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1. Introduction 

Image restoration is a classical area of digital image processing, appearing in many 

applications such as remote sensing, medical imaging, astronomy or computerized 

tomography (González & Woods, 2007). Simply put, the aim is to recover an original image 

which has been degraded due to the imperfections in the acquisition system: blurring and 

noise. Restoring this degradation leads to an ill-posed problem since the simple inverse 

using least-squares yields highly noise-sensitive solutions. A large number of techniques 

have been developed to cope with this issue, most of them under the regularization or the 

Bayesian frameworks (a complete review can found in Banham & Katsaggelos, 1997; Bovik, 

2005; Chan & Shen, 2005).  

Mathematical regularization is used to include prior knowledge about the original image in 

the restoration process which allows stabilizing the solution in the face of noise. However, 

two main problems arise for such a regularization approach. First, the non-local property of 

the underlying convolution implies that part of the blurred image near the boundary 

integrates information of the original scenery outside the field of view. However, this 

information is not available in the deconvolution process and may cause strong ringing 

artifacts on the restored image, i.e., the well-known boundary problem (Woods et al., 1985). 

Typical methods to counteract the boundary effect is to make assumptions about the 

behavior of the original image outside the field of view such as Dirichlet, Neuman, periodic 

or other recent conditions in Calvetti & Somersalo, 2005; Martinelli et al., 2006; Liu & Jia, 

2008. Secondly, restoration methods depend on a wide set of parameters which can be 

roughly grouped into three categories: parameters with respect to the degradation process, 

the noise and the original image. All parameters require an accurate prior estimation 

because small errors in their values lead to important deviations in the restoration results. In 

fact, classical restoration methods tend to improve the estimation of those parameters 

without prior knowledge about the real scenery, which is known as blind deconvolution 

(Campisi & Egiazarian, 2007; Molina et al., 2006). The boundary problem and the sensitivity 

to estimations are the issues to solve in this chapter by means of two iterative algorithms. 
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The first algorithm copes with the boundary problem taking a blurred image defined in the 
field of view, but with neither any image information nor prior assumption on the boundary 
conditions. Furthermore, the objective is not only to reduce the ringing artifacts on the 
whole image, but also reconstruct the missed boundaries of the original image which 
becomes a significant step of the research. Neural networks are very well suited to combine 
both processes in the same restoration algorithm and thus we provide a solution based on a 
Multilayer Perceptron (MLP) in line with a backpropagation strategy. Other neural-net-
based restoration techniques (Paik & Katsaggelos, 1992; Sun, 2000; Han & Wu, 2004) have 
been proposed in the literature with the Hopfield’s model, but they are typically time-
consuming and large scaled. In the light of the good results of the total variation (TV) 
regularizer in recent deconvolution (Wang et al., 2005; Wu et al., 2007; Bioucas-Dias et al., 
2006; Oliveira et al., 2009; Molina et al., 2006), we have used it to set the minimization 
mechanism of the net. The proposed scheme is then an iterative method which performs 
repeatedly a cycle of two steps: forward and backward, simulating respectively restoration 
and degradation processes at each iteration. 

Following the same iterative concept of restoration-degradation, we present a second 
algorithm in the frequency domain to reduce the dependency on the estimation of 
parameters. Hence, a novel desensitized restoration filter is designed by applying an 
iterative algorithm over the original filter. Analyzing the sensitivity properties of this filter 
and setting a criterion to choose the number of iterations, we come up with an expression 
for the desensitized algorithm for traditional filters such as Wiener and Tikhonov (González 
& Woods, 2007). The results of this algorithm pretend to increase the robustness of the 
restoration methods when estimating parameters such as the noise variance or degradation 
related parameters. 

The chapter is organized as follows. In the next section, we provide a detailed formulation 

of the two restoration problems of the chapter, establishing naming conventions and the 

mathematical basis of the respective algorithms. In Sec. 3, we present the architecture of the 

iterative methods under analysis: MLP and desensitized filter, going into details about the 

adjustment of the synaptic weights of the net in every layer and the computation of the 

number of iterations for the desensitized scheme respectively. We present some 

experimental results in Sec. 4 and, finally, concluding remarks are given in Sec. 5.  

2. Problem formulation 

To start with image restoration a better understanding of the acquisition system is required. 

Because of physical limitations or human errors in operating imaging systems, the observed 

image is actually a degraded version of the original scene. For instance, deterministic 

degradations such as motion blurs, out of focus lens or effects of atmospheric turbulence in 

remote sensing cause a bandwidth reduction of the original image. In a linear acquisition 

scenario this distortion is mathematically described as a point spread function (PSF) denoted 

by ( , )h i j , which represents a two dimensional filter mask of size 1 2M M . For sake of 

simplicity we consider spatially invariant functions such that the degradation is 

independent of the position. In addition to blurring, noise is always present in the observed 

image due to stochastic variations in the process of image formation, the transmission 

medium or the recording system. We assume a common additive zero-mean Gaussian white 
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noise ( , )n i j  of variance 2
n , which also represents the quantization error coming from 

digitalizing images. The statistical descriptors of the noise are likewise assumed to not vary 

spatially.  

Let ( , )x i j  be the unknown gray-scaled original image of size 1 2L L , degraded by a PSF 

( , )h i j  and corrupted by a noise sample ( , )n i j . Therefore, we can express the observed 

image ( , )y i j  as 

 ( , ) ( , ) ( , ) ( , )y i j h i j x i j n i j    (1) 

where   represents the two dimensional convolution operator. In order to simplify 
expressions, we shall use lexicographic notation by stacking the columns of a matrix in a 
vector. Then, the equation (1) is rewritten as  

  y Hx n  (2) 

defined by the original image x  of length 1 2L L L  , whereas the degraded image y  is a 

L  sized vector bigger than the original image as result of the non-local property of the 

convolution operation (see 2.1). In terms of blurring, H  is known as the convolution matrix 

of size L L  built from the PSF and using the so-called boundary conditions that we will 

discuss later.  

Another way to represent the equation (1) is through its spectral equivalence. By applying 
discrete Fourier transform (González & Woods, 2007) to that expression, we obtain  

 ( , ) ( , ) ( , ) ( , )i j i j i j i jY H X N          (3) 

where ( , )i j   are the spatial frequency coordinates, and the capital letters represent 

Fourier transforms. In the frequency domain it is assumed that the observed image is a 

circular period that wraps around the edges, what it is not physically true but typically used 

for computational convenience.  

In view of the above equations, image restoration is defined as an inverse problem that tries 

to estimate the original image x̂  from the observed image y  using the blurring model H . 

However, a simple least-squares solution is not possible since the presence of noise or the 

singularity of the matrix H  make it an ill-conditioned problem. Thus, a regularization 

method is needed to control the high sensitivity to noise as explained in Banham & 

Katsaggelos, 1997. Quite a few examples have been presented in the literature by means of 

the classical Tikhonov regularization which establishes 

 
2 2

2 2

1
ˆ arg min

2 2

    
 x

x y Hx Dx  (4) 

where 
2 2
2 i

i

zz  denotes the 2  norm, x̂  is the restored image and D  is the 

regularization operator, built on the basis of a high pass filter mask d  of size 1 2N N N  . 

The first term in (4) is the 2  residual norm appearing in the least-squares approach and 

www.intechopen.com



 
Image Restoration – Recent Advances and Applications 

 

148 

ensures fidelity to data. The second term is the so-called regularizer which captures prior 

knowledge about x  through an additional 2  penalty term involving the image. The hyper-

parameter (or regularization parameter)   is a critical value which measures the trade-off 

between a good fit and a regularized solution. 

Alternatively, the total variation (TV) regularization proposed by Rudin et al., 1992, has 

become very popular in recent research as it achieves to preserve edges in the restored 

image. A discrete version of the TV deblurring problem is given by 

 
2

2 1

1
ˆ arg min

2
     

 x
x y Hx x  (5) 

where 
1

z  denotes the 1  norm (i.e., the sum of the absolute value of the elements) and   

stands for the discrete gradient operator. The   operator is defined by the matrices ξD  and 
μD  as 

   ξ μx D x D x  (6) 

built on the basis of the respective masks ξd  and μd  of size 1 2N N N  , which turn out 

the horizontal and vertical first order differences of the image. Compared to the expression 

(4), the TV regularization provides a 1  penalty term which can be thought as a measure of 

signal variability. Once again,   is the critical regularization parameter to control the 

weight assigned to the regularizer with respect to the data misfit term. 

Significant amount of work has been addressed to solve any of the above regularizations 

and mainly the TV deblurring in recent times (Chan & Shen, 2005). However, there are two 

important issues in those algorithms which require making assumptions and constraining 

the regularized solution: boundary conditions and parameters estimations. This chapter 

provides two novel iterative methods aimed to loose this dependency and achieve a more 

robust solution in terms of estimations. Let us analyze each problem separately.  

2.1 Boundary conditions 

As defined in González & Woods, 2007, the convolution operator of equation (1) integrates a 

portion of the original scenery x  into a single point by weighting the nearby pixels by a 180 

degrees rotated mask h . When computing the pixels near the boundary and depending on 

the size of the PSF, many pixels of y  contain information coming from the original scenery 

outside the field of view (FOV) which is indeterminate. We refer to this phenomenon and to 

its consequences as boundary effect. It is well known that if the boundary effect is not 

properly taken into account, it may cause strong ringing artifacts on the deconvolved image. 

For that reason, various methods of the literature try to counteract this effect by selecting 

appropriate boundaries conditions (BCs). These boundary conditions are included in the 

model of H  used in deconvolution as  

  H T B  (7) 
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where T  has a Toeplitz structure and B  is often structured, sparse and low rank, and 
specifically defined for every BC. Common cases are the Zero (Bertero & Bocacci, 1998), 
Periodic (Bertero & Bocacci, 1998), Reflective (Ng et al., 1999) or Anti-reflective (Martinelly et 
al., 2006) boundary conditions. 

As a result of the convolution, it can be easily demonstrated (see Fig. 1) that the degraded 

image y  increases its size with respect to the original image x  from L  to L  as 

    1 1 2 22 2L L B L B     (8) 

where 1B  and 2B  are the respective horizontal and vertical bandwidths of the PSF, then the 

length of h  is    1 2 1 22 1 2 1M M M B B      . We have gray colored the pixels affected 

by the boundary conditions which are not actually present in a real observation. Therefore, a 

real observed image realy  is a truncated version of the convolution process to the region 

called field of view  

    1 1 2 2FOV 2 2L B L B L       
  (9) 

FOV 

2L ࡻ

1L real
y 2B 2B

truy

1B

1B

L

L
~

FOV

 ࡻ

FOV 

1B

1L 2B

1B

x̂

L

B

 

Fig. 1. Real observed image defined in the field of view (left). Restored image which 
indicates the boundary reconstruction area (right). 

Common deblurring methods deal with this real image realy  and try to restore it 

minimizing the boundary ringing as much as possible using BCs on the model H  like (7). 

However, the restored image is only obtained within the FOV domain, that is smaller than 

the original image size L . Our goal is to not only improve the restoration on the whole 

image but also reconstruct the boundaries that are missed in the observation, without 

neither any image information nor prior assumption on the boundary conditions.  

Let us define an image truy which represents this observed image realy using a trunc   

operator that removes (zero-fixes) the pixels of the boundary region, that is to say 
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   ( , )
FOV

( , ) trunc
0

i j
tru (i, j)

(i, j)
y i j

otherwise

         
  

real a

a

y H x n
H x n  (10) 

where aH  denotes the Toeplitz matrix when not using boundary conditions (aperiodic 

model). Therefore, we aim to restore this truncated image truy  in spite of the discontinuity 

at the boundaries and reconstruct the region B  depicted in Fig. 1 

 B L FOV   (11) 

whose area is calculated by  1 1 14B L B B   , if we consider square dimensions such that 

1 2B B  and 1 2L L . 

Particulary, we intend to study an iterative algorithm using the TV regularizer which loose 
the dependency on the boundary conditions. So we redefine the restoration problem (5) 

including the trunc   operator as 

    2

2 1

1
ˆ arg min trunc trunc

2
     

 
ξ μ

a a a
x

x y H x D x D x  (12) 

where the subscript a denotes the aperiodic formulation of every matrix operator. An 
equivalent analysis for the Tikhonov regularizer can be found in Santiago et al., 2010.  

2.2 Estimations dependency 

If we have a look to any restoration method of the literature, we come up with their 
dependency on a wide set of parameters which must be estimated a priori. We can group 
them basically into three classes 

 Parameters with respect to the blurring process. 

 Parameters with respect to the noise. 

 Parameters with respect to the original image. 

In terms of blurring, the convolution matrix H  is not always available in the restoration 

process and thus it is required to make assumptions about its parameters, such as the length 

of motion or the radius of out-of-focus among others. We can find a lot of articles devoted to 

estimate the PSF which are normally referred to as blind deconvolution. Regarding noise we 

have assumed a Gaussian white noise from the very beginning, so the concrete parameter is 

just the variance 2
n . Finally, the parameters related to the original image have to do with 

the regularization term of the equations (4) or (5) and, in turn, with the regularization 

parameter  . 

Blind deconvolution methods try to obtain the more accurate parameters but deal with a 
problem known as sensitivity to estimations, that is to say, relatively small deviations from 
the real (unknown) values have a severe impact on the restoration quality. Therefore, we 
aim to define an algorithm that improves the results of a restoration scheme when having 
wrong estimates of the said parameters, namely, a desensitization process.  

We shall work in the frequency domain for this issue so we take for granted the circular 
boundary conditions of the previous section. In particular, our goal is to desensitize two 
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common algorithms of the literature defined in the Fourier space: Wiener and Tikhonov 
(Bovik, 2005). Both methods are completely linear so described by a restoration filter as 

 ˆ ( , ) ( , ) ( , )i j i j i jX G Y       (13) 

where ( , )i jG    denotes the Fourier transform of the restoration filter. In order to simplify 

notation, the reference to the element ( , )i j   of the matrices in the frequency domain will 

be removed from all formulae throughout the remainder of the chapter. They are 

differentiated from the variables of the boundary problem because those are in bold. 

Besides, it must be taken into account that all mathematical expressions involving matrices 

in the Fourier Transform domain are scalar computations for each frequency component 

( , )i j  . 

From González & Woods, 2007, it is demonstrated that 

 Wiener Filter 

 
2 nn

xx

H
G

S
H

S






 (14) 

where H  represents the complex conjugate of H , xxS  and nnS  are the respective spectral 

densities of the original image x  and the noise n .  

 Tikhonov Filter 

 
2 2

H
G

H D






 (15) 

where D  is the Fourier transform of the regularization operator D  in (4).  

Let us symbolize the restoration filter as Ĝ  when calculated by estimations (not real values) 

as well as the rest of variables involved in (14) and (15) such as Ĥ , ˆ
xxS , ˆ

yyS  and ̂ . 

Therefore, we shall define an iterative method which achieves a filter G  based on the 

original Ĝ  with less sensitivity to wrong estimations.  

3. Iterative methods 

In this section we propose two algorithms to cope with the aforementioned constraints of a 
restoration problem: boundary conditions and estimation dependency. Both methods are 
iterative and lead to various restoration-degradation processes repeated a certain number of 
times. A detailed analysis is devoted to each algorithm in the following sections. 

3.1 MLP approach 

The main issues addressed by this algorithm are 

 Restore a real observed image realy  without neither any image information nor prior 

assumption on the boundary conditions. 
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 Remove boundary ringing in spite of the discontinuity at the boundaries. 

 Reconstruct the boundary region B  so that the restored image has the same size L  as 
the original image. 

 Make use of the TV regularizer. 

To go around this problem we know that neural networks are particularly well-suited as 
their ability to nonlinear mapping and self-adaptiveness. In fact, the Hopfield network has 
been used in the literature to solve the optimization problem (4) and recently some neural 
network solutions as in Wang, 2005 and Wu, 2007 deal with the TV regularization (5).  

Our proposal is a MLP (Multiplayer Perceptron) with back-propagation as illustrated inFig. 

2. The input layer of the net consists of L  neurons with inputs 1 2, ,...,
L

y y y   being 

respectively the L  pixels of the truncated image truy . At any generic iteration m , the 

output layer is defined by L  neurons whose outputs 1 2
ˆ ˆ ˆ( ), ( ),..., ( )Lx m x m x m  are respectively 

the L  pixels of an approach ˆ(m)x  to the restored image. After m  iterations, the neural net 

outcomes the actual restored image ˆ ˆ(m)x x . On the other hand, the hidden layer consists 

of only two neurons, although being enough to achieve good restoration results while 

keeping low complexity of the network.  

2y

L
y~

)(ˆ
1 mx

)(ˆ
2 mx

)(ˆ mxL

1y

truy )(ˆˆ
total

mxx

inputs  
~
L outputs L

forward

backward

 

Fig. 2. MLP scheme adopted for image restoration. 

The neural network undertakes two processes iteratively: forward and backward. The 

former is the result of applying from left to right the equations of every layer. It is actually 

the restoration step. The latter is the back-propagation process where the network must 

minimize a regularized error function which we will set to the expression (12). It means to 

adjust the synaptic coefficients of every single neuron from right to left and can be thought 

as a reblurring step. Since the trunc   operator is involved in all those expressions, the 

truncation of the boundaries is performed at every iteration but also their reconstruction as 

indicated by the L  size at the output. What deserves attention is that no a priori knowledge, 

assumption or estimation concerning the unknown borders is needed to perform the 

regeneration. Generally speaking it could be explained by the neural net nature which is 

able to learn about the degradation model.  
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A restored image is therefore obtained in real conditions on the basis of a global energy 
minimization strategy, with reconstructed borders while adapting the center of the image to 
the optimum solution and thus making the ringing artifact negligible. Finally, we recall that 

the input to the net is always the image truy  as no net training is required.  

3.1.1 Adjustment of the neural net 

Let us define each layer of Fig. 2 as an input vector p  of size 1R , a synaptic weight matrix 

W  of S R  in size, and a 1S  output vector z  of the layer. We utilize a log-sigmoid 

expression for the transfer function   and a null bias vector. A superscript is used to 

denote the number of layer, but it will be removed when deduced by context. So we can 

redraw our MLP as depicted in Fig. 3 where we have symbolized the variation of the 

synaptic matrixes of every layer.  

 

1W
yp1 

1
~L

LS
~1

1v

11S

1z

inputs  
~
L

2W
2p

1SL

2v

1L

xz2 ˆ
1L11S 11S

inputs  1S neurons L

Layer 1 Layer 2
2L

1L

22 2BL 

neurons 1S

121 BL 

 
 

Fig. 3. MLP algorithm with matrix-vector notation. 

A variant of the well-known algorithm of back-propagation is used to adjust those matrixes 

with the truncated cost function of (12). Let ( 1)i m W  be the correction applied to the 

weight matrix iW  of the layer i  at the   th
m 1  iteration. Then,  

 
( )

( 1)
( )

i
i

E m
m

m
 

   


W
W

 (16) 

where ( )E m  stands for the cost error function after m  iterations at the output of the net and 

the constant   indicates the learning speed. Defining the vectors ( )me  and ( )mr  for the 

respective error and regularization terms at the output layer after m  iterations 

  ˆ( ) trunc ( )m m  ae y H x  (17) 

  ˆ ˆ( ) trunc ( ) ( )m m m ξ μ
a ar D x D x  (18) 

we can rewrite the restoration error from (12)  

 
2

2 1

1
( ) ( ) ( )

2
E m m m e r  (19) 
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Now we aim to compute the so-called gradient matrix 
( )

( )i

E m

m


W

 in the layers of the MLP. A 

high detailed analysis can be found in Santiago et al., 2010 based on the algorithm of 
majorization-minimization developed by Bioucas-Dias et al., 2006 when facing a TV 
regularization problem like (5). Let us summarize the main results below:  

  1( 1) ( ) ( )
Ti i im m m    W δ z  (20) 

where ( )mδ  stands for the local gradient vector and is defined for a MLP of J  layers as:  

 Output layer ( i J ) 

    ( ) ( ) ( ) ( ) ( )T Tm m m m m  a aδ v H e D Ω r   (21) 

where   denotes the Hadamard (elementwise) product, aD  is a composition of the matrices 

ξ
aD  and μ

aD  as     
TT T    

ξ μ
a a aD D D  and ( )mΩ  represents a weigh matrix which controls 

the influence of regions with high intensity variation 

 

   2 2

( ) 0
( )  

0 ( )

1
with ( ) diag

ˆ ˆ2 ( ) ( )

m
m

m

m

m m ε

 
  
 

 
 

  
   
 

ξ μ
a a

Λ
Ω

Λ

Λ
D x D x

 (22) 

 Any hidden layer ( i J ) 

    1 1( ) diag ( ) ( ) ( )
Ti i i im m m m δ v W δ  (23) 

3.1.2 Algorithm parameters 

Due to the iterative nature of the algorithm the first parameter to establish has to do with 

the stop rule. It is a condition such that either the number of iterations is more than a 

maximum; or the error ( )E m  converges and, thus, the error change ( )E m  is less than a 

threshold; or, even, this error ( )E m  starts to increase. If one of these conditions comes true, 

the algorithm concludes and the final outgoing image is the restored image ˆ ˆ( )mx x . 

In the image restoration field it is remarked the importance of the parameter  . Low values 

of   yield oscillatory solutions because of the presence of noise or discontinuities; high 

values of   yield over smoothed results though. For that reason, the literature has given 

significant attention to it with popular approaches such as the unbiased predictive risk 

estimator (UPRE), the generalized cross validation (GCV), or the L-curve method; see Vogel, 

2002 for an overview and references. Most of them were particularized for a Tikhonov 
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regularizer, but lately researches aim to provide solutions for the TV regularization. 

Specifically, the Bayesian framework leads to successful approaches in this respect. 

In Santiago et al., 2010 we adjusted   with solutions coming from the Bayesian state-of-art. 

However, we still need to investigate a particular algorithm for the MLP since those 
Bayesian approaches work only for circulant degradation models, but not for the truncated 

image of this chapter. So we shall compute yet a hand-tuned   which optimizes the results. 

As for learning speed it was already demonstrated that   shows lower sensitivity 

compared to  . In fact, its main purpose is to speed up or slow down the convergence of 

the algorithm. Then, for the sake of simplicity, we shall assume 2   for the images of 

256 256  in size. 

3.2 Desensitization approach 

The second of our methods go around the following issues 

 Desensitize the restoration filter (assumed linear) with respect to wrong parameter 
estimations. 

 Counteract the effects of mistaking parameters in order to achieve a better restoration 
quality compared to that without desensitization. 

 Alternative to classic restoration approaches which focus on obtaining accurate 
estimations. 

 Particularization to Wiener and Tikhonov filters 

Let us define an expression for the desensitized filter G  based on the original Ĝ  in the 

frequency domain. Again our approach is an iterative algorithm as illustrated in Fig. 4.  

)(ˆ),...,1(ˆ mYY

1mm

Ĝ ĤYY )0(ˆ Ĝ

'G

XmXX ˆ)(ˆ),...,1(ˆ 

 

Fig. 4. Desensitized restoration scheme. 

The input at any iteration m  ( 1,2,...,m m ) is an image ˆ ( )Y m  computed by its previous 

iteration ˆ ( 1)Y m   after going through the restoration filter Ĝ  and the estimated transfer 

function Ĥ . In a first step the image ˆ (0)Y  is equal to the degraded image Y  and, after the 

total number of iterations, the image ˆ ( )Y m  is restored again by the filter Ĝ  leading to the 

the output image ˆ ˆ ( )X X m . This algorithm is somehow based on the same iterative concept 

of restoration-degradation processes of the MLP but applied to the Fourier domain. Let us 

recall that the mathematical expressions for this algorithm are particular for each frequency 

component ( , )i j   and, in fact, we put forward that the number of iterations is also a 

function of these elements, i.e., ( , )i jm   . 

It can be easily demonstrated that the filter G  of Fig. 4 is expressed as  
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  ˆ ˆ ˆ m
G G GH   (24) 

where ˆ ˆGH is known as the regularization product. In Santiago et al., 2007 we verified that 

the higher the regularization is, the lower the product ˆ ˆGH  becomes with a dynamic range 
ˆ ˆ0 1GH  . 

3.2.1 Sensitivity criteria 

So far we have referred to sensitivity as a concept, but now we put it on mathematical 

expressions. Let us consider that the restoration filter G  depends on a set of parameters 

1 2, ,..., rP P P  which can be grouped into the three groups of Section 2.2: blurring, noise and 

original image. Then we can define the sensitivity GS  regarding the filter G  as  

 1 2
1 2

...G r
r

G G G
S dP dP dP

P P P

  
   
  

 (25) 

Analogously, the sensitivity concerning the proposed filter G  can be expressed as follows 

 1 2
1 2

...G r
r

G G G
S dP dP dP

P P P


    
   
  

 (26) 

To compare the sensitivity of both filters we make use of a relative function G GZ S S  

which sets the desensitization criteria as 1Z  . After differentiating the filter G  of (24) with 

respect to G  we come up with an expression for the relative sensitivity function (see 

Santiago et al., 2007 for further details) 

 ˆ ˆ( ) ( 1)( ) 1mG

G

S
Z m m GH

S
     (27) 

As  ˆ ˆˆ ˆ0 1
m

GH GH    we can foresee that the function ( )Z m  of (27) is neither 

monotonically increasing nor decreasing with the number of iterations m , but it may show 

a relative maximum extreme depending on the value of the term ˆ ˆGH  for a particular pair 

( , )i j  . This is illustrated in Fig. 5 for several regularization values 

Looking into this plot we can observe that the expected maximum extremes of ( )Z m  

depend on the value of ˆ ˆGH . The lower the product ˆ ˆGH  is, the less iterations m  are 

required to reach the maximum; even high regularization conditions make ( )Z m  strictly 

decreasing monotonic. In any case, the main conclusion has to do with the sensitivity 

condition (27) illustrated by the straight line of the figure. Regardless of the value of the 

product ˆ ˆGH , G  is less sensitive than G  if the number of iterations m  is high enough. We 

might therefore increase the value of m  as needed to prevent poor restoration results of 

wrong estimates. However, that is not possible as the restoration error is significantly 

affected as demonstrated in Santiago et al., 2007. 

In González & Woods, 2007 the restoration error is divided into the ringing (or image-

dependent) component and the noise-dependent component. What we found out in our 
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previous analysis is that the trend of both errors is contrary for the desensitized filter G . 
Whereas the noise-dependent error is lower as the number of iterations increases, the 

ringing component gets higher. Consequently, we need to look for a trade-off between the 

error components while keeping the desensitization criteria true. 

 

Fig. 5. Relative sensitivity function ( )Z m . 

3.2.2 Number of iterations 

Since the relative sensitivity function ( )Z m  does not have a local minimum as viewed in Fig. 

5, let us optimize another ( )Z m  property which also fulfills the desensitization criteria. In 

particular, we shall look for a maximum of efficiency for the complexity introduced in the 

restoration process by increasing the number of iterations from m  to 1m  . In other words, 

let us seek a value of m  from that on the improvement on desensitization is lower than the 

incremental complexity. In mathematical terms we can express this efficiency change as the 

second derivative of ( )Z m  denoted by ( ) ( )R m Z m . It can be easily derived from (27) that 

 ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ln( ) 2 ( 1)ln( )mR m GH GH m GH      (28) 

The purpose is to maximize this function as well as constrain it to the desensitization 

condition of ( ) 1Z m  . In Santiago et al., 2007 we came up to a number of iterations as 

follows 

 
3

1  
ˆ ˆln( )

m round
GH

       
    

 (29) 

subject to a constraint on the regularization term ˆ ˆ0.14 0.84GH  . 

Finally, let us compute some numeric results of the main variables of the desensitization 

algorithm for different regularization products ˆ ˆGH : m , ( )Z m , ( )r m  and ( )n m , where 
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these delta functions are respectively the relative error components (ringing and noise) 

expressed in dB. 

ˆ ˆGH  m  ( )Z m  ( )r m ( )n m

0.20 1 0.40 9.15 -13.98

0.30 1 0.60 8.41 -10.46

0.40 2 0.48 9.43 -15.92

0.50 3 0.50 9.66 -18.06

0.60 5 0.47 9.97 -22.18

0.70 7 0.66 9.94 -21.69

0.80 12 0.89 10.03 -23.26

Table 1. Numeric results for the main functions of the desensitized filter. 

Looking at the figures of Table 1 we can see that the improvements achieved for ( )n m  are 

greater than the impairments obtained from ( )r m , always satisfying the desensitization 

condition ( ) 1Z m  . For that reason, we may expect to have good restoration results with a 

rough estimation of noise in a very wide range, much better than other kind of wrong 

parameters. 

4. Experimental results 

In this section we aim to validate the properties of the previous algorithms using a variety of 

experiments with very well-known 256 256  sized images such as Lena, Barbara or 

Cameraman, or PSFs widely used in the field as the motion, Gaussian or uniforms blurs. 

Furthermore, we shall compare the results with classic approaches of image restoration to 

ensure the good performance of our iterative methods.  

4.1 MLP experiments 

Let us see our problem formulation by means of an example. Fig. 6 depicts the original 

Barbara image blurred by a motion blur of 15 pixels and 45º of inclination, which turns out a 

PSF mask of 11 11  in size ( 1 2 5B B  ). We have represented the truncated image truy  on 

the right which reflects the zeros at the boundaries and the size of 266 266L   . A real 

model would consist of the FOV 246 246   region of this image which we named as realy  

so far. Most recent algorithms deal with this real image but making assumptions about the 

boundaries and yielding a restored image of 246 246 . Consequently, the boundaries 

marked with the white broken line on the left are never restored. In contrast, our MLP 

outcomes a 256 256  sized image x̂  reconstructing the boundary area 251 20B   . 

To resolve this sort of problems we have implemented the MLP according to the following 

parameters. In the light of the expression (18) we have used the horizontal and vertical Sobel 

masks ( 3 3N   ) of Bovik, 2005 for the filters ξd  and μd . We already commented that the 

learning speed of the net is set to 2   and the regularization parameter   relies on a hand 
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tuning basis. Regarding the interconnection weights, they do not require any network 

training so the weigh matrices are all initialized to zero. Finally, we set the stopping criteria 

as a maximum number of 500 iterations (though never reached) or when the relative 

difference of the restoration error ( )E m  falls below a threshold of 310  in a temporal 

window of 10 iterations. 

  

Fig. 6. Degraded and truncated image by diagonal motion blur (right) and the expected 
boundary region to be reconstructed (left). 

In order to measure the performance of our algorithm, we compute the standard deviation 

e  of the error image ˆ e x x  since it does not depend on the blurred image y  as in the 

ISNR (Banham and Katsaggelos, 1997). Regarding the boundary reconstruction process we 

particularize the standard deviation to the pixels of the boundary region B . 

4.1.1 Experiment 1 

Our first experiment takes the Lena image degraded by several motion and uniform blurs. 
Regarding the motion blur, we establish 45º of inclination and the length of pixels is varied 
between 5 and 15. We have used the approximation of Matlab to construct the filter of 

motion which leads to masks between 5 5  and 11 11  in size. Analogously, the uniform 

blur is defined with odd sizes between 5 5  and 11 11 . In terms of Gaussian noise we set 

a ratio of BSNR 20 dB . 

The results of the MLP are shown in Table 2. As presumable, the quality of restoration is 

getting worse as the size of the blur increases, but let us remark that the boundary 

reconstruction area is also expanding. If we compare the results between blurs we can 

observe that the uniform mask achieves better values at the boundaries, but lower in the 

center for the same size. It can be thought of a spatial varying restoration process of the MLP 

in the center with respect to the boundaries. 

To visually assess the performance of the MLP we select some of the results indicated in the 

previous table. On the left of Fig. 7 we depict the Lena restored image for a diagonal motion 

blur of 10 pixels. The restored boundary area is 252 16  in size marked by a white broken 

line and reveals how the borders are successfully regenerated without neither any image 
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information nor prior assumption on the boundary conditions. Likewise, we illustrate the 

restored image with a uniform blur of 7 7  on the right and a boundary region of 253 12 . 

Motion   

Length Size e  eB      

5 5 5 8.70 24.59     

6 5 5 8.70 20.58     

7 7 7 10.35 27.23  Uniform

8 7 7  10.25 24.05  Size e  eB  

9 7 7 10.26 20.96  5 5 8.90 17.29 

10 9 9 11.62 26.04  7 7 11.32 19.64 

11 9 9 11.50 23.36  9 9 13.20 20.64 

12 9 9 11.51 20.85  11 11 14.69 22.27 

13 11 11 12.78 25.85     

14 11 11 12.61 23.15     

15 11 11 12.63 21.10     

Table 2. Numeric values of e  and eB  for different sizes of degradation. 

  

Fig. 7. Restored images of the MLP when using motion (left) and uniform (right) blurs. 

4.1.2 Experiment 2 

This experiment aims to compare the performance of the MLP with other restoration 
algorithms which need BCs to deal with a realistic capture model: zero, periodic, reflective 
and anti-reflective as commented in Section 2.1. We have used the RestoreTools, 2007 library 
patched with the anti-reflective modification which implements the matrix-vector 
operations for every boundary condition. In particular, we have selected an algorithm of this 
library named as HyBR (hybrid bidiagonalization regularization) that is a modified version 
of the Tikhonov regularization. 

Let us consider the Barbara image degraded by a 7 7  Gaussian blur and the same additive 

white noise of the previous experiments with BSNR 20 dB . Fig. 8 shows the restored 

images of the HyBR method from a real acquisition of FOV 250 250   in size (field of 
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view). We can observe that the restored images for each boundary condition are all 

250 250  sized images which miss the information of the boundaries up to 256 256 . 

Furthermore, a remarkable boundary ringing can be appreciated for the periodic BCs as 

result of the discontinuity of the image in the boundaries. As demonstrated in Martinelli et 

al., 2006 the reflexive and the anti-reflexive conditions perform considerably better 

removing that boundary effect. 

The restored image of our MLP algorithm is shown on the bottom-right of Fig. 8 and makes 

obvious the good performance of the neural net. First, the boundary ringing is negligible 

without prior assumption on the boundary condition. Moreover, the visual aspect is better 

compared to the others which recalls the good properties of the TV regularizer. To 

numerically contrast the results, the parameter e  of the MLP is measured only in the FOV 

region. It leads to 12.47eF   which is notably lower to the values of the HyBR algorithm 

(e.g. 12.99eF   for the reflexive BCs). Finally, the MLP is able to reconstruct the 253 12  

sized boundary region and outcomes the original image size of 256 256 . 

 

  

Fig. 8. Restored images with HyBR under periodic (upper-left), reflective (upper-right) and 
anti-reflective (bottom-left) BCs. Restored image with our MLP (bottom-right). 
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4.1.3 Experiment 3 

Finally, let us compare with other algorithms of the literature which deal with the boundary 

problem in a different sense from the typical BCs and that reconstruct the area B  bordering 

the field of view. In recent research Bishop, 2008 proposed a method based on the Bayesian 

model and treated the truncation effect as modeling error. To make a better comparison we 

have updated the MLP to leverage the concept of extended image of this method by 

removing the operator trunc   from all formulae of Section 3.1 and setting the observed 

image realy  at the input of the MLP instead of the truncated image truy . 

 

  

Fig. 9. Restored images with Bishop’s method: uniform (upper-left) and Gaussian (bottom-
left) blurs. Likewise for MLP: uniform (upper-right) and Gaussian (bottom-right). 

Looking at Table 3 we find out that the values of e  are quite similar for both methods, being 

the MLP which outperforms in the Gaussian and motion blurs. But what really deserves 

attention are the results in the boundary region B . The MLP is considerably better 

reconstructing the missed boundaries as indicated by the lower values of eB . Then, it reveals 

the outstanding properties of the neural net in terms of learning about the unknown image.  
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Bishop MLP 

Blur e  eB  eF  e  eB  eF  

Uniform 13.23 17.43 12.99 13.53 15.05 13.45 

Gaussian 12.49 17.79 12.18 12.33 14.13 12.24 

Motion 11.37 17.63 10.97 11.33 12.58 11.27 

Table 3. Comparison between Bishop’s method and MLP for various PSFs 

Let us visually assess the performance of both methods for some experiments of Table 3. In 

particular, we have used two 250 250  sized images degraded by uniform and Gaussian 

blurs of 7 7 . The restored images appear in Fig. 9 with 256 256  in size and thus 

reconstructing the boundary area 253 12B   . Despite the fact that the value of e  is lower 

for the Bishop’s method in the uniform blur, we can observe that the subjective quality of 

the MLP output is better. As for the Gaussian blur the restored images look similar although 

the value of e  is in favor of the neural net. 

4.2 Desensitization experiments 

In this case our experiments aim to compare the performance of the desensitization filter G  
with respect to the classical filters G  Wiener and Tikhonov when having errors on the 

estimations. So let us define a way to measure the deviations from the real value of the 

parameters. Let P  be the relative error of a generic parameter P  defined as follows 

 100real estimated
P

real

P P

P
 

   (30) 

where realP  and estimatedP  stand for the respective real and estimated values of the parameter 

P . Provided that these parameters are real variables, the relative error P  is also extended 

along the range P    , even though we only consider the significant values ranged 

between 100  and 100 %. 

The types of parameters for these experiments have to do with the noise and blurs of 

previous experiments. As for the noise we shall deal with the variance 2
n  of a Gaussian 

additive sample (  ). On the other hand, we shall focus on the motion blur so that we can 

observe the effects of mistaking the angle   (  ). 

In terms of implementation let us recall that the proposed desensitization algorithm yields a 

different number of iterations m  for every pair ( , )i j   due to its dependence on the 

product ˆ ˆGH . By using the expression (29) we obtain a value of m  for those pairs whose 

regularization term ˆ ˆGH  is within the range ˆ ˆ0.14 0.84GH  . Thus, a criterion will be 

adopted for choosing a number of iterations for the rest of frequencies. Owing to the 

increasing trend of m  with respect to ˆ ˆGH  (see Table 1), all pairs whose corresponding 

regularization value exceeds 0.84 are associated to the upper bound of iterations and 

likewise the minimum value (cero) if ˆ ˆGH  is below 0.14. 
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In view of the expressions (14) and (15) let us do some remarks. First, the spectral density of 

the Gaussian white noise is just its variance 2
nn nS  . As for the spectral density xxS  it is 

commonly estimated by means of the spectral density of the observed image yyS , which in 

turn is estimated by the periodogram approximation (Marple, 1987)  

 
2

2

1
yyS Y

L
  (31) 

Finally, the parameter   of (15) is typically computed by the discrepancy principle 

(Bonesky, 2009) which establishes that  

 
2 2 2
2 2

ˆ
nL  y Hx n  (32) 

In these experiments we do use the common ISNR (improvements on the signal-to-noise 
ratio) as the objective metric. 

4.2.1 Experiment 1 

In a first simulation we shall execute the desensitization filter for the whole range 

100 100Pε     of the relative error of the parameters 2
n  and  . The original motion blur 

is described by a length of 15 pixels and an angle of 45 degrees in a counter-clockwise 

direction. And the Gaussian noise is added according to a specific BSNR of 20 dB . This 

experiment is computed for the two original filters Wiener and Tikhonov when facing a 

degraded image Cameraman. 

In Fig. 10 we can observe the regions of desensitization for the Wiener filter. As for the noise 

estimation the desensitization filter outperforms from a specific value   on. Regarding the 

angle estimation   our method achieves better results outside a bandwidth. In Santiago, 

2007 it is demonstrated that the desensitization method may completely outperform in case 
of high enough noise conditions. 

If we look into the results of the Tikhonov filter in Fig. 11 we come up with better results as 

it is required a lower value of   to be in the desensitization region (with less than 10%). 

This situation may be typical in a method of estimation of the noise variance and therefore 

our iterative scheme means a successful solution. With regard to the blur estimation   the 

region of desensitization is practically the same as in the Wiener example, so it reveals the 

better behavior of our algorithm in case of the noise. 

4.2.2 Experiment 2 

Finally, we devote this section to visually analyze the results of the desensitization filter for 

the optimum case: noise estimation and Tikhonov filter. We shall use the Barbara and Lena 

images degraded by a Gaussian blur of size 10 10 , and we keep the same noise level as in 

previous experiments with BSNR 20 dB . The estimation error   is fixed to 10%. 

We have printed in Fig. 12 the restored images obtained by the Tikhonov and the 

desensitization filter in each case. It is remarkable how the Tikhonov algorithm is highly 
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affected by the small error in noise estimation with a significant noise-dependent error on 

the textures of Barbara and Lena. However, our algorithm is able to counteract this effect 

and provide a restored image with a better visual aspect. The numeric figures of ISNR also 

make evidence of this situation. In Barbara we obtain a value of ISNR 2.46 dB   for the 

Tikhnov filter whereas the desensitization clearly improves it with ISNR 2.38 dB . 

Analogously, we end up with ISNR 3.53 dB   and ISNR 2.45 dB  in the Lena example. 

 

Fig. 10. ISNR for errors on estimations 2
n  and   of Wiener filter. 
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Fig. 11. ISNR for errors on estimations 2
n  and   of Tikhonov filter. 
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Fig. 12. Restored images with Tikhonov filter (upper-left and bottom-left) compared to the 
restored images of the desensitization filter (upper-right and bottom-right). 

5. Conclusion 

This chapter has addressed two well-known problems of the regularization solutions in 

image restoration: dependency of boundary conditions and sensitivity to parameters 

estimations. Following a similar iterative concept of restoration-degradation we have 

provided two algorithms in the spatial and frequency domain respectively. 

On the one hand, we have presented a neural network which aims to restore a real observed 

image where the borders outside the field of view (FOV) have been truncated. The idea is to 

apply a TV-based regularization function in an iterative minimization of a MLP (Multilayer 

perceptron) according to a backpropagation strategy. It achieves to not only restore the 

center of the image following the optimum linear solution (the ringing artifact thus being 

negligible), but also reconstruct the boundary area without any prior.  
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The proposed restoration scheme has been validated by means of several tests. As a result, 

we can conclude the ability of our neural net to deal with the non-linearity of border 

truncation and its learning properties about the degradation model so as to regenerate the 

missed boundaries. In fact, it clearly outperforms when comparing with other methods of 

the state-of-the-art which also try to inpaint the boundary area.  

The second algorithm of this chapter outcomes a frequency-based restoration filter which 

desensitizes an original method when having errors on its parameters. By means of an 

iterative sequence of restoration-degradation processes for each frequency pair we come up 

with a trade-off between desensitization and restoration error. In particular, the noise-

dependent error is more robust to estimations than the ringing error which gets higher as 

the iterations increase.  

Various tests demonstrate that the region of desensitization is located from a low value of 

parameters errors, being more evident in the noise variance and using the Tikhonov filter. 

We observed the undesirable effects on the original filter in spite of the low error, while our 

desensitized filter counteract this noise error with successful results. 
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