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1. Introduction 

Cut flower production and trade in the E.U. and the rest of the world holds the main share 
within the ornamental horticulture industry. Despite the global economic crisis started in 
2008, changes in cut flower trade, such as the merge of the 2 major auctions in Holland (i.e. 
VBA and FloraHolland), resulted in stabilization or even small increases in stem number 
sales for the years 2008-2010 (Evans & Van der Ploeg, 2008; Anonymous, 2011). In other 
words, the importance of cut flower industry in global economy is undisputed, but also 
reflects the human need for ornamental plant consumption as part of a better life.  

Product quality of horticultural crops has been the main area of research the past decades. 
Growers and sellers have been seeking for best possible product quality and highest 
possible profits. However, problems in quality after pathogen infections at some point of 
production, or during storage or transportation eventually result in economic losses (van 
Meeteren, 2009). Botrytis cinerea is the single-most important pathogen infecting ornamental 
plants and cut flowers postharvest and substantially reduce growers’ and sellers’ income by 
increasing product rejections. 

B. cinerea Pers. is a common fungal pathogen that infects glasshouse-grown ornamental 
crops under cool and humid conditions with latent symptoms, which develop during 
storage or transportation (Elad, 1988). Growers and sellers around the world are deeply 
concerned by such infection problems. In Europe, for instance, large quantities of B. cinerea-
infected cut freesias from Τhe Netherlands are rejected in the UK by wholesalers and 
retailers at certain times of the year (Darras et al., 2004). These rejections result in immediate 
economic losses and make cooperation between growers and importers problematical. The 
problem is equally substantial for roses (Elad, 1988; Elad et al., 1993), gerberas (Salinas & 
Verhoeff, 1995) and Geraldton waxflowers (Joyce, 1993), although species such as 
chrysanthemum (Dirkse, 1982), narcissus (O’Neill et al., 2004), lisianthus (Wegulo & Vilchez, 
2007), dianthus, ranunculus and cyclamen (Seglie et al., 2009) eventually suffer infections by 
B. cinerea, but to a lesser extend.  

Infections by B. cinerea are usually managed by conventional fungicides applied protectively 
at certain times of the year and especially during autumn and spring when most infections 
occur. However, extensive use of fungicides such as dicarboximides, has led to the 
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appearance of resistant B. cinerea strains (Pappas, 1997). Alternative methods to control B. 
cinerea disease (i.e. grey mold) within the concept of integrated disease management (IDM) 
programs are sought by growers and help overcome resistance by the pathogen. 

Elicitor-based disease management constitutes an attractive socio-environmentally sound 

strategy (Joyce & Johnson, 1999). Known activators of plant defence reactions, such as 2,6-

dichloroisoniciotinic acid (INA), salicylic acid (SA), 3-aminobutyric acid (BABA), 

Acibenzolar-S-methyl [ASM; benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester; 

benzothiadiazole or BTH; CGA 245704] and methyl jasmonate (MeJA), have been shown to 

enhance natural defence mechanisms or induce systemic defence responses such as SAR or 

ISR in plants, thereby providing prospects for IDM (Terry & Joyce, 2004a).  

1.1 Botrytis cinerea infecting cut flowers and ornamental pot plants 

Botrytis cinerea Pers. belongs to the Class Deuteromycetes and the Phylum Ascomycota. The 

disease caused by B. cinerea is called grey mold. The fungus is pathogenic to most of the 

cultivated ornamental pot plants and cut flowers. For example, infection of gerbera (Gerbera 

jamesonii) flowers occurs inside the glasshouse during crop cultivation, but symptoms 

develop after a latent period at storage or transportation following fluctuations in 

temperature (Salinas & Verhoeff, 1995). Favourable temperature and relative humidity (RH) 

for the pathogen after harvest results in rapid disease development (Salinas et al., 1989). 

Grey mold on gerbera and freesia flowers is observed as small necrotic, dark-brown fleck 

lesions ‘spots’. Similar symptoms developed in the laboratory under controlled conditions 

following artificial inoculation of gerbera or freesia inflorescences at temperatures ranging 

from 4 to 25°C (Salinas & Verhoeff, 1995; Darras et al., 2006a). Infection of freesia (Freesia 

hybrida) inflorescences after artificial inoculation occurred in less than 24 h at 12°C and 80-

90% RH. Even at the low temperature of 5°C, disease symptoms were evident in a saturated 

atmosphere (ca. 100% RH) within the first 24 h of incubation.  

B. cinerea is also pathogenic to Geraldton waxflower (Chamelaucium uncinatum), the 

Australian native plant which holds a high ornamental and commercial value (Joyce, 1993; 

Tomas et al., 1995). Geraldton waxflower sprigs artificially inoculated with B. cinerea 

showed increased abscission of flowers from their pedicels.  

B. cinerea infects rose (Rosa hybrida) flowers and produces necrotic spots or blister-like 

patches on petal surfaces (Pie & De Leeuw, 1991; Williamson et al., 1995). Infection has been 

described by Elad (1988) as restricted, brown, volcano-like shaped lesions. B. cinerea 

damages phylloclades of ruscus (Ruscus aculeatus) by causing small, dark water soaked 

necrotic lesions encircled by a faint halo. These lesions later become brown without growing 

in size (Elad et al., 1993).  

Infection of lisianthus (Eustoma russellianum) flowers has been recently reported by Wegulo 

& Vilchez (2007). Significant (P ≤ 0.03) positive correlations between stem lesion length of 

naturally infected plants in the glasshouse (R = 0.74) and stem lesion length of artificially 

inoculated ones (R = 0.62) with the disease incidence score, and with the percent of necrosis 

(R = 0.71) of detached leaves were reported (Wegulo & Vilchez, 2007). From all the 12 

lisianthus cultivars tested, 'Magic Champagne' was suggested as the most resistant and 

proposed as ideal for commercial cultivation.  
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In regards to pot plants, B. cinerea disease symptoms on geranium (Pelargonium zonale) 
flowers has been described by Strider (1985) as flower blight, leaf blight and stem rot. 
Martinez et al. (2008) published a detailed report on infection of Pelargonium x hortorum, 
Euphorbia pulcherrima, Lantana camara, Lonicera japonica, Hydrangea macrophylla, and Cyclamen 
persicum by B. cinerea. They reported that growth of B. cinerea isolates in-vitro from the above 
mentioned ornamentals varied significantly. B. cinerea showed a high degree of 
phenotypical variability among the isolates, not only as regards to visual aspects of the 
colonies but also to some morphological structures such as conidium length, conidiophores, 
sclerotia production, and hyphae (Martinez et al., 2008). Increased susceptibility to grey 
mold from 10% to 80% in stems and from 3% to 14% in leaves was observed after using 
elevated levels of N supply (i.e. from 7.15 to 57.1 mM) for begonia plant (Begonia x 
tuberhybrida Voss) cultivation (Pitchay et al., 2007). 

1.2 Review on host-pathogen interactions and on defence responses  

Host-pathogen specificity involves factors that determine the virulence of the pathogen and 
also factors that confer resistance on the host (Lucas, 1997). Many theories have been 
proposed concerning mechanisms by which pathogens either achieve or fail to infect host 
tissue. A model concerning specific gene-for-gene interactions determining the host range of 
pathogens in wild plant species was first proposed by Flor (1971). In a gene-for-gene system, 
recognition of the pathogen by the host occurs when a resistance (R) gene of the host 
interacts with an avirulence (avr) gene of the pathogen (Table 1).  

 

Virulent or avirulent 
Pathogen genes 

Resistant or susceptible genes in the plant 

 
R (resistant) 

dominant 
r (susceptible) 

recessive 

A (avirulent) dominant AR (-)a Ar (+) 

a (virulent) recessive aR (+) ar (+) 

a (-) indicate incompatible interaction and, therefore, no infection. (+) indicate compatible interaction 
and, therefore, infection.  

Table 1. Quadratic check of gene combinations and disease reaction types in host-pathogen 
systems in which the gene-for-gene concept for one gene operates (Lucas, 1997). 

According to this model, avr gene products secreted by hyphae or located on the surface of 
the pathogen bind to a receptor located on the cell membranes of host’s epidermal cells. 
Binding triggers a cascade of defence responses by the host. Every other possible match in 
the system could lead to infection (Table 1). Thus, a combination of a resistant host gene 
and a virulent pathogen leads to a compatible host-pathogen interaction. In both cases, 
when an avr race of the pathogen matches with a susceptible host and a virulent pathogen 
matches with a susceptible host, the host fails to recognize the pathogen and infection 
occurs (Flor, 1971).  

Culture filtrates or extracts from microbial cells can act as potent inducers of plant defence 
responses (Chappell & Hahlbrock, 1984; Kombrink & Hahlbrock, 1986; Fritzemeier et al., 
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1987; Keller et al., 1999). For instance, extracts from fungal cell walls when applied to plant 
tissue induced the synthesis and accumulation of phytoalexins (Yoshikawa et al., 1993). 
Active components in such chemical, biological and physical extracts are referred to as 
elicitors. This term is now generally used to denote agents, which induce plant defence 
responses, including accumulation of PR-proteins, cell wall structural (strengthening) 
changes, and hypersensitive cell death (Kombrink & Hahlbrock, 1986). 

1.2.1 Rapid defence responses 

The first step in the rapid defence responses by plants is recognition of the infection attempt 
by the pathogen. Pathogen recognition results in a signalling cascade to neighbouring cells 
and in initial molecular defence responses (Kombrink & Somssich, 1995). Examples of 

elicitor-active components produced by pathogenic fungi include the -glucan elicitor and 

the 42 kDa glycoprotein derived from the fungus Phytophthora megasperma, the oligo-1,4--
galacturonides from Cladosporium fulvum and Rhynchosporium secalis, and the harpin protein 
from Erwinia amylovora. These compounds activate defence responses when they bind to 
host receptors during incompatible host-pathogen interactions (Ebel & Cosio, 1994; 
Kombrink & Somssich, 1995). 

In parsley cells, the existence of a receptor was proposed by Ebel & Cosio (1994). The 
intracellular changes were subsequent signals activated by the receptor and transported to 
host plasma membrane. Changes in H+, K+, Cl – and Ca2+ fluxes across the plasma 
membrane and H2O2 increase within 2-5 min can occur (Nurnberger et al., 1994; Nurnberger 
& Scheel, 2001).  

The activity of active oxygen species (e.g. O-, H2O2) and the rapidity of their production after 
invasion characterize the rapid defence response of the host (Dixon et al., 1994; Ebel & Cosio, 
1994; Bolwell, 1999). These toxic active oxygen species cause host cell death at the infection site 
(Kombrink & Somssich, 1995). It has been suggested that reactive oxygen species (ROS) could 
have a dual function in disease resistance (Kombrink & Schmelzer, 2001). Firstly, ROS 
participate directly in cell death during HR and, thereby, results in direct pathogen inhibition. 
Secondly, ROS have a role in signal diffusion for cellular protectant induction and associated 
defence responses in neighbouring cells (Kombrink & Schmelzer, 2001). 

The HR is part of the initial plant defence responses and involves localized cell death at the 
infection site (Kombrink & Schmelzer, 2001). Thus, the HR is a result of host recognition of 
infection attempts made by a pathogenic bacterium or fungus. Specific elicitor-molecules 
comprise signals, which induce these initial defence responses. When pathogenic bacteria 
are injected inside a non-host plant under artificial conditions they are killed by the HR as a 
result of being surrounded by dead cells. The HR may occur when either virulent strains of 
bacteria are injected inside a resistant host or avirulent strains of bacteria are injected inside 
a susceptible host (Agrios, 1997). HR associated isolation of the pathogen inside necrotic 
cells causes the pathogen loses its ability to take-up nutrients and grow into adjacent healthy 
cells (Kombrink & Schmelzer, 2001).  

Elicitors which do not cause an HR can also activate defence-related compounds (Schroder 
et al., 1992; Atkinson, 1993; Kuć 1995; Kombrink & Schmelzer, 2001). Activation of these 
compounds can be similar for both compatible and incompatible host-pathogen interactions 
(Schroder et al., 1992; Kombrink and Schmelzer, 2001). However, only with compatible 
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interactions does the pathogen infect and colonize the host. Accumulation of phytoalexins 
can occur as part of the HR (Dixon et al., 1994). However, it is not clear whether the HR 
triggers the production of phytoalexins and other antimicrobial compounds or if their 
accumulation is a direct result of elicitation (Kombrink & Somssich, 1995). 

1.2.2 Local acquired resistance 

Phytoalexins are low molecular weight antimicrobial compounds produced de-novo by 
some plants. They accumulate during infection by pathogens or after injury or stress (Ebel, 
1986; Isaac, 1992; Kuć, 1995). Accumulation of phytoalexins is mainly observed when fungi, 
rather than bacteria, viruses or nematodes, try to infect the plant. Accumulation is a result of 
specific elicitors released either by the fungal cell walls or by the plant cell walls (Ebel, 1986). 
Elicitors of phytoalexins include a large number of compounds including inorganic salts 
(Perrin & Cruickshank, 1965), oligoglucans (Sharp et al., 1984), ethylene (Chalutz & 
Stahmann, 1969), fatty acids (Bostock et al., 1981), and chitosan oligomers (Kendra & 
Hadwiger, 1984). Over 200 compounds, microorganisms and physiological stresses have 
been reported to elicit pisatin in pea, phaseollin and kievitone in green bean and glyceollin 
in soybean (Kuć, 1991).  

Most phytoalexins have been isolated from dicot plants, but they are also present in 
monocots including rice, corn, sorghum, wheat, barley and onions (Kuć, 1995). There is no 
published work on phytoalexins in cut flower species. Phytoalexins have been found in 
almost every part of the plant including roots, stems, leaves and fruits (Kuć, 1995). Such 
plant species produces a characteristic set of phytoalexins derived from secondary 
metabolism, in most cases via the phenylpropanoid pathway (Ebel, 1986; Kombrink & 
Somssich, 1995; Kuć, 1995). Phytoalexins belong to a number of key chemical groups 
including phenolics (e.g. flavonoids and coumarins), polyacetylenes, isoprenes, terpenoids 
and steroids (Ebel, 1986). They are produced by both resistant and susceptible tissues and 
resistance appears to be related with the total phytoalexin concentration (Kuć, 1995). 
Phytoalexins can affect fungal growth by inhibiting germ tube elongation and colony 
growth (Elad, 1997). The main effect of phytoalexins on fungi is via their cell membranes. 
Direct contact of phytoalexins with fungal cell walls resulted in fungal plasma membrane 
disruption and loss of the ultrastructural integrity (Elad, 1997). In compatible interactions, 
the pathogen apparently tolerates accumulated phytoalexins, detoxifies them, suppresses 
phytoalexin accumulation and/or avoids eliciting phytoalexin production (Kuć, 1995). 
Overcoming phytoalexin accumulation is attributed to either suppressor molecules released 
by the pathogen (i.e. low molecular weight polysaccharides or glycopeptides) or 
suppression of the intensity and timing of signal genes that could trigger phytoalexin 
accumulation (Kuć, 1995). 

Pathogenesis related proteins (PR-proteins) accumulate either in extracellular space or the 
vacuole after various types of plant stress, including pathogen infection (Stermer, 1995; 
Sticher et al., 1997). PR-proteins accumulate at the site of infection as well as in uninfected 
tissues (Van Loon & Gerritsen, 1989; Ryals et al., 1996). Although healthy plants may contain 
traces of PR-proteins, the transcription of genes encoding PR-proteins is up-regulated 
following pathogen attack, elicitor treatment, wounding or stress (Stermer, 1995; Sticher et 
al., 1997; Van Loon, 1997). Signal compounds responsible for initiating PR-protein 
production include salicylic acid, ethylene, the enzyme xylanase, the polypeptide systemin 
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and jasmonic acid (Agrios, 1997). The importance of PR-proteins lies in their range of 
defence activities (Van Loon et al., 1994). A number of PR-proteins release molecules that 
may act as elicitors (Keen & Yoshikawa, 1983). PR-proteins accumulation has been observed 
in monocots as well as in dicots (Redolfi, 1983). However, there is no published work on PR-
proteins induced in flower species. Eleven families of PR-proteins have been recognized so 
far (Van Loon et al., 1994). Some inhibit pathogen development during microbial infection 
by inhibiting fungal spore production and germination. Others are associated with 

strengthening of the host cell wall via its outgrowths and papillae (Agrios, 1997). Both -1,3-
glucanases and chitinases, PR-2 and PR-3, respectively, are known to have direct antifungal 
activity (Mauch et al., 1988; Van Loon, 1997). However, many pathogens have evolved 
mechanisms to reduce the antifungal impact of PR-proteins (Van Loon, 1997). For example, 
many chitin-containing fungi are not inhibited by host-produced chitinases. 

Plant secondary metabolites are divided into the three main categories of terpenes, phenolic 
compounds and nitrogen containing secondary metabolites (i.e. alkaloids) (Taiz & Zeiger, 
1998). All secondary metabolites are produced through one of the major mevalonic, malonic 
or shikimic pathways (Taiz & Zeiger, 1998). Phenylalanine is a common amino acid 
produced via the shikimic pathway (Hahlbrock & Scheel, 1989). The most abundant 
classes of secondary phenolic compounds in plants are derived from phenylalanine via 
elimination of an ammonia molecule to form cinnamic acid. This reaction is catalyzed by 
phenylalanine ammonia lyase (PAL), the key enzyme of phenylpropanoid metabolism 
(Hahlbrock & Scheel, 1989). Derivatives of phenylpropanoid pathway include low-
molecular-weight flower pigments, antibiotic phytoalexins, UV-protectants, insect 
repellents, and signal molecules in plant-microbe interactions (Hahlbrock & Scheel, 1989; 
Kombrink & Somssich, 1995). 

The main phenylpropanoid pathway branches leading to formation of flavonoids, 
isoflavonoids, coumarins, soluble esters, wall bound phenolics, lignin and suberin. This 
diverse spectrum of compounds has a wide range of properties (Hahlbrock & Scheel, 1989). 
For example, the lignin pathway is an important phenylpropanoid pathway branch that 
produces precursors for lignin deposition (Grisebach, 1981). Various enzymes implicated in 
the biosynthesis of lignin appeared to be induced in plants in response to infection or elicitor 
treatment (Matern & Kneusel, 1988). However, not all studies show a role of lignin and cell 
lignification in disease inhibition (Garrod et al., 1982). Furanocoumarins derived from the 
furanocoumarin pathway in parsley are considered potent phytoalexins (Beier & Oertli, 
1983). Flavonoid and furanocoumarin production as a response to UV light or fungal elicitor 
treatment respectively was associated with up-regulation of PAL, 4-coumarate: CoA-ligase 
(4CL) and chalcone synthase (CHS). Up-regulation was based on rapid changes in amounts 
and activities of the corresponding mRNAs (Chappell & Hahlbrock, 1984).  

After pathogen recognition by the host, a cascade of early responses is induced including 
ion fluxes, phosphorylation events, and generation of active oxygen species (Kombrink & 
Somssich, 1995). SA acts as a secondary signal molecule and its levels increase during the 
defence induction process. Thus, SA is required for initiation of synthesis of various 
defence-related proteins such as the PR-proteins (Van Loon, 1997; Metraux, 2001). SA 
accumulation endogenously in tobacco and cucumber plants lead to the HR and the SAR 
responses. However, SA is not necessarily the translocated signal (elicitor) for the onset of 
SAR. Rather, SA exerts an effect locally (Vernooij et al., 1994; Ryals et al., 1996). Nonetheless, 
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SA is still required for SAR expression (Van Loon, 1997). The importance of SA in the onset 
of SAR was determined using transgenic tobacco and Arabidopsis plants engineered to 
over-express SA-hydroxylase. Transformed plants with the naphthalene hydroxylase G 
(NahG) gene produced low levels of SA and SAR expression was blocked.  

SA is produced from phenylalanine via coumaric and benzoic acid (Mauch-Mani and 
Slusarenko, 1996; Ryals et al., 1996; Sticher et al., 1997). Biosynthesis of SA starts with the 
conversion of phenylalanine to trans-cinnamic acid (Sticher et al., 1997). From trans-
cinnamic acid, either benzoic acid (BA) or ortho-coumaric acid are produced. Both 
compounds are SA precursors (Sticher et al., 1997). Pallas et al. (1996) showed that tobacco 
plants epigenetically suppressed in PAL expression produced a much lower concentration 
of SA and other phenylpropanoid derivatives when artificially inoculated with tobacco 
mosaic virus (TMV). This was seen, firstly, due to the lack of resistance to TMV upon 
secondary infection, and, secondly, to the absence of PR protein induction in systemic leaves 
(Pallas et al., 1996). 

Jasmonic acid (JA) and its methyl ester (MeJA) are derived from linolenic acid. They are 
cyclopentanine-based compounds that occur naturally in many plant species (Sembdner & 
Parthier, 1993; Creelman & Mullet, 1997). Linolenic acid levels or its availability could 
determine JA biosynthetic rate (Farmer & Ryan, 1992; Conconi et al., 1996). The level of JA in 
plants varies as a function of tissue and cell type, developmental stage, and in response to 
various environmental stimuli (Creelman & Mullet, 1997). For example, in soybean 
seedlings, JA levels are higher in the hypocotyls hook (a zone of cell division) and young 
plumules as compared to the zone of cell elongation and more mature regions of the stem, 
older leaves and roots (Creelman & Mullet, 1997). High JA levels are also found in flowers 
and pericarp tissues of developing reproductive structures (Creelman & Mullet, 1997). 
Jasmonates are wide spread in Angiosperms, Gymnosperms and algae (Parthier, 1991). They 
can mediate gene expression in response to various environmental and developmental 
processes (Wasternack & Parthier, 1997). These processes include wounding (Schaller & 
Ryan, 1995), pathogen attack (Epple et al., 1997), fungal elicitation (Nojiri et al., 1996), touch 
(Sharkey, 1996), nitrogen storage (Staswick, 1990), and cell wall strengthening (Creelman et 
al., 1992). Wounding of tomato leaves produced an 18-amino acid polypeptide called 
systemin, the first polypeptide hormone discovered in plants so far (Pearce et al., 1991). 
Systemin was released from damaged cells into the apoplast and transported out of the 
wounded leaf via the phloem (Schaller & Ryan, 1995) (Fig. 1).  

Upon herbivore wounding, a systemic signal is delivered from systemin and results in an 
ABA-dependent rise of linoleic acid. Systemin was believed to bind to the plasma 
membrane of target cells and thereby initiate JA biosynthesis (Schaller & Ryan, 1995). JA 
accumulation can also be induced by oligosaccharides derived from plant cell walls and by 
elicitors, such as chitosans derived from fungal cell walls (Gundlach et al., 1992; Doares et 
al., 1995; Nojiri et al., 1996). JA also activates gene expression encoding proteinase inhibitors 
(Creelman & Mullet, 1997). Proteinase inhibitors are known antidigestive proteins that block 
the action of herbivore proteolytic enzymes (Creelman & Mullet, 1997). Thereby, proteinase 
inhibitors help the host to avoid consumption by herbivores. Proteinase inhibitors were 
accumulated in tomato plants after wounding (O’Donnell et al., 1996) and after irradiation 
with UV-C (Conconi et al. 1996). In response to wounding, ethylene and JA act together to 
regulate gene expression of proteinase inhibitors (O’Donnell et al., 1996). Exposing tomato 
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leaves to increasing doses of 254 nm UV-C resulted in increased proteinase inhibitors gene 
expression. Expression of proteinase inhibitors in wounded (Doares et al., 1995; O’Donnell 
et al., 1996) or UV-C treated (Conconi et al., 1996) tomato leaves was markedly reduced 
upon treatment with SA. From linoleic acid, jasmonic acid is produced. Ethylene is required 
in the jasmonic-signalling cascade (O’Donnell et al., 1995). 

Gene expression 
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Fig. 1. The octadecanoid-signalling pathway for defence gene expression in tomato (Schaller 
and Ryan, 1995).  
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1.2.3 Systemic defence responses (i.e. SAR, ISR) and signalling pathways 

SAR is activated following induction of local acquired resistance (LAR). SAR is potentially 
induced after the HR and after challenge with virulent strains of a pathogen or elicitor 
treatment. It develops systemically in distant parts of the infected plant (Lawton et al., 1996; 
Ryals et al., 1996; Metraux, 2001). SAR protects plants from a broad range of potential 
pathogens (Kessmann et al, 1994). 

Specific genes induced in different plant species during SAR have been called SAR-genes 
(Kessmann et al., 1994; Stermer, 1995; Ryals et al., 1996; Sticher et al., 1997). Most of SAR-
genes encode PR-proteins such as those accumulated after inoculation of tobacco with TMV 
(Ward et al., 1991). These include PR-1 (PR-1a, PR-1b, PR-1c), -1,3-glucanases (PR-2a, PR-
2b, PR-2c), chitinases (PR-3a, PR-3b), hevein-like proteins (PR-4a, PR-4b), thaumatin like 
proteins (PR-5a, PR-5b), acidic and basic isoforms of class III chitinase, an extracellular -1,3-
glucanase and the basic isoform of PR-1 (Ward et al., 1991). SAR and SAR-gene activation 
has been observed in various dicots (Kessmann et al., 1994; Ryals et al., 1996). SAR 
activation involves species specificity (Ryals et al., 1992). For example, acidic PR-1 is only 
weakly expressed in cucumber. In contrast, acidic PR-1 is the main protein accumulating in 
tobacco and Arabidopsis. A number of homologous SAR-genes have been identified in 
monocots. Homologs of the PR-1 family were found in maize and barley and other PR-
proteins in maize (Nasser et al., 1988). Gorlach et al. (1996) isolated a group of wheat genes 
(WCI or wheat chemically induced) induced after chemical treatment with potent SAR 
inducers. WCI genes seemed to act in a similar manner to SAR-genes in dicots after chemical 
treatment with plant activators (Gorlach et al., 1996). 

Recent research has revealed that JA and ethylene play key roles in signal transduction 
pathways associated with plant defence responses (Pieterse and van Loon, 1999; Thomma et 
al., 2000). Inoculation with a necrotizing pathogen resulted predominantly in activation of 
the SA-dependent SAR response. This response leads to the accumulation of salicylic acid 
inducible PR-proteins and the expression of SAR (Ryals et al., 1996; Pieterse & van Loon, 
1999) (Fig. 2, pathway 2). JA and ethylene inducible defence responses are induced by non-
necrotizing rhizobacteria and lead to the ISR phenomenon (Pieterse et al., 1996; Pieterse et 
al., 1998) (Fig. 2, pathway 1). Both pathways 1 and 2 are regulated in Arabidopsis plants 
carrying the NPR1 gene. 

Depending on the invading pathogen, the composition of defence compounds produced 
after infection can vary between SA- and JA/ethylene-inducible pathways (Fig. 2, pathways 
2 and 3) (Ryals et al., 1996; Epple et al., 1997; Dong, 1998).  

Wounding can also result in JA and ethylene inducible defence response activation (Fig. 2, 
pathway 4) (O’Donnell et al., 1996; Wasternack & Parthier, 1997). However, resultant 
products of the wounding pathway differ from those induced upon pathogen infection 
(O’Donnell et al., 1996; Rojo et al., 1999). A second distinct wound-signalling pathway 
leading to wound responsive (WR) gene expression has been found in Arabidopsis plants 
(Titarenko et al., 1997; Rojo et al., 1998) (Fig. 2, pathway 6). Upon wounding, Arabidopsis 
plants carrying the coi1 (JA-insensitive) mutant gene expressed the wound responsive genes 
choline kinase (CK) and wound responsive (WR3) indicating that the induced pathway was 
totally independent of JA. UV irradiation of tomato leaves also resulted in induction of the 
same defensive genes normally activated through the octadecanoid pathway after 
wounding (Conconi et al., 1996). This response is blocked after SA treatment, confirming the 
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antagonistic regulation of the two distinct pathways (Pena-Cortes et al., 1993; Lawton et al., 
1995; Xu et al., 1994; Doares et al., 1995; O’Donnell et al., 1996; Niki et al., 1998; Gupta et al., 
2000; Rao et al., 2000). 

In the rhizobacteria-mediated induced systemic resistance (ISR) pathway, components from 
the JA/ethylene response acted in sequence in activating a systemic resistance response that, 
like pathogen induced SAR, was dependent on the regulatory protein NPR1 (Pieterse & van 
Loon, 1999). The ISR pathway shares signalling events with pathways initiated upon 
pathogen infection, but is not associated with the activation of genes encoding plant 
defensins, thionins or PR-proteins (Pieterse & van Loon, 1999) (Fig. 2, pathway 3). This 
observation indicates that ISR inducing rhizobacteria, such as P. fluorescens strain WCS417r, 
trigger a novel signalling pathway leading to the production of so far unidentified defense 
compounds (Pieterse et al., 1996; Pietrese et al., 1998). Protection of NahG Arabidopsis 
plants by gaseous MeJA suggested that induction of a SA non-dependent systemic pathway 
was regulated by JA (Thomma et al., 2000) (Fig. 2, pathway 3). Protection was provided 
against two necrotrophic fungi, A. brassicicola and B. cinerea. 

 

JA response 

Non-pathogenic rhizobacteria Pathogen infection Wounding 

Ethylene response 

Unknown defensive 

compounds 

Necrosis

SA production JA + Ethylene production 

NPR1 

SAR 

SA inducible PRs 

SA non-inducible PRs Plant defensins, 

thionins  

Proteinase 

inhibitors 

ISR 

 1  32 

 4

-

+

5 

Choline kinase 

WR3 genes 

 6 

 

Fig. 2. Model showing systemic signalling pathways that can be induced in plants by non-
pathogenic rhizobacteria, pathogen infection and wounding, such as caused by foraging 
insects. 1: ISR is induced in NPR1 Arabidopsis plants as a result of JA and ethylene 
responses. 2: SAR is induced in NPR1 Arabidopsis plants after necrosis by pathogenic fungi, 
bacteria or virus. 3: JA/ethylene pathway is up- regulated after fungal infection. 
JA/ethylene expression leads to genes encoding plant defensins, thionins, proteinase 
inhibitors and SA-independent PR-proteins. 4 and 6: A number of genes are regulated after 
mechanical wounding. JA and ethylene levels rise after mechanical wounding. 5: Cross-talk 
between SA- and JA- dependent pathways exist. Adopted from Pieterse & van Loon (1999). 
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1.3 Elicitation of defence responses with chemical activators 

Disease management in the past has been achieved by various methods including resistant 
cultivars, biological control, crop rotation, tillage, and chemical pesticides (Kessmann et al., 
1994). Recently, the use of abiotic and/or biotic agents, as well as, synthetic compounds that 
induce host immune systems have offered a new prospect for disease management. 

A chemical is generally characterized as a plant activator when it induces natural and/or 
systemic defence responses, activate gene expression and provide protection on the same 
spectrum of diseases exerted by a wild type host (Kessmann et al., 1996; Ruess et al., 1996). 
Plant activators, normally, do not exert direct antimicrobial activity against pathogens when 
used for disease control, but rather work through their mutagenic elicitation effect and help 
eliminate the risk of the development of resistant strains by the pathogen. 

1.3.1 Acibenzolar-S-methyl (ASM; benzo[1,2,3]thiadiazole-7-carbothioic acid S-methyl 
ester; CGA 245704; benzothiadiazole or BTH) 

The efficacy of ASM has been tested in field, glasshouse and pot trials (Table 2).  

 

Host Pathogen 
Induced 
response 

ASM 
concentration 

Reference 

Apple seedlings 
cv. Golden 
Delicious 

Erwinia amylovora 
-1,3-

glucanases, 
peroxidases 

0.1-0.2 g AI L-1 
Brisset et al., 

2000 

Cauliflower  
(Brassica oleracea) 

Peronospora parasitica ns 
0.0015-0.075 g 

AI L-1 
Godard et al., 

1999 

Cereals, tobacco 

Erysiphe graminis, 
Septoria spp., Puccinia 

spp., Peronospora 
hyoscyami f. sp. tabacina 

ns 12-30 g AI ha-1 Ruess et al., 1996 

Cucumber  
(Cucumis sativus 
L.) 

Cladosporium 
cucumerinum 

Acidic 
peroxidase, 

class III 
chitinase and -

1,3-glucanase 

32.4 g AI L-1 
Narusaka et al., 

1999 

Cucumber 
(Cucumis sativus 
L.) and Japanese 
pear (Pyrus 
pyrifolia Nakai 
var. culta Nakai) 

Many pathogens ns 0.05-0.1 g AI L-1 Ishii et al., 1999 

Cauliflower  
(Brassica oleracea) 

P. parasitica 
-1,3-glucanase. 
PR-1 and PR-5 

0.05 g AI L-1 Ziadi et al., 2001 

Grapevine cv 
Merlot 

B. cinerea na 0.3 mM Iriti et al., 2004 

Melons cv. Early 
Yellow Hami 

Fusarium spp., 
Alternaria spp., 
Rhizopus spp. 

Trichothecium sp. 

ns 
0.025 or 0.05 g 

AI L-1 
Huang et al., 

2000 
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Host Pathogen 
Induced 
response 

ASM 
concentration 

Reference 

Melon fruit Fusarium pallidoroseum 

ascorbate 
peroxidase, 

guaiacol 
peroxidase, 
PAL, β-1,3-
glucanase 

 
Gondim et al., 

2008 

Parsley cells 
(Petroselinum 
crispum L.) 

With or without elicitor 
(Pmg) 

PAL, coumarins 
0.32-6.48 g  

AI L-1 
Katz et al., 1998 

Pepper  
(Capsicum 
annuum L.) 

Xanthomonas campestris 
pv. vesicatoria 

ns 
1.25-5 g  
AI L-1 

Buonaurio et al., 
2002 

Soybean 
seedlings 

Sclerotinia sclerotiorum ns 
0.035-0.375 g 

AI L-1 
Dann et al., 1998 

Strawberry 
plants cvs. 
Elsanta and 
Andana 

B. cinerea ns 
0.25-2 g  
AI L-1 

Terry and Joyce, 
2000 

Strawberry Microbial populations 
chitinase and β-

1,3-glucanase 
0.05-0.5 g.L-1 Cao et al., 2010 

Tobacco plants 
cv. Kutsaga 
Mammoth 10 

Pseudomonas syringae 
pv tabaci, Thanatephorus 

cucumeris, Cercospora 
nicotianae 

ns 
0.05-30 g  

AI L-1 
Cole, 1999 

Tomato plants 
(Lycopersicon 
esculentum) 

Fusarium oxysporum 
f.sp. radicis-lycopersici 

Callose 
enriched wall 
appositions 

phenolic 
compounds 

97.2 g  
AI L-1 

Benhamou & 
Belanger, 1998 

Tomato plants 
cv. Vollendung  

Cucumber mosaic virus 
(CMV) 

ns 0.1 mM Anfoka, 2000 

Wheat 
Erysiphe graminis f.sp. 

tritici 
WCI genes (1-5) 0.3 mM 

Gorlach et al., 
1996 

Table 2. Effects of ASM on different host-pathogen interactions (ns: not shown, na: not 
applicable).  

Although, most of ASM application were carried out preharvest, there is number of 
published research on ASM postharvest applications (i.e. Cao et al., 2010). Additionally, a 
considerable work on postharvest application of ASM on ornamentals has been published 
the recent years (i.e. Darras et al., 2007). ASM was introduced as a potent inducer of SAR 
and treated plants were resistant to the same spectrum of diseases as plants activated 
naturally (Kessmann et al., 1996; Friedrich et al., 1996). Although ASM and its metabolites 
exhibited no direct antimicrobial activity towards plant pathogens tested, they induced the 
same biochemical processes in the plant as those observed after natural activation of SAR 
(Friedrich et al., 1996; Lawton et al., 1996). The compound, which was inactive in plants that 
do not express the SAR-signaling pathway, required a lag time of approximately 30 days 
between application and protection (Lawton et al., 1996). 
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1.3.2 Jasmonates (plant hormones produced through the octadecanoid pathway) 

The efficacy of jasmonates has been tested in field, glasshouse and pot trials (Table 3).  

 

Host Pathogen 
Induced 
response 

MeJA 
concentration 

Reference 

     

Arabidopsis 

(Arabidopsis 

thaliana) 

B. cinerea, 
A.brassicicola, 

Plectosphaerella 
cucumerina 

ns 

0.5-50 μM and 

0.001-1 μL L-1 

air 

Thomma et 

al., 2000 

Arabidopsis 
(Arabidopsis 
thaliana) 

A. brassicicola PDF1.2 45 μM 
Penninckx et 

al., 1996 

Grapefruit 
(Citrus paradisi) 
var. ‘Marsh 
Seedless 

Penicillium 
digitatum 

ns 1-50 μM 
Droby et al., 

1999 

Large number 
of species 

na PPO na 
Constabel 
and Ryan, 

1998 

Loquat fruit 
Colletotrichum 

acutatum 

chitinase and 
β-1,3-

glucanase 
10 μmol L-1 

Cao et al., 
2008 

Potato plants 
(Solanum 
tuberosum) 

Phytophthora 
infestans 

phytoalexins 1-10 μM 
Il’inskaya et 

al., 1996 

Sweet cherry Monilinia fructicola 
PAL, β-1,3-
glucanase 

0.2 mM 
Yao & Tian, 

2005 

Tobacco cell 
cultures 

na 

β-
glucuronidase 

(GUS), 
osmotin 
protein 

0.045-4550 μM 
Xu et al., 

1994 

Tobacco cv. 
Xanthi-nc  

Phytophthora 
parasitica var. 

nicotianae, 
Cercospora 

nicotianae, TMV 

β-
glucuronidase 

(GUS) 
45 μM 

Mitter et al., 
1998 

Tomato plants 
(Lycopersicon 
esculentum) 

Helicoverpa zea, 
Spodoptera exigua 

PPO, POD, 
LOX and PIs 

0.1-10 mM 
Thaler et al., 

1996 

Tomato plants 
(Lycopersicon 
esculentum) 

Spodoptera exigua, 
Pseudomonas 

syringae pv. tomato 
PPO 1 mM 

Thaler et al., 
1999 

Τable 3. Effects of MeJA on different host-pathogen interactions. (ns: not shown, na: not 

applicable).  
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Although, firstly tested preharvest, JA or MeJA has been extensively used postharvest at 

different hosts (i.e. fruits, vegetables, cut flowers), application modes (i.e. spray, pulse, gas) 

and incubation environments (i.e. storage or ambient temperatures). For example, JA and 

MeJA were tested on grapefruit for suppressing postharvest green mold decay [Penicillium 

digitatum (Pers.:Fr.) Sacc.] (Droby et al., 1999). Studies showed that 50 μM and 1 μM MeJA 

concentrations were effective against the disease and that the reduction in the decay was the 

same at incubation temperatures of 2 or 20°C. Moreover, as the in-vitro tests showed no 

direct antifungal activity of JA and MeJA, it was suggested that the disease suppression was 

achieved via natural resistance induction (Droby et al., 1999). Treatment of Arabidopsis 

plants with MeJA reduced A. brassicicola, B. cinerea and Plectosphaerella cucumerina disease 

development (Thomma et al., 2000). Application of gaseous MeJA to plants resulted in a 

greater disease reduction compared to that on plants sprayed with MeJA or treated with 

INA. Gaseous MeJA protected SA-degrading transformant NahG plants, suggesting that 

gaseous MeJA induced a non-SA dependent systemic response (Thomma et al., 2000). 

Combination of ASM and JA was tested against bacterial and insect attack on field grown 

tomato plants (Thaler et al., 1999). Two signaling pathways, one involving SA and another 

involving JA were proposed to provide resistance against pathogens and insect herbivores, 

respectively (Thaler et al., 1999). 

1.4 Elicitation of defence responses in floriculture  

The efficacy of ASM and MeJA on ornamental pot plants and on cut flowers has been tested 

pre- and postharvest, respectively (Table 4). Most of such tests were carried out in the very 

recent years and still increasing. For example, pre- and postharvest treatments with MeJA or 

ASM on cut flowers conferred a variable measure of protection against postharvest 

infections by B. cinerea (Dinh et al., 2007).  

JA and MeJA provided systemic protection to various rose cultivars (e.g. Mercedes, Europa, 

Lambada, Frisco, Sacha and Eskimo) against B. cinerea (Meir et al., 1998). MeJA applied as 

postharvest pulse, significantly reduced B. cinerea lesion size on detached rose petals. In the 

same study, MeJA at concentrations of 100-400 μM showed in-vitro antifungal activity on B. 

cinerea spore germination and germ-tube elongation. Similarly, a postharvest pulse, spray, 

or vapour treatment with MeJA 200 μΜ, 600 μΜ or 1 μL L-1, respectively, significantly 

reduced petal specking by B. cinerea on cut inflorescences of Freesia hybrida ‘Cote d’Azur’ 

(Darras et al., 2005; 2007). Moreover, 1-100 μL L-1 MeJA postharvest vapour treatment 

reduced B. cinerea development on cut Geraldton waxflower ‘Purple Pride’ and ‘Mullering 

Brook’ sprigs (Eyre et al., 2006). Application of gaseous MeJA to fresh cut peonies resulted 

in the lowest disease severity and in an improvement of vase life compared to the untreated 

controls (Gast, 2001). 

MeJA and ASM, applied preharvest had variable responses against postharvest infection by 

B. cinerea. ASM was not as effective as MeJA in suppressing the development of postharvest 

B. cinerea disease for glasshouse grown freesias (Darras et al., 2006b). Dinh et al. (2007) 

reported that multiple sprays of ≤1000 μM MeJA to field grown plants significantly reduced 

B. cinerea on Geraldton waxflower ‘My Sweet Sixteen’ cut sprigs, that were un-inoculated or 

artificially inoculated with B. cinerea (Dinh et al., 2007).  
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Host Elicitor Target pathogen 
Application 
method and 

timing 
Reference 

a. Cut flowers     

Rose (Rosa hybrida) ASM Diplocarpon rosae 
Spray - 

preharvest 

Suo & Leung, 

2002 

 MeJA B. cinerea 
Pulse, spray - 

postharvest 

Meir et al., 1998; 

2005 

Gerbera (Gerbera 

jamesonii) 
UV-C B. cinerea Postharvest 

Darras et al., 

2012 

Freesia (Freesia hybrida) 
MeJA & 

ASM 
B. cinerea 

Spray - 

preharvest 

Darras et al., 

2006b 

 MeJA B. cinerea 
Pulse, spray, gas 

- postharvest 

Darras et al., 

2005; 2007 

Sunflower plants 

(Helianthus annuus) 

ASM, 

MeJA, 

SA, INA 

B. cinerea 
Spray - 

preharvest 

Dimitriev et al., 

2003 

Sunflower plants  

(Helianthus annuus) 
ASM 

Plasmopara 

helianthi 
Spray - preharvest Tosi et al., 1999 

Geraldton waxflower  

(Chamelaucium uncinatum) 
SA 

Alternaria sp., 

Epicoccum sp. 

Spray - 

preharvest 
Beasley, 2001 

 MeJA B. cinerea Gas - postharvest Eyre et al., 2006 

 
MeJA & 

ASM 
B. cinerea 

Spray – pre- and 

postharvest 

Dinh et al., 

2007; 2008 

Peonies (Paeonia lactiflora) MeJA B. cinerea Gas - postharvest Gast, 2001 

     

b. Pot plants     

Cyclamen (Cyclamen 

persicum) 
ASM 

Fusarium 

oxysporum f. sp. 

cyclaminis 

Spray - 

preharvest 
Elmer, 2006a 

Petunia (Petunia hybrida)  
Phytophthora 

infestans 

Spray - 

preharvest 

Becktell et al., 

2005 

     
c. Landscape architecture 

plants 
    

Date palm ASM 

Fusarium 

oxysporum f. sp. 
albedinis 

Injection in the 

trunk 
Jaiti et al., 2009 

     
d. Propagation material     

Gladiolus corms  
(Gladiolus x hortulanus) 

ASM 
Fusarium 

oxysporum f. sp. 
gladioli 

Dip Elmer, 2006b 

Table 4. Chemical and biological elicitors tested on cut flowers and ornamental pot plants 
against various pathogens infecting either pre- or postharvest. 
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Chemical elicitors such as ASM have been applied in pot ornamentals such as petunia 

(Becktell et al., 2005), cyclamen (Elmer, 2006a) and in gladiolus corms (Elmer, 2006b), but 

effectiveness varied within the different experimental designs and conditions. In cyclamen, 

infection by Fusarium oxysporum f.sp. cyclaminis was reduced with increasing ASM doses 

(Elmer, 2006a). Additionally, the dry mass of ASM treated cyclamen plants increased with 

increasing ASM rates. However, as no further assays were carried out to assess possible 

induction of defence responses, it was not clear whether ASM reduced F. oxysporum f.sp. 

cyclaminis via induction of defence mechanisms or via a profound fungitoxic effect. It has 

been demonstrated in other research that ASM may exert direct toxic activity against B. 

cinerea (Darras et al., 2006b). In addition, ASM did not confer a significant level of protection 

on gladiolus corms against F. oxysporum f. sp. gladioli, and compared to conventional 

fungicides, although, the number of emerging flower spikes increased significantly 

compared to the ASM-untreated corms (Elmer, 2006b). 

2. Elicitation of defence responses in cut Freesia hybrida flowers – A typical 
example  

2.1 Background 

Infection problems by Botrytis cinerea are typical to most geographical areas around the world 

and concern cut flower industry. Infection of cut flowers by the fungus results in visible lesions 

on flower petals (petal spotting or petal specking). According to Darras et al. (2004) freesia 

flower rejections at certain periods of the year (viz. April, May, October) lead in severe 

economic losses to growers, importers and sellers. Infection by B. cinerea of most cut flowers 

occurs in the glasshouse when a single conidium germinates and penetrates petal epidermal 

cells. A necrotic lesion appears postharvest after a brief incubation period under favourable 

environmental conditions (Darras et al., 2006a). Infection is difficult to control as it appears 

later in handling chain under various conditions during transport or storage. 

In most cases, B. cinerea disease is controlled by conventional fungicides. However, 

extensive use of fungicides such as dicarboximides in the glasshouse has led to appearance 

of fungicide resistance (Pappas 1997). Alternative management methods within the concept 

of IDM can help overcome such problems. 

For this reason, plant defence inducers (i.e. elicitors) such as ASM and MeJA have been 

tested with applications at various intervals, pre- or postharvest to activate systemic defence 

responses of the host (Kessmann et al., 1994; Meir et al., 1998; Thomma et al., 2000). For cut 

freesia flowers postharvest pulse, spray, or gaseous MeJA treatment at 200 μM, 600 μM, or 1 

μL L–1, respectively, significantly reduced petal specking by B. cinerea on cv. ‘Cote d’Azur’ 

inflorescences (Darras et al., 2005; 2007). An apparent induced defence response was 

recorded by both ASM and MeJA treatment. However, only MeJA conferred constant and 

significant disease reductions. MeJA vapour at 1 μL L–1 significantly reduced lesion numbers 

and diameters on freesia petals by up to 56% and 50%, respectively (Darras et al., 2005).  

2.2 Overview of published research and further discussion 

Freesia inflorescences cv ‘Cote d’Azur’ gassed with 0.1 μL L-1 MeJA showed significantly 

smaller lesions after artificial inoculation with B. cinerea (Fig. 3). Gaseous MeJA might have 
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induced a range of defence mechanisms to halt infection development. MeJA applied post-

harvest as vapour at 1-100 μL L-1 significantly reduced the development of B. cinerea on cut 

Geraldton waxflower ‘Purple Pride’ and ‘Mullering Brook’ sprigs (Eyre et al., 2006). In a 

very recent study, Darras et al. (2011) demonstrated that gaseous MeJA at 0.1 μL L-1 

significantly increased polythenol oxidase (PPO) activities 24 and 36 h post-treatment. This 

observation suggests that MeJA-induced defence mechanisms might be associated with the 

production of quinones (Constabel and Ryan, 1998), which probably helped in B. cinerea 

disease reduction. The effects of PPO in B. cinerea disease control have been confirmed for 

gerbera flowers (Darras et al., 2012). A low dose of UV-C irradiation increased PPO activity 

and was positively correlated with the reduction of B. cinerea disease symptoms on the 

florets (Darras et al., 2012). This indicates that PPO might play an important role in B. cinerea 

disease control on cut flowers.  

 
 
 
 
 

 
 
 
 

Fig. 3. B. cinerea necrotic lesions on artificially inoculated freesia cv. ‘Cote d’Azur’ flowers 
treated with 0.1 μL L-1 gaseous MeJA (left) or left un-treated (control) (right) and incubated 
for 48 h at 20°C (Darras, 2003). 
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Lesion diameters on the detached freesia petals were significantly reduced with increasing 

MeJA spray, pulse or gaseous concentrations (Darras et al., 2007). The first published 

evidence of postharvest MeJA spray treatments enhancing protection of cut flowers against 

B. cinerea was the work by Meir et al. (2005) on cut roses. According to Meir et al. (2005), 

simultaneous MeJA pulsing and spraying under handling conditions resulted in 

suppression of gray mold in seven rose cultivars (‘Eskimo’, ‘Profita’, ‘Tamara’, ‘Sun Beam’, 

‘Pink Tango’, ‘Carmen’, ‘Golden Gate’). In an earlier study MeJA applied as a pulse variably 

reduced B. cinerea lesion numbers and diameters (Meir et al., 1998). Our findings are in 

agreement with those by Meir et al. (1998) that disease severity in both artificially inoculated 

and naturally infected rose flowers was reduced by a MeJA pulse at 0.2 mM at 20°C. On cut 

Geraldton waxflower ‘Purple Pride’ and ‘Mullering Brook’ sprigs, 1-100 μL L-1 MeJA 

postharvest vapour treatment significantly reduced the development of B. cinerea (Eyre et 

al., 2006). However, it also induced flower fall incidence, which was correlated with a 

systemic resistance-associated up-regulation of ethylene biosynthesis. 

Irrespective to the concentration tested, ASM provided no protection to artificially 

inoculated freesia flowers (Darras et al., 2007). However, natural infection was significantly 

(P < 0.05) reduced after ASM treatment during storage at 5 and at 12°C. On the contrary, 

postharvest treatments of strawberry cv. Camarosa fruit with ASM failed to reduce natural 

infection by B. cinerea at 5°C (Terry & Joyce, 2004b). Generally, ASM tended to provide 

protection on freesia flowers at lower incubation temperatures (Darras et al., 2007). 

However, it was not clear whether such disease reductions were the result of the induction 

of host’s defence responses or a direct fungitoxic activity measured in the same study. 

Likewise, Terry & Joyce (2000) showed that ASM reduced in-vitro B. cinerea mycelial growth 

on ASM-amended agar. It is possible that the limited disease control on freesia flowers at 

5°C was due to direct toxic effect of ASM rather than via SAR induction.  

Elicitation of defence responses in cut flowers is an interesting prospect for B. cinerea disease 

control especially as it may offer alternatives to fungicide application. In series of 

postharvest experiments with freesia inflorescences the potential to induce natural defence 

mechanisms or directly controlling B. cinerea disease by application of biological and 

chemical elicitors was investigated. Postharvest treatments with ASM, MeJA or UV-C 

irradiation markedly suppressed B. cinerea specking on freesia petals by reducing disease 

severity, lesion numbers and lesion diameters. However, attempts to further minimise 

disease damage caused by B. cinerea using combined treatments with different plant 

activators (i.e. both ASM and MeJA), were not successful (Darras et al., 2011). 

In summary, ASM was the least effective in reducing B. cinerea specking on cut freesia 

flowers (Fig. 4). In addition, it remained unclear as to whether or not SAR was induced. In 

contrast, gaseous MeJA reduced disease severity most probably by inducing JA-

dependant biochemical responses. These contrasting results tend to concur with 

observations by Pieterse & van Loon (1999) and Thomma et al. (2001) that SA- versus JA-

dependent pathways are effective against different pathogens. The results of a most recent 

paper (i.e. Darras et al., 2011)) suggested that, SA-dependant pathway and consequently 

the SAR response was not effective in freesia flowers against B. cinerea infection. In 

contrast, the JA-dependant pathway was apparently induced and suppressive of B. cinerea 

infection (Darras et al., 2011). 
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Elicitor treatment  
ranking     
(ie. ranked  
according to their  
relative efficacy)   

MeJA gas 
Postharvest 

treatment before 

artificial 

inoculation 

UV-C 
Postharvest 

treatment before 

and after artificial 

inoculation 

 

MeJA pulse 
Postharvest 

treatment before 

artificial 
inoculation 

MeJA spray 
Postharvest 

treatment before 

artificial 
inoculation 

Acibenzolar 
Postharvest 

treatment before 

artificial 
inoculation 

Induction of PPO,  
Suppression of PAL 

Inactivation of B. 

cinerea conidia  

No effect on PAL 
activity 

At 20°C, 0.1μL L
-1

 MeJA gas reduced disease severity,  
lesion numbers and lesion diameters  by  68, 56 and 50 %,  
respectively. 

UV-C irradiation with 1 kj m
-2,

 reduced disease severity,  
lesion numbers and lesion diameters b y 74 68 and 14%,  
respectively. 

At 20°C, 200μM MeJA pulse reduced disease severity,  
lesion numbers and lesion diameters by .43, 29 and 18% ,  
respectively. 

At 20°C, 600μM MeJA spray reduced disease severity,  
lesion numbers and lesion diameters by 42, 35 and  0%,  
respectively. 

At 5°C, 0.15 g A.I. L
-1

 acibenzolar reduced disease  
severity, lesion numbers and lesion diameters by .  18,  
30 and 43%, respectively. 

Treatment  Response  Disease parameters   

 
 
 
 
 
 
 
 

Fig. 4. Ranking, in terms of relative efficacy, of postharvest biological (i.e. UV-C) and 

chemical (i.e. ASM, MeJA) elicitors tested on cut freesia inflorescences to control B. cinerea 

infection starting with the most effective (Darras, 2003). 
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3. Conclusions and recommendations for future research 

Management of postharvest infection of cut freesia flowers by B. cinerea, was, in most cases, 

successful. ASM was somewhat effective compared to untreated controls mostly when 

applied preharvest at 1.43 μΜ. In-vitro studies showed direct antifungal activity of ASM 

against B. cinerea colony growth and conidial germination. Inconsistency of ASM applied 

pre- or postharvest may be explained by: 1) variability of environmental conditions in the 

glasshouse, which may affected defence enhancement (Herms & Mattson, 1992; Terry, 2002); 

and, 2) infection by B. cinerea might not necessarily be sensitive to induced SAR responses, 

and thus ASM treatments may not correspond to B. cinerea disease suppression (Thomma et 

al., 1998; Govrin & Levine, 2002). Friedrich et al. (1996) reported that ASM failed to control 

B. cinerea in tobacco, but was effective against other pathogens. The apparent inability of 

ASM to control B. cinerea was seemingly supported by the observation that PAL activity in 

ASM treated freesia inflorescences was not higher compared to the untreated controls. 

Therefore, ASM did not induce biochemical defence processes, such as the production of 

antifungal secondary metabolites like phytoalexins through the phenylpropanoid pathway 

(Kombrink & Somssich, 1995; Kuć, 1995). 

In contrast to inconsistent effects of ASM, MeJA was markedly effective in suppressing B. 

cinerea specking on cut freesia flowers when applied either pre- or postharvest. MeJA 

effectiveness was application method and concentration dependent. MeJA applied as gas 

was more effective compared to pulsing or spraying. It is possible that MeJA may function 

as an airborne signal which activated disease resistance and the expression of defence 

related genes in plant tissue (Shulaev et al., 1997). This finding agrees with earlier findings 

in Arabidopsis presented by Thomma et al. (2000). In Arabidopsis, this effect was mediated 

via the JA-dependent defence responses (Thomma et al., 2000). MeJA did not exert any 

direct antifungal activity in-vitro except at the concentration of 600 μM and therefore it is 

possible that MeJA reduced B. cinerea disease on freesia flowers by inducing responses 

correlated with the JA-dapendent pathway (Darras et al., 2005). PPO levels in freesia flowers 

after MeJA gaseous treatment increased by 47 and 57% compared to the untreated controls 

(Darras et al., 2011). However, PAL activity decreased markedly compared 12 h post 

MeJA application and maintained at minimum level (i.e. ≈ 0). These findings suggest that 

MeJA might suppress the action of PAL in the phenylpropanoid pathway and 

consequently reduce or block SA production. Antagonistic regulation of JA- and SA- 

dependent pathways has been documented in the past by Pena-Cortes et al. (1993), 

Conconi et al. (1996), Niki et al. (1998), Gupta et al. (2000), and Rao et al. (2000). The 

apparent suppression of PAL in freesia flowers by MeJA constitute additional evidence of 

a JA- and SA- antagonistic response. 

MeJA applied to freesia plants 28 days before harvest suppressed postharvest flower 

specking caused by B. cinerea in both a temperature and variety dependent fashion. MeJA 

was highly effective when flowers were incubated at 20°C compared to incubation at 5 or 

12°C. It is likely that low incubation temperatures slow down plant’s metabolism and also 

the production of defence related compounds (Jarvis, 1980). Overall, MeJA provided a 

considerable level of protection against B. cinerea when applied preharvest and, thus, could 

be considered a promising tool in an IDM context. Further study at the molecular level is 
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warranted to help interpret the MeJA mode of action in cut flowers. Also, additional in-

planta trials on extra freesia varieties and a wider range of MeJA concentrations may help in 

better understanding MeJA efficacy. 

In view to the promising results using MeJA, it is likely that elicitor based strategies within 

IDM could be used for the control of Botrytis or other pathogens on freesias and ornamental 

pot plants, as well as on various cut flowers. In turn, IDM would minimise the risk of 

pathogens developing resistance to fungicides and also reduce public concerns over 

extensive fungicide use (Jacobsen & Backman, 1993).  

More research could be undertaken into potential synergistic effects of combined pre- and 

postharvest treatments with plant activators and/or abiotic biological agents (i.e. UV-C 

irradiation). In due course, pre and/or postharvest use of plant activators could have 

commercial potential for postharvest disease suppression (Kessmann et al., 1994; 

Kessmann et al., 1996; Thaler et al., 1996; Meir et al., 1998; Huang et al., 2000; (Darras et 

al., 2011). 
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