
6

6 icos

1
R  t i im e= ∑   (22) 

The 6d reciprocal lattice vector is written as  

 ( )
6

6 icos

1
G  1 / t i in e= ∑  (23) 

Where mi and ni are integers and ticos is the 6d hypercubic lattice parameter. The physical or 
parallel and pseudo or perpendicular space components are written in a straight forward 
manner owing to the identity given by equation (19). They are  

Ricos = parallel space component of R6 

                                                      

6
icos

1
=t i im V∑

  
(24) 

           Sicos = perpendicular space component of R6 

                                                      
6

icos

1
=t i im W∑

  
(25) 

Gicos = parallel space component of G6 

                                                      ( )
6

icos

1
= 1 / t i in V∑

 
(26) 

           Hicos = perpendicular space component of G6 

                                                      ( )
6

icos

1
= 1 /t i in W∑

 
(27) 

For indexing, the relevant expression is given by equation (26) and any diffracted spot or 
peak is represented by the sextuplet of indices (n1n2n3n4n5n6). Equation (26) can also be 
written with the help of matrix given in equation (15) in the following way: 

                                            Gicos = parallel space component of G6 

                                                   = (1/ticos) ( 21 / 2(1 )τ+ ) (Gx xpar + Gy ypar + Gz zpar) (28) 

Where, Gx = τ (n1+n5) + (n6-n3)   

 Gy = τ (n2-n4) + (n1-n5) (29) 

Gz = τ (n3+n6) + (n2+n4) 
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Please note that a vector (000001) is parallel to V6. Also, a vector (111112) is τ3 times that of 
V6. These are known as τ3 inflation rule along the five- fold axis. The inflation matrix can be 
written for this purpose as 

2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1

1 1 1 1 2 1
1 1 1 1 1 2

− −⎛ ⎞
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟⎜ ⎟
⎝ ⎠  

We may write the deflation matrix by inverting it. We also note that for the two fold and 
three fold directions, the following inflation relations hold: 

2-fold vector: (001001) = τ (010100) 

3-fold vector: (011001) = τ3 (1001な博0)  

We may write the indices of any reflections by inflation and deflation along any direction 
with respect to first strongest spot that one encounters with respect to transmitted beam in 
SADP.  The principal zone axes (5,-3- and 2-fold directions) can be easily recognized by 
looking at rotational invariance of diffraction pattern. Please see Cahn et al. (1986) for this 
purpose [22].  

We enlist steps that may be followed for indexing any SADP pattern of IQC. We show three 
SADPs of IQC in Figure 2. Figure 2a is invariant under five- fold rotation. We call this pattern 
belonging to a five-fold zone. We consider a 72o sector of this SADP. We observe two spots of 
same intensities at same reciprocal distance from the transmitted beam along the two 2-fold 
directions oriented at 72o. All the vertex vectors are 5-fold vectors. We therefore may designate 
this zone by any one of these. Let us designate this zone as [000001]. We would like to know a 
set of vectors that are orthogonal to this. All the 2-fold vectors 岷なな博どどどど峅, 岷などな博どどど峅, 岷などどな博どど峅, 岷などどどな博ど峅, 岷どなな博どどど峅, 岷どなどな博どど峅, 岷どなどどな博ど峅, 岷どどなな博どど峅, 岷どどなどな博ど峅,	
 欠券穴	岷どどどなな博ど峅  are orthogonal to [000001]. One may verify this by looking at the dot products 
from equation (16). Hence, all these 20 (10 negatives of these two fold vectors) are lying in the 
zone. Out of these five 2-fold vectors  岷などどな博どど峅, 岷どなどどな博ど峅, 岷どな博どなどど峅, 岷どどな博どなど峅, 欠券穴	岷な博どなどどど峅 
are oriented with respect to each other at 72o in this zone. Owing to scaling property, 
assignment of indices to the first strongest spot may be done by recalling the nature of 
appearance of spots. Along the two fold axes, the location of spots follows τ-scaling. The 
inflation matrix corresponding to τ-scaling is given by 

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

(1 /2)
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

− −⎛ ⎞
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟⎜ ⎟
⎝ ⎠  

www.intechopen.com



 
The Transmission Electron Microscope 38

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 2. Selected area diffraction pattern from simple icosahedral phase under (a) 5-fold (b) 2-
fold and (c) 3-fold zones. Indices of the important spots are given in Table 1. 
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The first spot along one of the aforesaid five 2-fold directions can be indexed as 岷どどなな博どど峅 
and if we take help of above matrix then next spot after inflation by τ will be 岷どなどどな博ど峅. 
Likewise we may index spots that are lying along a two-fold direction 岷どな博どなどど峅	at 72o to 岷どなどどな博ど峅. Having done this we may utilize the rules of vector addition to index spots that 
are lying within 72o sector.  We tabulate the indices of spots based on these steps in table 1a.  

Let us try to index spots in a 2-fold zone now (see Fig. 2b). Consider a 2-fold zone 岷どどなどどな峅. 
Please note that this is parallel to Z-axis and all the diffraction vectors having only X-Y 
components will be contained in this zone. The sextuplets of indices corresponding to 2-fold  岷どどな博どどな峅	欠券穴	岷などどどなど峅 are parallel to X-axis and are related by τ-scaling. Similarly, the 2-
fold vectors 岷などどどな博ど峅欠券穴	岷どなどな博どど峅 are parallel to Y-axis. Latter is τ time more than the 
former. We see strong spots at (1/2) cos-1( 1 / 5 ) ~31.7o orientation with respect to these 2-
fold directions that are lying along 5-fold directions. From the geometrical relationships of 3-
fold and 5-fold vectors, we identify a direction in the 2-fold zone at 37.37o. The 3-fold 
directions 岷ななどな博どど峅欠券穴	岷どどな博どな博な峅 are parallel to each other and are related by τ3-scaling. The 
dot product of these 3-fold vectors with 岷どどなどどな峅 is zero. Hence such a 3-fold direction is 
contained in this zone. The indices of diffracted spots in 2-fold zone are given in table 1b. 
Having done this exercise, the indexing of spots in 3- fold zone is straight forward as it 
contains 2-fold vectors and their addition/subtraction (see Fig. 2c). Please note that spots 
indicated along one of the two fold directions in this figure have the similar spot 
designations akin to those of Figure 2a. As a consequence of this, their indexing remains the 
same. It is important to mention here that the 2-fold zone axis from IQC is important as it 
contains 2-fold, 3-fold and 5-fold directions. If one is able to get this zone at zero tilt position 
while recording SADP then with the help of tilt, one will be able to visit all the principal 
zone axes by recalling orientation of various symmetry directions with the help of Fig. 1. 
 

(a) 5-fold zone axis [000001] 
Spot No. Indices Spot No. Indices Spot No. Indices 

1 どどなな博どど 1′ どどどなな博ど 5 な博などどどど 
2 どなどどな博ど 2′ な博どなどどど 6 どどなどな博ど 
3 どななな博な博ど 3′ な博どななな博ど 7 な博ななどな博ど 
4 どになな博に博ど 4′ に博どになな博ど 8 な博なにどに博ど 

(b) 2-fold zone axis [001001] 
1″ などどどなど 1′″ どなどな博どど 9 になな博な博なな 
2″ などな博どなな 2′″ ななどな博な博ど 10 なな博な博なにな 
3″ にどな博どにな 3′″ なにどに博な博ど 3-fold  

(τ3 inflated) ねねな博ね博な博な 
4″ ぬどに博どぬに 4′″ にぬどぬ博に博ど

Table 1. Sextuplets of indices assigned to various spots for Icosahedral phase  

How to identify the first vector in five-fold direction? As explained earlier, we do not have a 
fixed magnitude of the vector to identify owing to the nature of expressions given in 
equation (29). However, this can be settled by identifying the appropriate approximant for a 
particular type of quasicrystals [13]. For example, the approximant corresponding to Al-Mn 
type IQC, is the cubic α-Al-Mn-Si structure with space group Pm3 and lattice parameter 
~12.68Å. Reflections having h+k+l=odd, are weak.  This is due to the large motif (having 
icosahedral symmetry) in the unit cell. We observe a strong spot corresponding to a plane at 
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a distance of ~2Å having indices {530}. These are oriented at an angle of ~31o (=Cos-1(5/
34 )) with respect to cubic axes. As mentioned earlier, the angle between the 2-fold and 5-

fold is = (1/2) cos-1( 1 / 5 ) ~31.7o. Thus, the first strongest reflection corresponding to inter-
planar spacing of ~2Å along the 5-fold axis in IQC for this alloy system can be indexed as 
(000001) or its τ3 inflated value (111112). This problem is unlike that of a crystal [cf. 22]. We 
have deliberated on this while introducing the subject with the help of 1d example. As 
mentioned earlier, the intensity of any reflection will be governed by the Fourier Transform 
of the motif lying in perpendicular space. The symmetry of the motif must conform to the 
point group of the diffraction patterns. Thus, analysis of diffraction patterns is the first step 
towards structural modeling. 

4. Decagonal quasicrystals 

It has been emphasized earlier by us [17, 23-24] that a distorted icosahedral basis vectors are 
the best to establish relation between the icosahedral and two dimensional Quasiperiodic 
structures having 10-fold and 5-fold symmetries. A distortion along one of the six five-fold 
axes of an icosahedron preserves a five-fold symmetry along it. For continuity, the basis 
vectors utilized by us earlier are reproduced below:  

 i 1 || ||
1 D D     |V |  [sin  T  X     cos  Z ]iV θ θ−= +   (30) 

||
6 6     |V |  ZV =  

where iV  (i = 1 to 5) are parallel to the vertex vector of an icosahedron and 6V  is the sixth 

vertex vector along which distortion can be given by taking value of cos Dθ  different from 

1
5

. For this choice, an ideal icosahedral basis vectors are recovered in physical space [14-

15]. A symmetric projection matrix can be constructed through the dot product of vectors 
given in equation (30). The matrix P has the following form  

 

11 12 13 13 12 16

12 11 12 13 13 16

13 12 11 12 13 16

13 13 12 11 12 16

12 13 13 12 11 16

16 16 16 16 16 66

P P P P P P
P P P P P P
P P P P P P

    
P P P P P P
P P P P P P
P P P P P P

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (31)  

where  11 1 1 2
2

P     V     ;
5 sin D

V
θ

= ⋅ =    

2 2
12 11

1
P     P  sin   cos  ;

2 D Dθ θ
τ

⎡ ⎤
= +⎢ ⎥⎣ ⎦  

2 2
13 11P     P  sin   cos  ;

2 D D
τ

θ θ
⎡ ⎤

= − +⎢ ⎥⎣ ⎦  
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16 1 6P     |V | | |  cos DV θ= ;  

2 2
44 6 6 1

5 5 1
P     V      |V |  (1 3cos )   and       

2 2DV θ τ
+

= ⋅ = − = .  

This matrix permits 6d orthonormal basis to define the physical or parallel (||) space bases 
as given in equation (30). For details, readers are referred to our earlier work [17]. The 
projection matrix Q in the complementary or pseudo or perpendicular (⊥) space is given by 
Q = I−P where I is an identity matrix of order 6. The corresponding basis vectors in ⊥ space 
are written as  

 
2 1

i 1W     |W| [sin  T  X   cos  Z ]iφ φ〈 − 〉 ⊥ ⊥= +   (32) 

 6 6W     |W |  Z⊥=
 

where   
1/22

2 2 2 2
1 1 6 6 2

1  3 cos
|W |     1  |V| ;    |W |     1  |V | ;    cos

3  5 cos
D

D

θ

θ

⎡ ⎤−
= − = − φ = ⎢ ⎥

−⎢ ⎥⎣ ⎦
;  and  

i = 1 to 5 and 2 2i〈 − 〉  is modulo 5.  The 6d reciprocal lattice vector G6 in terms of 
orthonormal basis vectors ( ie  for i = 1 to 6) for orthogonal cell [17] is written as  

 
5

6
i i 6 6

1 61

1 1
G       N e      N e

t t
= +∑   (33)  

where 1 t  and 6 t  are hyperlattice parameters for the 6d orthogonal cell.  

The 3d parallel (||) and perpendicular (⊥) spaces are denoted here by ||G  and G⊥  
respectively. They are given by following equations  

 
5

||
i i 6 6

1 61

1 1
G      N V      N V

t t
= +∑   (34)  

5

i i 6 6
1 61

1 1
G      N W      N W

t t
⊥ = +∑

 

where iN 's  are indices of reflections. 

Similarly, the 6d direct space lattice vector ( 6R ) is written as  

 
5

6
1 i i 6 6 6

1
R     t  M e     t M e= +∑   (35) 
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The parallel and perpendicular space components of 6R  are designated here by ||R  and 

R⊥  respectively. They are depicted in the form of equations below. 

 
5

||
1 i i 6 6 6

1
R     t  M V     t M V= +∑   (36) 

5

1 i i 6 6 6
1

R     t  M W     t M W⊥ = +∑
 

where iM  (i = 1 to 6) are integers. The product  

 
5

|| ||
11 i i 66 6 6 12 12 13 13

1
G R     P  M N     P M N     P     PN N⋅ = + + +∑

  

(37) 

5 5
61

16 6 i 16 6 i
6 11 1

tt
  P N  M     P M  N

t t
+ +∑ ∑

 

where  12 1 2 5 2 1 3 3 2 4N     N (M M )  N (M M )  N (M M )= + + + + +  

4 3 5 5 1 4 N (M M )  N (M M )+ + + +  

13 1 3 4 2 4 5 3 5 1N     N (M M )  N (M M )  N (M M )= + + + + +  

4 1 2 5 2 3 N (M M )  N (M M )+ + + +  

For the icosahedral phase 
1

cos     
5Dθ =  and 1 6t     t= , hence 11

1
P     ;

2
=  12

1
P     ;

2 5
=  

13
1

P     ;
2 5

= −  16
1

P     
2 5

=  and 66
1

P     
2

= . This reduces equation (37) as  

 
6

|| ||
i i 12 13 16

1
2 5  G R     5   M N     (N N )N⋅ = + − +∑   (38) 

where,  

6 5

16 6 i 6
1 1

N      M     M  iN N
⎡ ⎤

= +⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑

  

The right hand side of equation (38) has rational and irrational parts. Hence, left hand side 
cannot be equated to zero to recover exact zone rule that is applicable for crystals. However, 
this can be made to accept values nearer to zero and for special set of 1 2 3 4 5 6( )N N N N N N  
corresponding to chosen symmetric direction (like 2-fold, 3-fold and 5-fold), it may display 
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exactly zero. We have already seen example of latter in section 3. Thus, quasiperiodic phases 
will have the notion of exact and nearly exact zone axes. The purpose of this section is to 
discuss the structural characteristics of 2d-quasiperiodic structures belonging to two distinct 
classes(Viz .P105/mcm;P10/mmm). 

The planar pentagonal scheme [25-28, 8], in the model of Mandal and Lele [17] corresponds 

to     90Dθ = c .  This leads to 11P     2/5= ;  12
1

P     ;
5τ

=  13P     /5τ= − ;  16P     0=  and 

66P     1= . Substituting these values in equation (37) gives  

 
5 6

|| ||
i i 6 6 12 12 13

1 1
5 G R     2  M N     5  M N     N      (N )Nτ

⎡ ⎤
⋅ = + − + −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑  (39)  

The absence of N16 term for this case is due to the fact that 16P     0=  (cf. equation 31). Hence, 

for this case 
5

i
1

 V     0=∑ . This condition gives rise to problem of non-uniqueness in 

indexing. The uniqueness can be ensured by imposing 
5

i
1

N     2= −∑  to +2. Equation (39) 

is satisfied for diffraction patterns corresponding to 10/m symmetry. It is clear that such 
bases are devoid of group-subgroup relationship with the icosahedral phase in view of 
severe distortion of the icosahedron. This aspect has been dealt while discussing interfaces 
and twinning in quasiperiodic structures [29-31].  

There are experimental observations of two separate classes of decagonal phases [32-36]. 
They are having space groups P105/mcm and P10/mmm. The presence of screw in the 
former case necessarily demands preservation of 5  symmetry in their bases. Such a choice 
will generate structures that are maintaining group-subgroup relationship with the 
icosahedral phase. This will also include P105/mcm. Please note that for this case, the bases 
will satisfy the following general condition 

 
5

||
i 1

1
V     5 cos  |V |  ZDθ=∑   (40) 

A choice of cos Dθ  = 1
2

 has been shown to conform to the experimentally observed 

structures having P 105/mcm space group [23]. The structural details of this class in terms of 
5d Patterson map can be found elsewhere [37-38]. 

Owing to equation (40), the indexing would require imposition of condition on the 
sextuplet rather than the quintuplet corresponding to D 90θ = c . It is to be remembered 
here that different nature of group-subgroup relationships that the two classes of 
decagonal phases maintain with those of icosahedral structures are expected to reflect 
upon the condition of uniqueness on indices. Such a condition for D   60θ = c  can be 
achieved by recalling that ||(222225) 0G = and ||(111114) 0R = [23-24]. Hence, the 
conditions on indices are  
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6

i
1

N     0  modulo  5=∑
 

               =  −2, −1, 0, 1, 2 

and           
6

i
1

M     0=∑  

For cos D
1

    
2

θ = ; 11
8

   
15

P = ; 12
3 1

    
15

P
τ −

= ; 12 13   PP = ; 16
1 2

     
3 5

P = ; 66
1

    
3

P = ;

1 6( / )    2 2/5t t = . 

Hence, Equation (37) for this case reduces to  

 
5

|| ||
6 6 12 13

1
30       16     10M     2(N )i iG R M N N N

⎡
⋅ = + − −⎢

⎢⎣
∑

  (41)

 

 

5 5

6 6 12 13
1 1

  8N     5M      6  [N ]i iM N Nτ
⎤

+ + + −⎥
⎥⎦

∑ ∑
 

Equation (41) is depiction of zone rule for P105/mcm structure corresponding to cos Dθ  = 
1/2. The right hand side of equation (41) has quadratic irrational. For those zone axes for 
which term containing quadratic irrational is absent, one will fulfill exact zone condition. 
Recording diffraction patterns corresponding to such zones is essential for determination 
of point group symmetry of the reciprocal space. For this, the quality of thin foil has to be 
good so that tilt experiment can be conducted during transmission electron microscopic 
studies of quasicrystals both in imaging and diffraction modes. We are making these 
specific statements to clarify that quasicrystals are normally brittle materials and for 
making thin foil one should devote time. Having achieved this, we have to conduct 
diffraction and imaging experiments to uniquely settle its existence to rule out the 
possibility of irrational twins. Kindly recall while arriving at zone rule in equation (39) for 

D   90θ = c  (P10/mmm structure) the ratio of 1 6( / )t t  was not required. This indicates 

1 6( / )t t  may not be fixed for P10/mmm phase. In contrast, quantification of zone rule for 
P105/mcm types of structure requires a priori prescription of 1 6( / )t t  ratio. Thus the two 
Quasiperiodic structures having periodicity in one dimension of similar type [32-35] 
demand different types of hyperlattice parameters. This distinction has to be kept in mind 
while discussing these structures [9].  

Having discussed zone rules of various Quasiperiodic structures, we proceed to index 
SADPs of decagonal phase. The unique 10-fold pattern containing 2-fold axes can be 
indexed by noting two distinct set of 2-fold directions. These are termed as P– and D– 
direction respectively. They are oriented with respect to each other at 180 intervals. Let us 
try to identify them with the help of two characteristics patterns viz. P– and D– patterns. We 
show them in Figures 3a and 3b. Both these patterns have 10-fold direction. We see strongest 
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(a) 

 
(b) 

Fig. 3. Selected area diffraction patterns from decagonal phase (T6) under two 2-fold zones 
(a) P-pattern and (b) D-pattern. The indices of important spots are given in Table 2. 

spots (V6) along this. There are 3 and 6 intervals between transmitted spots and V6 
respectively in P– and D– patterns. In P-pattern, odd rows have streaking while those in D-
pattern are weak spots. We expect nearly absence of odd rows in P-pattern due to 105 screw. 
However, this may not be the case for D-pattern owing to presence of diffraction vectors of 
the type V1. The strongest spot along 10-fold axis getting divided into six equal intervals 
permits us to infer that we are dealing with T6 phase. The Z-direction of GII (physical 
reciprocal lattice vector) for cosθ = ½ is given by 
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5

6
1 1

1
 8 /15    2N

t
II
z i

i

G N
=

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑   (42) 

Any vector having N1 = N2 = N3 = N4 = N5 will have 罫掴槻嫗嫗  equal to zero. Thus, first spot along 

10-fold (periodic) direction can be indexed as [11111に博]. However, 
6

1
iN∑ is equal to 3. This 

summation will be brought to -2 by subtracting zero vector [22222の博] or its integral multiple 
to above. Hence, first spot along 10-fold may be indexed as [な博な博な博な博な博ぬ峅. This direction is 

periodic and V6 can be assigned [は博は博は博は博は博18]. However, 
6

1
 12iN = −∑  and we have 

proposed 
6

1
 2iN = −∑ , -1, 0, 1, 2 for uniqueness. This can be achieved by adding zero 

vector [44444など博博博博峅 to this. Hence, the sixth spot V6 along 10-fold will be indexed by [に博に博に博に博に博8] 

with 
6

1
  2iN = −∑ . We note that spot V1 in D-pattern is at 600 to V6. This is the reason why 

we have chosen cosθ = ½. This spot can be indexed as [300000]. To make this unique, we 
need to add zero vector [に博に博に博に博に博5]. Hence, indexing of spot V1 is [1に博に博に博に博5]. The diffraction 
vector V1,P, will not have z-component. We may take out z-component from V1 and index it 
by [2な博な博な博な博1]. All other spots along P-direction can be indexed by inflation / deflation matrix 
given by us [23,24]. The indexing of spot VD would again require absence of z-component. 
This can be achieved by assigning [003ぬ博00] to this. The indexing of VD,6 can be achieved by 
adding 6-layer height in [003ぬ博00]. The sextuplet of indices thus becomes [に博に博1の博に博8]. We have 
listed them in Table 2. As mentioned earlier 10-fold diffraction pattern will contain V1,P and 
VD,6 directions. All other spots can be indexed by inflation and deflation matrix [23,24] as we 
have indicated while indexing diffraction patterns of IQC. We have mentioned earlier that 
DQC have four types of phases T2, T4, T6 and T8. The indexing of spots of VD type in P-
pattern will accordingly be given by [00券券博どど峅 for T2n phase. The indexing of V1 type spot in 
D-pattern will be given by [100000], [200000], [1に博に博に博に博の峅 and [2に博に博に博に博5] for T2n phases 
respectively. For T6 and T8, we have differently looking indices due to uniqueness condition 

of 
6

1
  iN =∑ 0, ±1, ±2. 

 

P-pattern D-pattern 
Spot 

designation Indices After [23] Spot 
designation Indices After [23] 

V6 に博に博に博に博に博8 どどどどどぬ V6 に博に博に博に博に博8 どどどどどぬ 
VD どどぬぬ博どど どどぬぬ博どど V1 なに博に博に博に博の ぬどどどどど 

VD,6 に博に博なの博に博8 どどぬぬ博どぬ V1,P にな博な博な博な博な どぬ博ぬ博ぬ博ぬ博は 

Table 2. Sextuplets of indices assigned to various spots for decagonal phase (T6-6 layer 
periodicity along 10-fold axis) 
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5. Conclusions 

We have discussed reciprocal lattices of icosahedral and decagonal quasicrystals with the 
help of projection formalism utilized in higher dimensional structural description of such 
phases. The necessary mathematical details pertaining to higher dimensional 
crystallography were understood with the help of one dimensional aperiodic case (cf. 
section 2). It was also shown that we need expression of physical reciprocal lattice vector 
for mapping the entire diffraction space and indexing of diffraction spots. Such a 
viewpoint was extended to a six dimensional cubic lattice for the icosahedral phase (cf. 
section 3). Having got the expression of physical reciprocal lattice vector we have spelt 
out necessary steps for indexing of diffraction patterns. We have shown the solution of 
important spots in terms of sextuplets of indices and given them in a table for the readers. 
We have put forward our generalized formalism based on 6d orthogonal cell for 
decagonal phases in section 4 of the chapter. A general expression of zone rule as a dot 
product of physical reciprocal and direct lattice vectors has been given. Two distinct cases 
corresponding to decagonal phases having 10/m and 105 screw axis have been given. We 
have adopted a six index notation for both these structures. The conditions for uniqueness 
for them are discussed in terms of the ratio of two lattice parameters of the orthogonal 
cell. The indexing of important diffracted spots corresponding to two distinct two-fold 
patterns (P and D patterns) has been accomplished for T6 phase. We have indicated 
methods of indexing of diffraction patterns for ten-fold zone. At the end of section 4, we 
have also given the indices of some of the equivalent diffracted spots expected in other 
decagonal phases. 

6. Annexure A  

This note to the readers has been added after the announcement of Nobel Prize to Dan 
Shechtman in Chemistry (2011) for the discovery of quasicrystals in the rapidly solidified 
Al-Mn alloys [1].  It is important for all of us to know and understand the path of discovery 
of a truly seminal nature. We need to recall some of the historical facts in this regard.  
Steurer and Deloudi [2], while reviewing various aspects of quasicrystals in the silver jubilee 
year of its first report, quoted the legendry materials scientist John Cahn who later co-
authored paper [1]. It is mentioned [2] that when Dan went to NIST, USA for sharing his 
excitement, Cahn said “Go away, Dany. These are twins and that’s not terribly interesting”. 
However, when Cahn got convinced, he led the discovery by defending its tantalizing 
nature from the front. One may substantiate by remembering the chronological order of the 
lively debate that has gone on. One may recall that when Linus Pauling put forward 
twinning models [3, 4] for interpreting icosahedral diffraction patterns, Cahn and Gratias 
supported Shechtman by taking a firm position [5] about the new state of atomic order in 
the solid state. At this crucial juncture, a leading role was played by a versatile genius, 
Mackay [6] who demonstrated that diffraction results reported in [1] cannot be understood 
in terms of fundamental axiom of conventional 3d-crystallography. It is against this 
background that Senechal [7] titled the discovery of long range aperiodic order with sharp 
diffraction patterns [1] as the demise of a paradigm. The demise pertains to foundation of 
classical 3d crystallography where we get the impression that diffraction patterns cannot 
display invariance under non-crystallographic point symmetry. The selected area diffraction 
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patterns that remain invariant under icosahedral point group have given rise to a new 
paradigm that led to a change in the definition of crystal by International Union of 
Crystallography in 1992 [2]. 

The profound impact of the emergence of new paradigm can be understood by going 
through the foreword by Freeman Dyson [8]. While writing foreword for the book [8] 
entitled “The Mathematical Century”, he remarked discovery of quasicrystals as one of the 
three jokes of nature of the last century. The other two jokes are (a) appearance of imaginary 
quantity in the solution of Schrodinger wave equation in quantum mechanics and (b) 
possible states in quantum mechanics forming a linear space, which have much wider 
ramification and deeper connection with the fundamental laws of nature governing 
mechanics of quantum particles. Thus, experimental observation of Quasiperiodic 
translational order is truly revolutionary and has led to a veritable change in our age old 
belief of classical crystallography. The paintings in ancient art perhaps inspired generations 
of mathematicians to systematically develop mathematics for tilings, coverings and 
packings that are not periodic. In this context, it is important to mention contributions of 
Penrose [9] and Mackay [10] prior to the discovery of icosahedral quasicrystals. 
Intellectually stimulating exercises of many such authors helped experimentalists to 
visualize images of possible underlying atomic arrangements and their Fourier transforms 
in reciprocal space.  

There are many reviews and books summarizing developments in this fascinating area.  
Some of these are given in this chapter. For Indian contributions, we refer the readers to a 
report by international union of crystallography [11]. Indian experimental investigations 
prior to the first report of diffraction patterns with non-crystallographic point group 
symmetry are seen to have patterns akin to D-patterns of decagonal phases [12]. We are able 
to recognize this only in retrospect after we have the necessary knowledgebase on 
quasicrystals. In contrast, Shechtman and his colleagues’ perseverance to determine the 
invariance of diffraction patterns under icosahedral point group symmetry and bold 
announcement to the scientific community are testimony to the fact that discoverers are 
genius and courageous men/women of all times.  Hence, the discovery being a class of its 
own for which Shechtman as the chief architect has rightly been chosen for the Nobel Prize. 
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