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1. Introduction

Shooting a real world image with a camera through an optical device gives a 2-D image
where at least some parts are affected by a blur and noise. Images can be blurred by
atmospheric turbulence, relative motion between sensors and objects, longer exposures, and
so on, but the exact cause of blurring may be unknown. Restoration of blurred noisy images
(Spiros et al., 2009; 2010; Su et al., 2007) is one of the main topics in many processing.
The literatures Alonso et al. (2008; 2005); Bar et al. (2006) have given good methods to
improve image qualities. The purpose of image restoration is to reconstruct an unobservable
true image from a degraded observation. An observed image can be written, ignoring
additive noise, as the two-dimensional (2-D) convolution of the true image with a linear
space-invariant (LSI) blur, known as the PSF. Restoration in the case of known blur,
assuming the linear degradation model, is called linear image restoration and it has been
presented extensively in the last three decades giving rise to a variety of solutions Chen et
al. (2000); Suyash et al. (2006); Gu et al. (2009); Lu et al. (2009) . In many practical situations,
however, the blur is unknown. Hence, both blur identification and image restoration must
be performed from the degraded image. Restoration in the case of unknown blur is called
blind image restoration Filip et al. (2003); Mario et al. (2003); Liao et al. (2005) . Existing
blind restoration methods can be categorized into two main groups: (i) those which estimate
the PSF a priori independent of the true image so as to use it later with one of the linear
image restoration methods, such as zero sheet separation, generalized cross validation, and
maximum likelihood and expectation maximization based on the ARMA image model Chang
et al., (1991); Reeves et al. (1992); Lagendijk et al. (1990) , and (ii) those which estimate the PSF
and the true image simultaneously, such as nonnegative sand support constraints recursive
inverse filtering, maximum likelihood and conjugate gradient minimization, and simulated
annealing Kundur et al. (1998); Katsaggelos et al. (1991) . Algorithms belonging to the first
class are computationally simple, but they are limited to situations in which the PSF has a
special form, and the true image has certain features. Algorithms belonging to the second
class, which are computationally more complex, must be used for more general situations. In
this paper, a kind of semi-blind image restoration algorithm is proposed in case of known the
blur type (defocused blurring).

In general, discrete model for a linear degradation caused by blurring can be given by the
following equation

y(i, j) = h(i, j) ∗ f (i, j) + n(i, j) (1)
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2 Image Restoration

where * indicates two-dimensional convolution, f (i, j) represents on original image, y(i, j) is
the degraded image, h(i, j) represents the two-dimensional PSF, and n(i, j) is the additive
noise. In this article, we deal only with additive Gaussian noise, as it effectively models the
noise in many different imaging scenarios. The difficulty in solving the restoration problem
with a spatially varying blur commonly motivates the use of a stationary model for the blur.
This leads to the following expression for the degradation system,

y(i, j) = h(i, j) ∗ f (i, j) + n(i, j) =
M

∑
k=1

N

∑
l=1

h(i − k, j − l) f (k, l) + n(i, j) (2)

The use of linear techniques for solving the restoration problem is facilitated by using
space-invariant model. Models that utilize space-variant degradations are also common, but
lead to more complex solutions. As for defocused blur, PSF is modeled as a uniform intensity
distribution within a circular disk,

h(i, j) =

{

1
πR2 if

√

i2 + j2 ≤ R

0 otherwise
(3)

where disk radius R is the only unknown parameter for this type of blur.

Many existing image restoration algorithms assume that the PSF is known, but in practical
it is not always the case. The restoration without knowing of the PSF is called blind image
restoration. Fourier methods can be used to estimate the defocused parameter R through
calculating a ratio of power of high frequencies portion to that of low frequencies portion.
However, a main drawback of the method is its bad noise immunity. To solve this problem, a
novel algorithm is proposed to overcome this shortcoming based on RBF neural network and
iterative Wiener filtering. The RBF neural network is applied to fit R. This scheme has good
fitting, but bad prediction. To avoid the weak generalization ability, a more efficient method
for estimating parameter R is also proposed. The prediction ability of these two methods is
compared with the trained five images. The steps of the presented algorithm in this chapter
is as follows: Firstly we construct feature vectors of several blurred images with known
defocused radius R in wavelet domain, then a RBF neural network or a multivariate local
polynomial estimation model is trained using the vectors as inputs and defocused parameters
as outputs. After the model is trained, the new defocused images are applied to the trained
model for predicting the parameter R. For a semi-blind defocused image, R can be estimated
through calculating the feature vectors and using it as input of the trained model. With known
radius R, many traditional algorithm could be applied to restore the degraded image. In this
chapter, iterative Wiener filtering(IWF) is adopted to image restoration.

2. Relationship between wavelet coefficients and R

The wavelet transform provides a powerful and versatile framework for image processing.
It is widely used in the fields of image de-noising, compression, fusion, image restoration
Patrick et al. (2004); Zhou et al. (2007); Guo et al. (2007), etc.

The two-dimensional discrete wavelet transform (DWT) Li et al. (2009; 2010) hierarchically
decompose an input image into a series of successively lower resolution images and their
associated detail images. DWT is implemented by a set of filters, which are convolved with
the image rows and columns. An image is convolved with low-pass and high-pass filters and
the odd samples of the filtered outputs are discarded resulting in down sampling the image

172 Image Restoration – Recent Advances and Applications

www.intechopen.com



Defocused Image Restoration with Local Polynomial Regression and IWF 3

by a factor of 2. The l level wavelet decomposition of an image I results in an approximation
image Xl and three detail images Hl , Vl , and Dl in horizontal, vertical, and diagonal directions
respectively. Decomposition into l levels of an original image results in a down sampled image

of resolution 2l with respect to the image as well as detail images.

When an image is defocused, edged in it are smoothed and widened. The amount of high
frequency band decreased, and that corresponding to low frequency band increases.

In order to denote the relationship between wavelet coefficients and defocused radius R, we
define five variables named v1, v2, v3, v4, and v5 as:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

v1 = |V2|s/|H2|s
v2 = |H2|s/|X2|s
v3 = |H1|s/num{H1}

v4 = |H2|s/num{H2}

v5 = |D1|s/num{D1}

(4)

where | · |s represents the summation of all coefficients’ absolute value, num{·} is total number
of coefficients.

An original image is blurred artificially by a uniform defocus PSF with R whose value ranging
from 1 to 20. The relationship between v1, v2, v3, v4, v5 and R are shown in Fig.1, where
the curves are normalized in [0,1] interval. When R increases, v2, v3, v4 and v5 decrease
monotonously.
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Fig. 1. Relationship Between v1−5 and R

In order to estimate defocus parameter R, only known the roughly similar relationship is not
enough. As shown in Fig. 2, every image has monotonous curve between v2, v5 and R, but
they are not superposition. For a degraded unknown PSF image, R can not be calculated

173Defocused Image Restoration with Local Polynomial Regression and IWF
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4 Image Restoration

Fig. 2. Curve v2, and v5 of Different Images

because the curve of the given image is not known. For example, if v2 of image "rice" has
been calculated, and then we estimate R according curve if "ic" in Fig. 2, wrong results are
obtained obviously. To solve this problem, one of the methods is to choose neural networks.
Computational artificial neural networks are known to have the capability for performing
complex mappings between input and output data, but neural network method has bad
generalization ability. Here we also propose another multivariate local polynomial regression
model to estimate R. The variables v1−5 are chosen to train the RBF neural network and
multivariate local polynomial estimation model. Prediction Comparisons are made to verify
the advantages of multivariate local polynomial fitting.

3. Training RBF neural network and multivariate local polynomial estimation model

3.1 RBF neural network for defocused parameter

We propose and implement a parameter estimation technique in this section. Fig. 3 shows the
description of this technique. In the first phase a RBF neural network is designed and trained.
In the second phase R can be estimated using the trained neural network. A brief description
of this technique is given in the following paragraphs.

RBF neural network is a most commonly-used feed-forward network. It usually has one
hidden layer, and the basis function is radial symmetry. The output of the network looks
like:

yk(χ) =
α

∑
j=1

wkj ϕj(χ) + wk0 ⇔ y(χ) = Wϕ(χ) (5)

where χ is a put vector, wk0 is a set of bias constants, ϕ0(‖ χ − µj ‖) ≡ 1, α is the number of
RBF hidden neurons and W holds both weights and bias. In the experiments, the radial basis
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Defocused Image Restoration with Local Polynomial Regression and IWF 5

Fig. 3. Defocus Parameter Estimation Process

functions are chosen as of Gaussian type:

ϕj(‖ χ − µj ‖) = exp[−
1

2γ2
j

‖ χ − µj ‖
2] (6)

where µj is the center and γj is the standard deviation of the Gaussian function, respectively.

Sixteen original images are chosen to train the RBF net. The images are defocused artificially
with R whose value ranging from 2 to 7. So the total number of training samples are 96. Then
feature vectors are constructed using variables p1−5 of each image:

χ = (p1, p2, p3, p4, p5) (7)

For the network output vector, we use one-of-k encoding method, that is, for R =2, t =
(0, 0, 0, 0, 0, 1)T ; for R = 3, t = (0, 0, 0, 0, 1, 0)T , and so on.

When training samples {χi, ti}
96
i=1 are given, the weights matrix W can be obtained as W =

TΦ†, Φ† is pseudo-inverse of Φ, where Φ is a matrix:

Φ =

⎛

⎜

⎜

⎜

⎝

1 · · · 1
ϕ(||χ1 − µ1||) · · · ϕ(||χ96 − µ1||)

...
...

...
ϕ(||χ1 − µα||) · · · ϕ(||χ96 − µα||)

⎞

⎟

⎟

⎟

⎠

(8)

and T = (t1, t2, · · · , t96).

After obtaining weights matrix W, the defocused parameter R can be calculated using the
trained RBF network.
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6 Image Restoration

3.2 Multivariate local polynomial regression for defocused parameter

Multivariate local polynomial fitting is an attractive method both from theoretical and
practical point of view. Multivariate local polynomial method has a small mean squared error
compared with the Nadaraya − Watson estimator which leads to an undesirable form of the
bias and the Gasser − Muller estimator which has to pay a price in variance when dealing
with a random design model. Multivariate local polynomial fitting also has other advantages.
The method adapts to various types of designs such as random and fixed designs, highly
clustered and nearly uniform designs. Furthermore, there is an absence of boundary effects:
the bias at the boundary stays automatically of the same order as the interior, without use
of specific boundary kernels. The local polynomial approximation approach is appealing on
general scientific grounds: the least squares principle to be applied opens the way to a wealth
of statistical knowledge and thus easy generalizations. In this Section, we briefly outline and
review the idea of the extension of multivariate local polynomial fitting Kantz et al. (1997);
Fan et al. (1996); Su (2010) to the parameter R of defoused PSF.

3.2.1 Multivariate kernel function

To localize data in the m-dimension, we need a multi kernel function. Generally speaking, a
multivariate kernel function refers to a m-variate function satisfying

∫ +∞

−∞
· · ·

∫ +∞

−∞
K(x)dx = 1 (9)

Here and hereafter, we use
∫

to indicate multivariate integration over the m-dimensional
Euclidean space.

There are two common methods for constructing multivariate kernel functions. For a
univariate kernel k(x), the product kernel is given by

K(x) =
m

∏
i=1

k(xi), (10)

and the spherically symmetric kernel is defined as

K(x) = cK,mK(‖x‖). (11)

where cK,m = {
∫

K(‖x‖)dx}−1 is a normalization constant and ‖x‖ = (x2
1 + x2

2 + · · · +

x2
m)

−1/2. Popular choices of K(x) include the standard d-variate normal density

K(x) = (2π)−m/2exp(−‖x‖2/2) (12)

and the spherical Epanechnikov kernel

K(x) = {d(d + 2)Γ(m/2)/(4πm/2)}(1 − ‖x‖2)+ (13)

The latter is the optimal kernel, according to Fan et al Fan et al. (1996); Su (2010).

The localization in multivariate nonparametric regression is frequently carried out by the
kernel weighting. Let H be a symmetric positive-definite matrix called a bandwidth matrix.
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Defocused Image Restoration with Local Polynomial Regression and IWF 7

The localization scheme at a point x assigns the weight

KH(Xi − x), with KH(x) = |H|−1K(H−1x), (14)

where |H| is the determinant of the matrix H. The bandwidth matrix is introduced to
accommodate the dependent structure in the independent variables. For practical problems,
the bandwidth matrix H is taken to be a diagonal matrix. The different independent variables
will be accommodated into different scales. For simplification, the bandwidth matrix is
designed into H = hIm (Im denoting the identity matrix of order m).

3.2.2 Multivariate predictor with local polynomial fitting

Suppose that the input vector is V = (v1, v2, v3, v4, v5). The model is fitted by the function

R = f (V). (15)

Our purpose is to obtain the estimation R̂ = f̂ (V) of function f . This paper, we use the dth
order multivariate local polynomial f (V) to predict the defocused parameter RT value based
on the point VT of the test image. The polynomial function can be described as

f (V) ≈ ∑
0≤|j|≤d

1

j!
D(j) fi(VT)(V − VT)

j = ∑
0≤|j|≤d

bj(VT)(V − VT)
j (16)

where

m = 5, j = (j1, j2, · · · , jm), j! = j1!j2! · · · jm!, |j| =
m

∑
l=1

jl , (17)

∑
0≤|j|≤d

=
d

∑
|j|=0

(

|j|

∑
j1=0

|j|

∑
j2=0

· · ·

|j|

∑
jm=0

)

|j|=j1+j2+···+jm

, V j = v
j1
1 v

j2
2 · · · v

jm
m , (18)

D(j) fi(VT) =
∂|j| fi(V)

∂v
j1
1 ∂v

j2
2 · · · ∂v

jm
m

|V=VT
, bj(VT) =

1

j!
D(j) fi(VT). (19)

In the multivariate prediction method, VTa
(a = 1, 2, · · · , A) denoting the trained image feature

vectors. Using A pairs of (VTa
, Ra), for which the values are already known, the coefficients of

fi is determined by minimizing

A

∑
a=1

[Ra − ∑
0≤|j|≤d

bj(VT)(VTa
− VT)

j]2 · KH(VTa
− VT) (20)

For the weighted least squared problem, a matrix form can be described by

W1/2 · Y = W1/2 · X · B + ε (21)

where
Y = (y1, y2, · · · , yA)

T , ya = Ra, (22)

B = (b0(VT), b1(VT), · · · , bd(VT))
T , (23)
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8 Image Restoration

W = diag{KH(VT1
− VT), KH(VT2

− VT), · · · , KH(VTA
− VT)} (24)

and X is the A × S (S = ∑
0≤|j|≤d

|j|

j! )

X =

⎛

⎜

⎜

⎜

⎜

⎝

1 (VT1
− VT)

1 · · · (VT1
− VT)

d

1 (VT2
− VT)

1 · · · (VT2
− VT)

d

...
...

. . .
...

1 (VTA
− VT)

1 · · · (VTA
− VT)

d

⎞

⎟

⎟

⎟

⎟

⎠

(25)

We then have the least squared solution with multivariate local polynomial fitting.

B̂ = (W1/2X)†Y (26)

or, when XTWX is inverse, the estimation can be written by

B̂ = (XTWX)−1XTWY (27)

then, we can get the estimation R̂T = f̂ (VT)

R̂T = f̂ (VT) = E1(XTWX)−1XTWY (28)

where E1 = (1, 0, 0, · · · , 0)1×S.

Computing the B̂ will suffer from large computational cost. we can use the recursive least
squared method to reduce the computation complexity, and it is very powerful especially in
the real time prediction problems. There are several important issues about the bandwidth,
the order of multivariate local polynomial function and the kernel function which have to be
discussed. The three problems will be presented in Section 3.2.3.

3.2.3 Parameters selections

For the multivariate local polynomial predictor, there are three important problems which
have significant influence to the prediction accuracy and computational complexity. First
of all, there is the choice of the bandwidth matrix, which plays a rather crucial role. The
bandwidth matrix H is taken to be a diagonal matrix. For simplification, the bandwidth
matrix is designed into H = hIm. So the most important thing is to find the bandwidth h.
A too big bandwidth under-parameterizes the regression function, causing a large modeling
bias, while a too small bandwidth over-parameterizes the unknown function and results in
noisy estimates. In theory, there exists a optimal bandwidth hopt in the meaning of mean
squared error, such that

hopt = arg min
h

∫

( f (x)− f̂ (x))2dx (29)

But the optimal bandwidth can not be solved directly. So we discuss how to get the
asymptotically optimal bandwidth. There are quite a few important techniques for selecting
the bandwidth. such as cross-validation and plug-in bandwidth selectors. a conceptually
simple technique, with theoretical justification and good empirical performance , is the plug-in
technique.
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Defocused Image Restoration with Local Polynomial Regression and IWF 9

Another issue in multivariate local polynomial fitting is the choice of the order of the
polynomial. Since the modeling bias is primarily controlled by the bandwidth, this issue is
less crucial however. For a given bandwidth h, a large value of d would expectedly reduce the
modeling bias, but would cause a large variance and a considerable computational cost. Since
the bandwidth is used to control the modeling complexity, and due to the sparsity of local
data in multi-dimensional space, a higher-order polynomial is rarely used. We use the local
quadratic regression to indicate the flavor of the multivariate local polynomial fitting, that is
to say, d = 2.

The third issue is the selection of the kernel function. In this paper, of course, we choose the
optimal spherical Epanechnikov kernel function, which minimizes the asymptotic MSE of the
resulting multivariate local polynomial estimators, as our kernel function.

3.2.4 Estimating the defocused parameter

Twenty original images are chosen to train the model. The images are defocused artificially
with R whose value ranging from 2 to 7. So the total number of training samples are 120. Then
feature vectors are constructed using variables v1−5 of each image:

V = (v1, v2, v3, v4, v5) (30)

The defocused parameters R is the model output.

When training samples {VTa
, Ra}120

a=1 are given, obtaining weights matrix B, according to the

relationship between the V and R, then the defocused parameter R can be calculated using
the trained model.

4. Iterative Wiener filter

Wiener filtering (minimizing mean square error ) is commonly used to restore
linearly-degraded images. To obtain optimal results,there must be accurate knowledge of
the covariance of the ideal image. In this section, the so-called iterative Wiener filter Su et al.
(2008); Allen et al. (1990)is used to restore the original image.

The imaging system H is assumed to be linear shift invariant with additive, independent,
white noise processes of known variance. the model for the observed image y is given in
matrix notation by

y = H f + n (31)

where f is the ideal image. The optimal linear minimum mean-squared error, or Wiener
restoration filter given by

f̂ = By (32)

where B = R f f HT [HR f f HT + Rnn]−1, requires accurate knowledge of R f f , the
autocorrelation of ideal image f . However, in practical situations f is usually not available
and only a single copy of the blurred image to be restored, y, is provided. In the absence
of a more accurate knowledge of the ideal image f , the blurred image y is often used in its
place simply because there is no other information about f readily available. The signal y is
subsequently used to compute an estimate of R f f and this estimate is used in place of R f f in
Equation (32).

The following summarizes the iterative Wiener filtering procedure.

179Defocused Image Restoration with Local Polynomial Regression and IWF
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10 Image Restoration

step 1 Initialization: Use y to compute an initial (i=0) estimate of R f f by

R f f (0) = Ryy = E{yyT} (33)

Step 2 Filter construction: Use R f f (i), the ith estimate of R f f to construct the (i + 1)th

restoration filter B(i + 1) given by

Bi+1 = R f f HT [HR f f HT + Rnn]
−1 (34)

Step 3 Restoration: Restore y by the B(i + 1) filter to obtain f̂ (i + 1), the (i + 1)th estimate of f

f̂ (i + 1) = B(i + 1)y (35)

Step 4 Update: Use f̂ (i + 1) to compute an improved estimate of R f f , given by

R f f (i + 1) = E{ f̂ (i + 1) f̂ T(i + 1)} (36)

Step 5 Iteration: Increment i and repeat steps 2,3,4, and 5.

5. Experimental results and analysis

The experiments are carried out by using the Matlab image processing toolbox. The
performance of the proposed image restoration algorithm has been evaluated using the
classical gray-scale Moon image, Coins image, Saturn image, and Tire image in Matlab
toolbox. To verify the good ability of restoration of the proposed algorithm, one real blurred
image is used for the deconvolution procedure. The results show our method is very
successful for this kind of blurred image.

In image restoration studies, the degradation modelled by blurring and additive noise is
referred to in terms of the metric blurred signal-to-noise ratio (BSNR). This metric for a
zero-mean M × N image is given by

BSNR = 10log10{
1

MN ∑
M
m=1 ∑

N
n=1 z2(m, n)

σ2
v

} (37)

where z(m, n) is the noise free blurred image and σ2
v is the additive noise variance.

For the purpose of objectively testing the performance of linear image restoration algorithms,
the improvement in signal-to-noise ratio (ISNR) is often used. ISNR is defined as

ISNR = 10log10{
∑

M
m=1 ∑

N
n=1[ f (m, n)− y(m, n)]2

∑
M
m=1 ∑

N
n=1[ f (m, n)− f̂ (m, n)]2

} (38)

where f (m, n) and y(m, n) are the original and degraded image pixel intensity values and

f̂ (m, n) is the restored true image pixel intensity value. ISNR cannot be used when the true
image is unknown, but it can be used to compare different methods in simulations when the
true image is known.

In order to find the good performance of the proposed multivariate local polynomial
Regression method (MLPR) compared with the RBF neural network algorithm (RBFNN) Su
et al. (2008), the same defocused blurred images are used for the experiments. Mean squared
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Defocused Image Restoration with Local Polynomial Regression and IWF 11

prediction errors are shown in Table1. From Table 1, we can conclude that the prediction
results of MLPR predictor are significantly better than the RBF neural network method in the
same simulated data.

training image different methods eMSE

Moon RBFNN 4.81 ×10−6

Moon MLPR 4.13 ×10−8

Coins RBFNN 5.06 ×10−6

Coins MLPR 3.97 ×10−8

Saturn RBFNN 6.62 ×10−6

Saturn MLPR 5.65 ×10−9

Tire RBFNN 8.04 ×10−6

Tire MLPR 7.19 ×10−8

Table 1. MSE using both methods

Fig. 4. RBFNN method result of Coins. True image(left); blurred image(middle); estimated
image(right), BSNR=12.35, ISNR=22.56

Fig. 5. RBFNN method result for Tire. True image(left); blurred image (middle); restored
image(right), BSNR=11.22, ISNR=23.14

Figures 4 and 5, in which the true images, blurred images and estimated true images are
depicted in the left, middle and right column, respectively, illustrate how the method behaves
in Coins and Tire images. It is clear from Figs. 4 and 5 that performance of the RBFNN
method is effective in different images. Figures 6, 7, 8 and 9, in which the true images,

Fig. 6. Result of Moon. True image(left); blurred image(middle); estimated image(right),
BSNR=12.35, ISNR=22.56

blurred images and estimated true images are depicted in the left, middle and right column,

181Defocused Image Restoration with Local Polynomial Regression and IWF
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12 Image Restoration

Fig. 7. Result for Coins. True image(left); blurred image (middle); restored image(right),
BSNR=11.22, ISNR=23.14

Fig. 8. Result for Saturn. True image(left); blurred image (middle); restored image(right),
BSNR=13.17, ISNR=24.31

Fig. 9. Result for Tire. True image(left); blurred image (middle); restored image(right),
BSNR=11.56, ISNR=22.09

Fig. 10. Result for real blurred image. blurred image (left); restored image(right)

respectively, illustrate how the method behaves in Moon, Coins, Saturn and Tire images. It is
clear from Figs.6-9 that performance of the new method is effective in different images. Figure
10 also shows that the presented MLPR algorithm is good for real blurred image. And from
the BSNR and ISNR in Figures 4, 5, 7, 9 we can see that the MLPR defocused image restoration
method is better than RBFNN algorithm.

6. Conclusions

Two new methods that are based on RBF neural network, multivariate local polynomial
regression model and iterative Wiener filtering for semi-blind restoration of blurred noisy
images were proposed in this chapter. Defocused parameter was estimated by a RBF neural
network or multivariate local polynomial regression model trained in wavelet domain. The
main advantages of the proposed techniques are that they are not only robust to noise because
wavelet transform have an excellent de-noising ability, but also effective to artificially and
practically defocused blurred image. Restoration is successfully realized by the iterative
Wiener filter, resulting in improved the image quality. The algorithm was justified via
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simulation and real image. Defocused image parameter can be successfully estimated by
using trained model. Experimental results show the proposed schemes are reliable and robust
for defocused blurred image restoration. Comparisons are made to verify the advantages of
multivariate local polynomial regression based method.
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