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1. Introduction

The problem of image restoration has deserved considerable attention in resent years.
For the visual analysis of images, clarity and visibility of details are important factors,
but for advanced processing, a high signal-to-noise ratio (SNR) is essential, as further
processing steps (such as segmentation and classification) are sensitive to noise. Though
the years, different techniques have been studied to improve the SNR or a degraded image.
Techniques based on post-processing have the advantage of not affecting the acquisition
process (Gonzalez & Woods (2001); Jain (1989); Weickert (1995)). More recently, the work
of Tschumperle (2006) has explored the more extensive use of curve-preserving PDE’s for
restoration of images. The calculation of mean intensities over neighboring pixels, equivalent
to isotropic diffusion, considerably increases the SNR, but degrades the quality of image
features (edges, lines and dots). This effect can be reduced with non-linear filters. The median
filter has the characteristic of maintaining these features, but details are lost, degrading the
image resolution. Perhaps the most popular technique introduced in the last couple of years
is anisotropic diffusion, initially proposed by Perona and Malik (Black et al. (1998); Perona &
Malik (1990)).

This problem has motivated interdisciplinary research and the use of techniques actually
born in other areas, as is the case of the Topological Derivative (TD). The TD has been
originally conceived for the study of topology optimization and property identification
problems. Since 1994 different works proposed this new paradigm for the study of such
problems. The pioneer works of Eschenauer in 1994 (Eschenauer et al. (1994)) and Schumacher
in 1995 (Schumacher (1995)) introduced a way to obtain the optimal shape and topology
using Topological Sensitivity Analysis. In summary, this new concept called asymptotical
topological expansion is posed as follows. Let J (Ω) = F (u(Ω)) be an arbitrary cost function
that measures the “quality" associated to a given topology characterized by the state function
u(Ω), which is restricted to be the solution of a variational equation defined in Ω. Given a
sufficiently small positive number ǫ, a positive function f (ǫ) that goes to zero with ǫ, we call
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2 Will-be-set-by-IN-TECH

Ωǫ the perturbed domain after the inclusion at x̂ of a hole of infinitesimal size governed by ǫ.
Therefore, the asymptotical topological expansion

J (Ωǫ) = J (Ω) + f (ǫ)DT(x̂) +O( f (ǫ)) (1)

provides an estimate of the cost function value in the perturbed domain for a sufficiently small
ǫ, where DT is known as the TD. The Topological Derivative can then be defined as (Novotny
(2003))

A scalar function, defined in Ω, indicating in each point x̂ ∈ Ω the sensitivity of a cost function
when a hole of infinitesimal size ǫ is introduced at that point.

1.1 Motivation for the use of Topological Derivative in image restoration

In 2005 appeared the first papers using the TD in image processing: restoration by Belaid
et al. (2007) and Larrabide et al. (Larrabide, Novotny, Feijóo & Taroco (2005; 2006)), where
the objective was to recover an image that suffered some kind of degradation; segmentation
by Larrabide et al. (Larrabide, Feijóo, Novotny, Taroco & Masmoudi (2005); Larrabide,
Feijóo, Taroco & Novotny (2006)) and Hintermüler (2005), in medical images where the
interest is in the identification of different organs for posterior reconstruction; and image
classification by Auroux et al. (2006). He & Osher (2006) established a relation between the
TD and other techniques broadly used in image processing as is the case of level sets. A
remarkable feature of the TD is that it allows to compute the variation of a cost function
with respect to a parameter that changes non-smoothly (e.g., characteristic function of the
domain, material properties or non-continuous change of the forces acting on the problem).
This derivative can be used to identify, according to some criterion, the characteristic function
of an optimal domain, the material properties and their distribution in a given domain, or
even the forces acting on a given domain and how they are distributed. This problem appears
frequently in the context of image processing. As examples we can mention identification of
edges, identification of objects, object tracking, decomposition of texture and geometry and
reconstruction from projections, where the use of the TD appears as a natural way to solve
these problems.

Regarding image restoration, the stationary heat equation has been used for this purpose
(Kornprobst et al. (1997)). In this approach, the diffusion coefficient is usually given by

c(|∇u|) =
φ′(|∇u|)

|∇u|
.

The problem consists in determining the function φ that allowed to remove noise preserving
edges in the image. One property that characterized restoration methods based on non-linear
isotropic diffusion was removing noise along the edges in the image. This unwanted property
of non-linear diffusion, but still isotropic, was partially reduced when a non-linear anisotropic
diffusion tensor was introduced (Frangakis & Hegerl (2001)). In this case, a diffusivity tensor
c(|∇u|) was constructed from two eigenvectors and eigenvalues of tensor J = ∇u⊗∇u. Still,
as diffusion across edges is not completely stopped, heuristic criterion must be introduced to
avoid the loss of image details.

Stoping the diffusion in the direction orthogonal to the intensity iso-lines of u is somehow
equivalent to introducing a crack in the same direction. In this way, the use of the TD in
image restoration appears naturally as it allows to analyze abrupt variations in the material

98 Image Restoration – Recent Advances and Applications

www.intechopen.com



Image Restoration Via Topological Derivative 3

properties. For instance, the TD can be used to determine the diffusion tensor, which in
the following we recall as K. To formalize this, we consider the image characterized by its
intensity u0 ∈ L2(Ω) defined in a limited open domain Ω ∈ R

2 (the extension to R
3 is

straightforward). For each restored image, characterized by the intensity u ∈ H1(Ω), we
can associate the cost function

J (u) =
∫

Ω
∇u · ∇u dΩ ,

measuring the “quality" of the restoration given by the solution of the following variational
problem: Determine u ∈ H1(Ω) such that

∫

Ω
k∇u · ∇η dΩ +

∫

Ω
(u − u0)η dΩ = 0 ∀η ∈ H1(Ω) .

Different methods exist to remove noise and enhance edges of a degraded image. We can
distinguish two types: based on the solution of a stationary problem and based on the
solution of an evolutionary problem. Both types of methods are based on the application of
non-linear/anisotropic diffusion on the image. In both cases, the diffusion coefficient or tensor
is computed as a function of the local image gradient. This coefficient takes small values for
high gradients (edges) thus stoping diffusion, and higher values when the gradient is small
(homogeneous regions) promoting a higher diffusion. Both methods have two parameters.
The stationary method has a parameter determining which gradients will be considered as
edges and which ones not, and a second one characterizing the intensity of the diffusion to
be applied. In the case of evolutionary methods, the first parameter is in some way similar
to the one used by the stationary method to determine the threshold for gradients that are
considered edges, and the number of iterations. For both methods, the parameter determining
the gradient threshold can be estimated. But this does not happen for the other parameters,
which need to be set depending on the noise type and intensity. In both cases, the the selection
of this parameter will determine the quality of the result.

2. Topological Derivative

Topological sensitivity analysis allows to characterize the sensitivity of a problem when the
domain Ω where the problem is defined is perturbed in some way. This perturbation can be
a:

• change in topology: the domain Ω is perturbed introducing a hole of an arbitrary shape
ωǫ at the point x̂ ∈ Ω, and the TD provides the sensitivity of a cost function when ǫ → 0
(see Eq. (1)).

• change in material properties: a perturbation in the material properties at point x̂ ∈ Ω of
an arbitrary shape ωǫ is introduced and the TD provides the sensitivity of the cost function
when ǫ → 0 (see Eq. (1)). By “material properties" is meant the coefficients that define the
variational problem associated to the problem.

• change in the forces/sources acting on Ω: similar to the previous case, but perturbing the
forces/sources.

In the following, and for the sake of simplicity, only the first case will be considered, namely
the perturbation of the domain by the introduction of a hole. The extension to the other two
cases is straightforward.
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Fig. 1. Topological derivative - Change in topology

2.1 Topological shape sensitivity analysis

Let a problem be defined in Ω where the quality/performance is characterized by a cost
function J (Ω) = F (Ω, u(Ω)) where Ω ⊂ R

n, n = 2, 3, is a regular domain of open boundary
∂Ω with exterior normal n. With the notation (Ω, u(Ω)) we empathize that F depends on Ω

explicitly and implicitly through u(Ω), solution of the variational equation (state equation),
that can be written in the abstract form as: determine u ∈ U = U (Ω) such that

a(u, η) = l(η) ∀η ∈ V , (2)

where U characterizes a set (usually a linear manifold of V) of admissible functions defined
in Ω e V = V(Ω) the vector space of admissible variations. Also, a(., .) : U × V 	→ R is
a symmetrical bilinear form and l(.) : V 	→ R a linear form. These forms also satisfy the
properties of continuity and coercivity to warrant existence and uniqueness of solution u.

Let ω be a open domain arbitrarily shaped and of regular boundary ∂ω containing the origin.
Given ǫ > 0 sufficiently small it can be defined for any point x ∈ Ω the domain ωǫ given
by ωǫ = x̂ + ǫω. In this way, the introduction of a hole ωǫ centered in x̂ ∈ Ω allows to
characterize the perturbed domain Ωǫ (Fig. 1) given by

Ωǫ = Ω \ ωǫ. (3)

From Eq. (1), DT in x̂ ∈ Ω can be defined as

DT(x̂) = lim
ǫ→0

J (Ωǫ)−J (Ω)

f (ǫ)
(4)

where f (ǫ) is a positive monotone decreasing function ( f (ǫ) → 0 with ǫ → 0). Furthermore,
J (Ωǫ) = F (Ωǫ, uǫ(Ωǫ)), being uǫ the solution of the same state equation now defined in the
perturbed domain, namely in Ωǫ: Determine uǫ ∈ Uǫ = U (Ωǫ) such that

aΩǫ
(uǫ, η) = lΩǫ

(η) ∀η ∈ Vǫ = V(Ωǫ). (5)

In the work of Novotny et al. (2003) a relation between the TD and classical shape sensitivity
analysis (Haug et al. (1986); Murat & Simon (1976)) is established. This result permits to
use tools developed in classical sensitivity analysis for the computation of the TD. This new
approach can be stated in the form of theorem as:
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Theorem 1. Let f (ǫ) be a function chosen such that 0 < |DT(x̂)| < ∞, then the limit when ǫ → 0
appearing in (4), can be written as

DT(x̂) = lim
ǫ→0

1

f ′(ǫ)

dJ (Ωτ)

dτ

∣∣∣∣
τ=0

(6)

where
dJ (Ωτ)

dτ
is the classical shape sensitivity.

Proof 1. The proof of this theorem can be found in the work of Novotny et al. (2003).

In the previous expression is implicit the domain transformation (deformation) χτ : xǫ ∈
Ωǫ → xτ ∈ Ωτ defined as

xτ = xǫ + τv(xǫ) (7)

where v is the velocity field characterizing the shape change and Ωτ |τ=0 = Ωǫ. The field v is
characterized by

v(x) = −n ∀x ∈ ∂ωǫ e v(x) = 0 ∀x ∈ ∂Ωǫ \ ∂ωǫ. (8)

For further information on this type of transformation see the work of Haug et al. (1986) and
Haug & Céa (1981), Pironneau (1984), Sokolowski & Zolésio (1992) and Zolésio (1981).

From this theorem is naturally deduced the Topological-Shape Sensitivity Method, which will be
explored in the following. The shape change derivative of the cost function in relation to the
parameter τ can be written as

{
Compute :

d

dτ
Jτ(uτ)

subject to : aτ (uτ , η) = lτ(η) ∀ η ∈ Vτ .
(9)

where aΩτ
(·, ·) is given by aτ(·, ·), lΩτ

(·) with lτ(·) and where the notation Jτ(uτ) evidences
the dependency of the cost function on uτ and on Ωτ .

To compute the derivative to change in shape considering the state equation as a restriction,
the Lagrangian method is used (i.e., relaxing the restriction by the introduction of a Lagrange
multiplier). The Lagrangian of this problem is written as

Lτ(v, η) = Jτ(v) + aτ(v, η)− lτ(η) ∀ η ∈ Vτ e v ∈ Uτ . (10)

We verify, for v = uτ , that

Lτ(uτ , η) = Jτ(uτ) + aτ(uτ , η)− lτ(η)︸ ︷︷ ︸
=0, solution of the state equation

∀ η ∈ Vτ

= Jτ(uτ) ∀ η ∈ Vτ . (11)

We compute the derivative with respect to τ in Eq. (10), then

dLτ(v, η)

dτ
=

∂Lτ

∂τ
+

〈
∂Lτ

∂v
;

dv

dτ

〉
+

〈
∂Lτ

∂η
;

dη

dτ

〉
. (12)

We then work term by term on Eq. (12). Starting by the third term on the right-hand side we
have

〈
∂Lτ

∂η
;

dη

dτ

〉
= aτ

(
v,

dη

dτ

)
− lτ

(
dη

dτ

)
∀

dη

dτ
∈ Vτ (13)
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Then, for the particular case v = uτ , Eq. (13) is zero. Considering the second term of Eq. (12),
we have

〈
∂Lτ

∂v
;

dv

dτ

〉
=

〈
∂Jτ

∂v
;

dv

dτ

〉
+ aτ

(
η,

dv

dτ

)
∀

dv

dτ
∈ Vτ (14)

where the symmetry of aτ(·, ·) was used. In this expression, η can be chosen arbitrarily. In
articular, it will be selected η = qτ , being qτ ∈ Vτ the solution to the adjoint equation given
by 〈

∂Jτ

∂v
;

dv

dτ

〉∣∣∣∣
v=uτ

+ aτ

(
qτ ,

dv

dτ

)
= 0 ∀

dv

dτ
∈ Vτ . (15)

The previous equation is known as “(variational) adjoint equation", and its solution qτ (or
qǫ and q if the adjoint equation is defined in the domain Ωǫ and Ω respectively) as “adjoint
solution". We note that, because of the properties of a(·, ·), the adjoint equation is of the same
kind as the state equation (Eq. (2), or its counterpart in the perturbed domain Eq. (5)). From
the computational point of view, the former means that the same computational system used
to compute the solution of the state equation u (or uǫ) can be used to compute q (or qǫ).

The total derivative with respect to parameter τ of the Lagrangian is given by

dJ (Ωτ)

dτ

∣∣∣∣
τ=0

=
∂Lτ(v, η)

∂τ

∣∣∣∣v=uτ
η=qτ

∣∣∣∣∣
τ=0

=

[
∂Jτ(v)

∂τ
+

∂aτ(v, η)

∂τ
−

∂lτ(η)

∂τ

]

v=uτ
η=qτ

∣∣∣∣∣
τ=0

. (16)

We notice that uτ |τ=0 = uǫ and qτ |τ=0 = qǫ. Therefore, the former expression results in
a function of uǫ and qǫ and its derivatives. As we noted before, only the boundary ∂ωǫ is
perturbed by a uniform expansion (Eq. (8)). Then, the derivative to shape change results in
an integral only defined on the boundary ∂ωǫ. Therefore, the topological derivative is given
by an expression of the form

DT(x̂) = −lim
ǫ→0

1

f ′(ǫ)

∫

∂ωǫ

Σǫn · n d∂ωǫ (17)

where Σǫ depends on uǫ and qǫ, and it can be interpreted as a generalization of the Eshelby
momentum energy tensor proposed by Eshelby (1985). The tensor Σǫ must be identified for
each particular problem, which depends on the cost function adopted and the state equation
associated to uǫ.

Finally, its necessary to compute the limit when ǫ → 0 to obtain the DT expression. For
this, it is necessary to study the behavior of solutions uǫ and qǫ when ǫ → 0. This behavior
can be obtained with asymptotical analysis on the neighborhood of the hole. At this point,
different alternatives can be used depending on the problem under consideration (boundary
conditions, type of perturbation, etc.). In all these cases, asymptotical analysis allows to
express uǫ and qǫ as a function of ǫ, u(x̂), q(x̂) and there derivatives in x̂, respectively. Namely,
as a function of the solutions of the state and adjoint equation defined in the domain without
perturbation providing as well the function f (ǫ). In this way, substituting these equation in
Eq. (17) and from the computation of the limit for ǫ → 0 the final expression of the DT at point
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x̂ is obtained. As mentioned, this expression will only depend on the values of u and q and
its derivatives at point x̂. The former has consequences from the computational point of view
and in fact, once u and q are obtained, the computation of the TD is just a post processing.

Then, for a given cost function F (Ω, u(Ω)) the Topological-Shape Sensitivity Method can be
summarized in the following steps:

1. Compute the shape change derivative for the cost function F (Ωǫ, uǫ(Ωǫ)), using the
Lagrangian method.

2. Identify the Eshelby momentum tensor Σǫ and write the sensitivity expression as an
integral defined on the boundary ∂ωǫ.

3. Do the asymptotical analysis to study the behavior of uǫ and qǫ when ǫ → 0.

4. From the asymptotical analysis, chose f (ǫ).

5. Compute the DT using Eq. (17).

This is a general and systematic way to compute the DT for an arbitrary cost function. The
particular case presented in this chapter is applied to the introduction of a perturbation in
the domain Ω in the shape of a crack, which is then presented as part of an algorithm for the
restoration of degraded images.

3. Topological Derivative in image restoration

The concept of the TD, allows to quantify the sensitivity of a performance measure of cost
function when the problem definition domain is perturbed. Therefore, if the cost function
is associated to the noise present in the image, it will be possible to use its TD to develop
appropriate image restoration algorithms. In this context, two state equations are studied: the
first one based on a stationary problem and the second one on the evolutionary problem. The
TD will allow to determine the location and orientation of the cracks that should be introduced
in the domain to minimize the cost function. From the point of view of the state equation, the
cracks will stop diffusion in the orthogonal direction, only allowing diffusion in the tangent
direction. In other words, the TD provides a procedure to compute the diffusion anisotropic
tensorial field that will be used to restore the image preserving the image edges.

3.1 Continuous approach - RDT
-continuous

This approach is based in introducing cracks in an image under the effect of diffusion. These
cracks are introduced at specific locations in the image using the information provided by
the TD. For a small ǫ, let Ωǫ = Ω \ γǫ be the domain perturbed by the insertion of a crack
γǫ = x̂+ ǫγ, where x̂ ∈ Ω and γ(m) is a straight crack, being m the normal direction of γ (Fig.
2). Let uǫ be the solution of the same variational problem in the perturbed domain Ωǫ and
J (uǫ) a cost function associated to it. Then, we obtain the following asymptotic topological
expansion of Jǫ(uǫ) when ǫ → 0, i.e.,

Jǫ(uǫ) = J (u) + f (ǫ)DT(x̂, m) +O( f (ǫ)),

where

DT(x̂, m) = M m · m

103Image Restoration via Topological Derivative
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Fig. 2. Topological Derivative concept for cracks.

being M a symmetric tensor given by

M = −
(
∇u ⊗∇u + k(∇u ⊗s ∇q)

)
. (18)

and q the solution of the adjoint equation

∫

Ω
(k∇q · ∇η + qη) dΩ = −

∫

Ω
∇u · ∇η dΩ ∀ η ∈ V .

For any point x̂, DT(x̂, m) reaches its minimum when m is an eigenvector associated to the
smallest eigenvalue κmin of M. Then, it is considered as the optimal direction of the crack
γǫ(m) the eigenvector corresponding to the eigenvalue κmin. This value will be adopted as
the TD associated to the creation of a crack at the point x̂. In Fig. 3 is presented an example
for the Lena image (SNR = 26dB).

As mentioned, for any x̂ , DT(x̂, m) takes the minimal value when m is the eigenvector
associated to the smallest eigenvalue κmin of M. Then, by considering the orientation of the
crack γǫ(m) the eigenvector corresponding to the eigenvalue κmin. This minimal value will be
adopted as the TD associated to the creation of a crack at the point x̂. The algorithm proposed
here consists in computing the TD and introducing small cracks in the locations where the
derivative is smaller than a given value DT Lim. Two algorithms are presented: isotropic and
anisotropic.

To solve the numerical problem, the introduction of a small diffusion coefficient (or a
conductivity tensor that acts on one direction) is interpreted as the presence of a crack. In
the proposed algorithms, the tensor K(x) for the isotropic and anisotropic case are computed
as a function of the TD, namely K = K(x, DT):

• Isotropic diffusion based on the TD (RDT
-Continuous (Iso)):

– K(x) = kε I if DT(x) ≤ DT Lim;

– K(x) = k0 I otherwise.

• Anisotropic diffusion based on the TD (RDT
-Continuous (Aniso)):

– K(x) = kε(n ⊗ n) + k0(t ⊗ t) if DT(x) ≤ DT Lim;
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Fig. 3. Image restoration with the continuous TD algorithm RDT
-Continuous (Iso) of the Lena

image with k0 = 2, upper row: α = 0.10, 0.20, lower row: α = 0.30 and TD value for each
pixel.

– K(x) = k0 I otherwise.
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Fig. 4. Image restoration with the continuous TD algorithm RDT
-Continuous (Aniso) for the

Lena image with k0 = 2, upper row: α = 0.10, 0.20, lower row: α = 0.30 and TD value for
each pixel.

for kǫ ≪ 1, k0 a positive real number, n and t the normal ad tangent directions to the crack,
respectively.

With this diffusion tensor the restored image is obtained by solving the following variational
problem: Determine u∗ ∈ H1(Ω) such that

∫

Ω
K∇u∗ · ∇η dΩ +

∫

Ω
(u∗ − u0)η dΩ = 0 ∀η ∈ H1(Ω) . (19)

As the solution u∗ of the variational problem given by Eq. (19) cannot be explicitly known
in general, its necessary to compute an approximate solution. The Finite Element Method
is used for this purpose Hughes (2000). Then, using the simplest finite element given by
quadrilateral bilinear element (for the 2 dimensional case) or a trilinear parallelepiped (for
the 3 dimensional case) whose nodal points coincide with the centers of the image elements,
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(a) Lena image. (b) Lena image with low contrast.

(c) Topological derivative for the previous images.

Fig. 5. Lena image with different contrast. The second row corresponds to the TD for each
image using the same color scale in both cases.

approximate solutions uh of u, qh of q and u∗h of u∗ can be easily obtained for any image
u0 ∈ L2(Ω). Using these solution, an approximation by finite elements Mh of the tensor M is
given by

Mh = −
(
∇uh ⊗∇uh + k(∇uh ⊗s ∇qh)

)
. (20)

To find the restored image, three boundary value problems need to be computed. These
correspond to the scalar fields of uh the isotropic problem, qh the adjoint problem and u∗h

the problem with the diffusivity tensor K(x) computed using RDT
-Continuous (Iso or Aniso).
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Algorithm 1 Image restoration based in the continuous topological derivative -
RDT

-Continuous

Require: Degraded image u0 ∈ L2(Ω), parameters DT Lim e k0.
Ensure: Restored image u∗ ∈ H1(Ω).

compute u and q, solutions of the state and adjoint equation, respectively,
compute the matrix 2 × 2 M and its minimal eigenvalue κmin for each point in Ω,
find K using RDT

-Continuous (Iso or Aniso),
compute u∗, a restored image, using K(x) previously obtained.

This algorithm uses one parameter (DT Lim) to select the elements in the image that will have
their coefficients with a modified diffusivity. Then, depending on the TD value of the image
being processed, this coefficient will be modified in a different number of points (e.g., two
similar images with different contrast will produce a different TD, as it depends on ∇u, see
Fig. 5). It is easy to verify that the parameter DT Lim must be a value in the interval [DT MIN , 0)
(being DT MIN the minimum value of the DT). DT MIN and the distribution of values of the TD
in this interval can vary considerably for different images. This will require readjusting this
parameter for different images making its estimation more complex.

A different alternative, presented in Larrabide, Feijóo, Novotny & Taroco (2008), is to modify
the diffusivity coefficient using a fixed point algorithm. This consists in sorting in growing
order the values of the TD and selecting a percentage α of the most negative values and use
this value as threshold for the insertion of cracks in the image. We then define the set Mα as

Mα := {DT(s) : DT(s) < 0

and DT(s) is in the α% most negative values of the DT}. (21)

For s between one and the number of elements in the image. This alternative provides a better
control on the algorithm (Algorithm 2).

Algorithm 2 Image restoration based on the continuous TD II

Require: Degraded image u0 ∈ L2(Ω), parameters α e k0.
Ensure: Restored image u∗ ∈ H1(Ω).

compute u and q, solutions of the state and adjoint equation, respectively,
compute the matrix 2 × 2 M and its minimal eigenvalue κmin for each point in Ω,
find K using RDT

-Continuous (Iso or Aniso) and Eq. (21),
compute u∗, the restored image, using K(x) previously obtained.

3.2 Continuous approach results

It can be observed in Fig. 3 the result obtained with Algorithm 2 for DT-Iso using the tensor
K for the Lena image degraded wit white Gaussian noise (degraded image is presented in
Fig. 3). For all the experiments presented k0 = 2 was used. Visually, we observe that the
noise is removed in the 3 cases. The results obtained in the three experiments, namely α =
0.10, 0.20 and 0.30, present considerable improvement in the SNR, going from 26.92 in the
degraded image to 29.57, 30.36 and 30.88 in the processed images, respectively. By analyzing
in detail these images, we observe that as other non-linear isotropic methods, it has difficulties
to remove noise along edges. In Fig. 4 are presented the results corresponding to K computed
using DT-Aniso and the same Lena image. The same values of α (namely α = 0.10, 0.20 and
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(a) Detail of degraded Lena image. (b) Detail of the TD.

(c) Detail of the crack normal and tangent
directions.

(d) Detail of the restored image.

Fig. 6. Detail of Lena’s image topological derivative, crack normal (black) and tangent
(white) directions and final result.

0.30) where used. Again, the SNR improves going from 26.92 in the degraded image to 28.47,
28.85 and 29.05 in the processed images, respectively. This time, and even if the SNR of the
isotropic case are not reached, the noise along edges is more efficiently removed. Finally, in
Fig. 6 is presented a detail of the TD, the vectors normal (in black) and tangent (in white) to
the cracks and the restored image.

3.3 Discrete approach - RDT
-discrete

The discrete approach relies on an auxiliary transient heat equation. In this case, cracks are
introduced in the image to stop the diffusion in given points and directions. In this way, the
information provided by the TD is used to determine the location of these cracks.
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In the discrete approach, the image is characterized by a matrix of pixels with an intensity
associated to them. We consider a bi-dimensional image u given by a set of M × N pixels s. In
each pixel s, the image u intensity will be denoted as us. Then, the image belongs to the space
U d

U d :={u; us = constant in ωs, s = 1 · · · M × N} , (22)

with Ω = ∪sωs, being ωs the domain of s. The set of neighbors ns of pixel s was defined as
the four pixels1

The cost function adopted by the discrete approach is

J d(us
t ) = ∑

s
∑

p∈ns

ks,p∆̂u
s,p
t · ∆̂u

s,p
t ,

which can be interpreted as a discrete approximation of the energy norm of the field u. In
this expression the term ks,p is the diffusion coefficient of pixel s with its neighbor p, ns =

{n, s, e, w} are the neighbors of pixel s and ∆̂u
s,p
t is defined as

∆̂u
s,p
t = u

p
t − us

t . (23)

In this case, us
t is explicitly computed as

us
t (k

s) = us
t−1 + ∆t ∑

p∈ns

ks,p∆̂u
s,p
t−1 (24)

where the index t ≥ 1 represents the iteration number, being us
0 the intensity at pixel s, ks =

{ks,o, ks,l , ks,n, ks,s} characterizes the set of coefficients associated to pixel s, ∆t is the artificial
step size in time.

As opposed to the continuous case, because us
t is an explicit function and given the discrete set

ks, it is possible to compute the exact total variation of the cost function for each perturbation in
ks,p. Also, we call ks

ǫ the perturbed configuration of pixel s diffusivity coefficients. The value
of the cost function when the perturbation is introduced is given by

J d(us
t (k

s
ǫ)) = J d(us

t (k
s)) + DT(s, ks

ǫ), (25)

where DT(s, ks
ǫ) represents the total variation of the cost function due to a perturbation in the

diffusivity coefficients of pixel s characterized by the set ks
ǫ. Likewise in the continuous case,

the introduction of a perturbation to pixel s where DT is negative, will produce a decrease
in the value of the cost function J d. Using this information we can select the best candidate
pixels for perturbations.

We assume ks,p ∈ {kε, k0}, so the set of all possible configurations for ks is defined as

C(s) :={ks = (ks,w, ks,e, ks,n, ks,s); ks,p ∈ {kε, k0}, p = {w,e,n,s}}.

We see that 16 possible combinations for ks exist (values are ks,p = kε or ks,p = k0, for each
neighbor, then 24 = 16 cases are possible). The case ks,w = ks,e = ks,n = ks,s = kε is not
taken into account as it does not change the value of the cost function. The 15 remaining
combinations are

1 i.e. north, south, east e west of pixel s.
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Algorithm 3 Image restoration based on a discrete version of the TD - RDT
-Discrete

Require: The 2D image u0 ∈ U , a diffusivity coefficient k0 and a parameter α.
Ensure: The restored image us ∈ U .

make t=1; stop = FALSE; ks = ks
iso, s = 1..M × N

while stop = FALSE do
for each pixel s do

for each ks
ǫ ∈ Cσ do

compute DT(s, ks
ǫ) following Eq. (27)

end for
end for
for each pixel s ∈ Mα do

make DT(s) = min
ǫ∗

{DT(s, ks
ǫ), ks

ǫ ∈ Cσ}

make ks = ks
ǫ∗ the diffusivity coefficient associated to DT(s)

end for
compute us

t (k
s) using Eq. (24).

if |J d
ǫ us

t )−J d(ǫus
t−1)| > tol then

t = t + 1
else

us = us
t , s = 1, · · · , M × N, stop = TRUE

end if
end while

• no diffusion with one neighbor,

• no diffusion with two neighbors sharing one vertex,

• no diffusion with three neighbors,

• diffuse on x direction,

• diffuse in y direction,

• diffuse in all directions.

The last case corresponds to isotropic diffusion and is defined as ks
iso = {k0, k0, k0, k0}.

To compute the value of DT for a determined pixel, its necessary to introduce a perturbation.
This is done by changing, for one pixel s, the set ks for ks

ǫ ∈ Cσ. Then, the cost function
J d

ǫ (ǫus
t ) takes the value

J d
ǫ (ǫus

t ) = J d(us
t ) − ∑

p∈ns

ks,p∆̂u
s,p
t · ∆̂u

s,p
t + ∑

p∈ns

k
s,p
ǫ ∆̂ ǫu

s,p
t · ∆̂ ǫu

s,p
t ,

(26)

for us
t = us

t (k
s) and ǫus

t = us
t (k

s
ǫ) computed using Eq. (24) and ∆̂ ǫu

s,p
t = u

p
t −ǫ us

t ,
respectively.

For Eqs. (25) and (26) the total variation of the cost function J d due to the perturbation ks
ǫ is

written as
DT(s, ks

ǫ) = ∑
p∈ns

k
s,p
ǫ ∆̂ ǫu

s,p
t · ∆̂ ǫu

s,p
t − ∑

p∈ns

ks,p∆̂u
s,p
t · ∆̂u

s,p
t . (27)

As in the continuous case, it will be considered a perturbation ks
ǫ that minimizes the value

of DT(s, ks
ǫ). Using this information is proposed the following discrete image restoration

algorithm based on the TD 3).
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Fig. 7. Image restoration with the RDT
-Discrete algorithm of the Lena image. Results

correspond to k0 = 1 and α = 0.05, 0.15 e 0.25 respectively.

3.4 Discrete approach results

The set Mα is defined as in Eq. (21). As in the continuous case, the parameter α allows to
control the values of the TD that will introduce changes in ks. In all the cases it was used
△t = 1

4 e k0 = 1, the maximum values that warrant the Courant-Friedrichs-Levy (stability)
of the iterative solution algorithm. In Fig. 7 are presented some results obtained with this
technique. The three images presented (corresponding to the results for values of α = 0.05,
0.15 e 0.25 respectively) present a considerable improvement of SNR (going from 26.91 in the
degraded image to 28.49, 29.61 and 29.53 in the processed images, respectively).

In Figs. 8 are presented the results after different number of iterations. The edges introduced
in the image are highlighted in white. We observe that after some iterations, the image has
edges in almost all the edges. In this way, the variation of the cost function is practically null
in two consecutive iterations, stopping the algorithm. The number of edges that are added to
the image in each iteration is controlled by parameter α. In Fig. 9 is presented the detail of a
region of the image before and after the processing.
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Fig. 8. Detail of the crack configuration introduced to the image during the processing
(k0 = 1 and α = 0.20).
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Fig. 9. Detail of Lena image before and after the processing (k0 = 1 and α = 0.20).

(a) Perona & Malik (b) Black et al. (c) Selective smoothing

(d) Semi-quadratic
minimization

(e) RDT
-Discrete (f) RDT

-Continuous

Fig. 10. Results for the Lena image restored using different methods.

4. Results

The methods based on the TD have been compared to other methods proposed in the literature

• Evolutionary methods:

– Perona & Malik (Perona & Malik (1990)),
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– Black. et al. (Black et al. (1998)),

– Selective smoothing (Alvarez et al. (1992)) and

– Discrete RDT
.

• Stationary methods:

– Semi-quadratic minimization (Kornprobst et al. (1997)),

– Continuous RDT
(Belaid et al. (2007)).

In Fig. 10 are presented results for classical and TD image restoration methods. The processed
image corresponds to the artificially degraded image of Lena (see Fig. 3) with uniform noise
(r = 20), with an approximate SNR of 27 dB. All the classical methods depend on a parameter
σ with equivalent meaning. This parameter is used to control the diffusion on the edges of the
image to preserve relevant characteristics. For the classical methods, σ was adjusted using the
technique proposed by Black et al. (1998), which allows to estimate the value of σ as a function
of the gradient of the image processed. In the case of the evolutionary methods, the number
of iterations was fixed to 10, 20 and 30. The results for 20 iterations where found to shield
the lowest SNR and, thus, these are reported. For the semi-quadratic minimization, the same
analysis was performed for parameter λ and the best SNR was obtained with λ ≈ 10 in this
case.

Parameter selection in the case of TD methods is different. Both, the Discrete and Continuous
RDT

methods, depend on parameter α (a real value between 0 and 1), that determines the
amount of cracks to be introduced in the image. This parameter determines the quantity (as a
%) of the pixels that will be introduced in cracks to stop diffusion. As before, parameter α was
analyzed to select the value that provides the best SNR (in the case of Discrete RDT

α = 0.18
and for Continuous RDT

α = 0.80.

As presented, the proposed restoration methods use information of the cost function
sensitivity to a change in the topology. This information is used to find the optimal domain
topology that, in the presence of diffusion, will eliminate noise preserving image features.
In the continuous case, we observe that this technique eliminates most of the noise but has
difficulties to remove noise in regions of elevated gradients. For the Discrete RDT

, we observe
that the noise is removed from the whole image, even from the edges. This algorithm is also
capable of improving the sharpness of the edges, enhancing the image features.

In Table 1 are presented qualitative results for the Lena image. The different columns present
the PSNR, SNR, μ(e) (mean error) and σ(e) (error standard deviation) between the processed
image and the original one (i.e., without degradation). We observe similar results for the
different methods, where the best performers were the evolutive method proposed by Black
et al. with respect to PSNR (30.58dB) and SNR (30.37dB) and the one by Perona & Malik with
respect to σ(e) (6.807). The proposed methods, Discrete RDT

and Continuous RDT
, provide

results of similar quality to the existing methods.

The proposed methods provide an intuitive tool for image restoration based on the concept of
the TD. These methods are intended to modify the topology of the image by inserting cracks
in selected location that, in the presence of diffusion, will improve the quality of a degraded
image. The diffusion will eliminate noise while preserving edges and details in the image.
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PSNR (dB) SNR (dB) μ(e) σ(e)

Degraded image 26.88 26.67 0.6005 11.535

Perona & Malik 30.36 30.15 1.1013 6.8077

Black et al. 30.58 30.37 1.1003 7.1221

Selective smoothing 29.68 29.27 1.0106 8.0220

Semi-quadratic minimization 30.15 30.04 1.0968 7.3185

Discrete RDT
29.98 29.73 1.1463 8.0455

Continuous RDT
29.93 29.89 1.0944 8.3446

Table 1. Comparison between the proposed and classical image restoration methods.

5. Online material

The computational implementation of these methods in Matlab is available online at Matlab
Central 2. A more complete description of the mathematical and numerical methods used in
this work can be found in the work of Larrabide (2007).
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