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1. Introduction 

Bone regeneration procedures aim at recapitulating optimal wound healing where tissue 

components are restored to the form and function required for tissue and organ homeostasis 

(Zohar &Tenenbaum 2005; Bueno &Glowacki 2009; Dimitriou et al. 2011). Examples of ideal 

bone regeneration include the healing of a healthy tooth extraction socket or a simple bone 

fracture. This is not the case in non-union fractures, or extensive damage as a result of 

tumour removal or bone subjected to chemotherapy, where the overall wound healing 

ability may be compromised (Dimitriou et al. 2011). Bone is a specialized connective tissue 

consisting of osteoblasts, osteocytes and osteoclasts embedded in a mineralized matrix 

capable of remodelling, renewing and load bearing. Optimal bone regenerative therapy will 

enhance mineralized tissue wound healing through enrichment of the wound/bone defect 

with a matrix scaffold to support the wound, cells that will give rise to osteoprogenitors and 

inducer molecules, such as growth factors to amplify activity of cells or events responsible 

for bone formation. New regenerative approaches may include a combination of these 

factors in part or as a whole. The temporal, spatial activity and maturation of these three 

components (i.e. cells, matrix and inducer molecules) during bone regeneration has to be a 

coordinated and integrative process. Delayed, reduced or lack of activity of any of these 

components may result in repair and not regeneration of a remodelling functional bone. Cell 

therapy is compared to the gold standard of autogenous bone marrow grafting, which is 

considered to be enriched with mesenchymal stem cells, osteoprogenitors and inducer 

molecules; marrow grafting usually offers predicative regenerative approach. Matrix grafting 

has to offer mechanical support for the regenerative process to interact with the differentiating 

osteoprogenitor cells and provide the conditions for the cells to deposit host bone matrix. 

Grafted inducer molecules need to interact with both the developed matrix and differentiating 

osteoprogenitors to assure bone matrix deposition and mineralization (Figure 1).  

Our earlier studies focused on the isolation and differentiation of bone stem cells, 

osteoinductive cytokines and matrix development and maturation. The spatial and temporal 

sequence of matrix molecules expression used to sort stem-like cells population, single 

application of bone morphogenetic protein-7 (BMP7) induced differentiation of these cells to 

osteoblasts (Zohar et al. 1997a; Zohar et al. 1998; Zohar et al. 1997b). For bone cells to 

differentiate or for the bone matrix to mature and mineralize, cross talk between matrix and 
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cells is required to activate bone transcription factors associated with signaling pathways 

and osteogenic protein expression. Communication between matrix and osteoprogenitor 

cells is crucial to form a mature, weight-bearing bone. This communication is mediated 

through secreted growth factors,  matrix or matrix associated molecules and activated 

receptors on the differentiating bone cells.  

 

Fig. 1. Wound healing in bone regeneration follows a temporal sequence of ideal healing 

where a clean wound start healing through bleeding, clot formation and recruitment of 

mesenchymal stem cells which will differentiated to bone forming cells. The successful 

differentiation of mesenchymal stem cells to osteoblasts dependent of the temporal and 

spatial recruitment and expression of cells, matrix and bone related mediators. Matrix 

would form through adequate blood supply, stable clot formation and deposition of bone 

matrix that will mineralize. Osteoblasts and osteocytes will differentiate with matrix 

maturation and will secret mediators and bone specific proteins.  

Various animal wound models in number of animal species are used to asses regenerative 

approaches include rodents, rabbits, sheep, goats, cats, dogs and primates (Gomes 

&Fernandes 2011; Intini et al. 2007; Kim et al. 2007; Artzi et. al 2003 a,b; Meinig 2002 ; 

Lemperle et al. 1998). New experimental approaches attempt to regenerate critical-size 

defects in the affected bone that won’t heal without therapeutic intervention. Comparing 

results between animal models is challenging due to different wound models, different 

bones used, healing rate, unique animal physiology, whether or not the bone is weight 

bearing and a variety of protocols. Mice are the animals of choice for transgenic analyses for 

the significance of the permanent present or absence of one or two molecules (Kim et al. 
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2007; Masaki &Ide 2007). Large animal models on the other hand are preferred for a slower 

healing process resembling human physiology; however due to the high cost, control of 

animals and lower sample number, their use is more limited. The tibia or femur are usually 

used for the fracture model in a load-bearing area and the calvaria may be used for critical size 

bony defects in a non-loaded area (Alberius &Gordh 1996; Au et al. 2007; Landry et al. 1996).  

Regenerative regimens usually focuses on one of the main components of the missing 

mineralized tissue: matrix, cells or inducer molecules. While expression patterns were 

identified for cell differentiation and matrix maturation, ongoing interactions during healing 

through receptors and signal molecules determines whether the outcome is repair or full 

regeneration. Thus, evaluating these interactions and the ability of the host wound area to 

support the process is a major determinant of regeneration. This chapter will focus on the 

importance of signaling between matrix and bone cells and how growth factors or inducer 

molecules can mediate this interaction and lead to the regeneration of bone tissue. 

2. Bone wound healing 

Bone wound healing in primates may involve formation of cartilaginous template, leading 
to endochondral ossification and/or intramembranous ossification (Dimitriou et al. 2011 ; 
Javed et al. 2011). Both processes require the commitment of adult stem cells toward bone-
forming or osteoprogenitor cells (Figure 1). It is well recognized that adult bone contains a 
reservoir of mesenchymal stem cells responsible for physiological remodelling of bone and 
reconstruction during wound healing (Awad et al. 1999; Pittenger et al. 1999). Notably, 
mesenchymal stem cells are multipotential and capable of differentiation not only to bone 
forming cells but also to chondrocytes, adipocytes or fibroblasts, as shown in vitro and in 
vivo studies (Ghilzon et al. 1999; Owen 1988). Commitment of mesenchymal stem cells is 
thought to be irreversible, and thus signals during the early stages of the wound healing 
where mesenchymal stem cells differentiation to osteoprogenitors occurs is crucial for bone 
regenerative process. The ability to induce mesenchymal stem cells to express osteoblastic 
markers is dependent on transcription of bone-related genes activated by specific signalling, 
such as wingless-type MMTV integration site (Wnt) family which control osteoblasts 
differentiation (Hoeppner et al. 2009; Secreto et al. 2009). Important mediators in these 
pathways activated by Wnt will be the Runx2 (Cbfa1) and Osterix transcription factors. 
These proteins control expression and repression of genes that will direct the commitment of 
mesenchymal stem cells toward osteoblasts (Liu, W. et al. 2001). Runx2-deficient mice 
exhibit neonatal lethality due to absence of bone. In the absence of Runx2 there will be no 
osteoblast differentiation or ossification. Haploinsufficiency of Runx2 in humans results in 
cleidocranial dysplasia, a disease characterized by abnormal bone development, formation 
and decreased bone density (Notoya et al. 2004; Post et al. 2008; Xiao et al. 2004). Cytokines 
derived from the TGF┚ superfamily, such as BMP-4, induce the expression of these 
transcription factors and thus bone-specific proteins such as alkaline phosphatase (AP), 
collagen I, bone sialoprotein (BSP), osteocalcin(OCN), osteopontin (OPN), integrin and 
TGF┚ receptors. The expression of these markers serves to ascertain osteoblastic 
differentiation and evaluate the progression of bone formation. Unfortunately, at present, 
clear markers to identify and isolate mesenchymal stem cells or osteoprogenitors are not 
available and the lack of hematopoietic stem cells markers, as well as cellular morphological 
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characteristics, such as undeveloped cytoplasmic structure, are the only reliable criteria for  
osteoprogenitors  (Belmokhtar et al. 2011; Bernardo et al. 2011; Vater et al. 2011).  

Following differentiation of osteoprogenitor cells, a stage of the committed cells 
proliferation and growth cell cycle changes, accompanied by regulation of proliferation-
related genes, such as histones, c-myc and c-fos being upregulated; secretion of matrix 
proteins, such as collagen I, II, III; alkaline phosphatase; fibronectin (Figure 1); as well as 
cytokines like FGF-2, TGF and BMBs members (Augello &De Bari 2010). Osteoprogenitors 
mature to secretory osteoblasts with a reduction in mitotic activity and formation of 
collagenous extracellular matrix (ECM) enriched with bone-specific proteins such as AP, 
OCN, BSP and OPN. Osteoblasts also secrete osteoprotegerin (OPG) a member of the TNF 
superfamily to reduce osteoclastic bone resorption by binding with the receptor activator of 
NF-kappaB ligand (RANKL) (Takahashi et al. 1999). Osteoblasts express receptors to 
mediate connections between ECM and cells; this connection is primarily mediated through 
integrins, which will attach to the ECM and intracellular will activate the actin cytoskeleton, 
initiating cellular signal transduction of proteins such as mitogen-activated protein kinase 
(MAP kinase) and the SMAD pathway (Blair et al. 2008; Komori 2011). Decrease in matrix 
formation precedes deposition of hydroxyapatite crystals in the mature collagen organized 
in a quarter-staggered pattern with 68nm gaps to house hydroxyapatite crystals, which 
accumulate on the collagen fibers within them and flattening of the active osteoblasts, which 
may undergo apoptosis or become trapped in the mineralized matrix as osteocytes 
(Kogianni &Noble 2007).  

3. Bone regenerative therapy - Present approaches 

There are multiple approaches and various grafting materials available for bone 
regenerative therapy. The noble regenerative objective is the same for all suggested 
approaches: living, functional, remodelling bone! Different studies evaluating the success of 
fracture regeneration or repair estimate the failure rate as 10% or more. Common factors in 
failure are: lack of vascularity, improper correction, delayed union, non-union and revision 
surgery (Jones et al. 2000; Lee et al. 2004; Osti et al. ; Parker et al. 2011; Smith, T. O. et al. 
2009). The tibia is the most common bone to fracture in children and adults. Corrections that 
exhibit non-union complications present greater challenge to regenerative therapy (Garrison 
et al. 2011; Mashru et al. 2005). Other than fixation of fructure, there are also non-invasive 
approaches used to improve healing, such as electromagnetic field or ultrasound 
stimulations (Griffin et al. 2011). Distraction osteogenesis is another approach which 
encourages bone formation through gradual distraction of defect surfaces, requires long 
treatment, sensitive technique and prolonged healing for the patient; it also serves as a 
burden to the health system (Heo et al. 2008). Autologous bone marrow grafting is the most 
predictable approach to achieve regeneration. Bone  can be harvested from the iliac crest of 
the pelvis, or alternatively, reamers can be used to harvest the intramedullary canal of long 
bones (Hak &Pittman 2010; Valimaki &Aro 2006). If a larger volume of grafts required, 
allograft or biomaterials are sometimes used in conjunction with autograft. 

Present descriptors of grafting materials other than their source (i.e. allograft, autogenous, 
alloplast, cancellous, cortical), refer to grafts as being capable of osteoconduction, 
osteoinduction, mechanical support, cell exclusion, cement and filler. Regeneration of bone 
is a very clear outcome, and unless osteoblast differentiation taking place, new bone matrix 
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deposition and interaction between the two during de novo bone formation and 
remodelling, no real regeneration could occur. The assumption that placing an allograft that 
may contain BMP’s, collagen matrix or an even high number of mesenchymal stem cells will 
result in regeneration in every case cannot be true. Without  receptive wound environment 
where osteoprogenitors have signals for differentiation and deposition of new bone matrix, 
healing by fibrous or cartilage or adipose tissues may occur. Thus, using terminology like 
osteoconduction and osteoinduction would only suggest of the potential of regenerative 
approach or material, but it is not necessarily predictive of the desired outcome in specific 
host, specific wound, and specific surgical approach. The clinical results suggest variability 
of wound healing  (Garrison et al. 2011). 

Since most new bone graft or regenerative product is first tested for its biological activity, 
rather than focusing on osteoinduction and osteoconduction, this chapter classifies present 
grafts by their contribution to one of the major missing components of the missing bone: 
cells, matrix, and  mediators (Figure 1). To evaluate the present state of bone regenerative 
therapy, it is worthwhile to see how each approach can contribute to the restoration of one 
of these three components.  

4. Matrix grafting 

Matrix serves as an organized framework for bone as a tissue and organ, offering 
mechanical support, and facilitate preservation of form and adaptive protection to internal 
organs through ongoing remodelling (Grabowski 2009; Scott et al. 2008). Osteogenic cells, 
like most other matrix-associated cells, cannot survive or differentiate without adhesion to 
their matrix (Popov et al. 2011). Thus, the importance of bone matrix in addition to acting as 
mechanical scaffold, is to mediate the biological activities of bone cells and signals that 
maintain homeostasis, remodelling and ability for wound healing. The mature mineralized 
bone matrix is composed of ~20% organic components, primarily collagens I, III and V and 
less than 5% noncollagenous proteins. The latter consists of proteoglycans, such as versican, 
decorin, and hyaluronan, adhesions molecules such as fibronectin and vitronectin, and 
specialized proteins like OCN, BSP, OPN and cytokines (Nagata et al. 1991). The collagen 
fibrils structure house the hydroxyapatite crystals which tend to be oriented in the same 
direction as the collagen fibrils. The collagen network also mediates adhesion to cells 
primarily through integrin receptors connected to collagen or the associated non-
collagenous proteins. A mineralized bone matrix not only increases the mechanical strength 
of the bone but also act as reservoir for specialized proteins and cytokines, such as BMP’s.   

Matrix proteins mediate not only maturation and mineralization of bone matrix, but also 
bone cell differentiation and signalling. Bone cell differentiation is detected through the 
differential expression of matrix molecules such as collagen OPN, BSP, AP and OCN. 
Expression of AP, collagen I and OPN are considered an early markers, while BSP, OCN 
and a second peak of OPN are considered a late mineralization associated marker (Aronow 
et al. 1990; Binderman et al. 2011; Lynch, M. P. et al. 1995).Our studies of OPN expression, 
which is not restricted to bone, but can be used as a useful marker for early and late 
differentiation of osteogenic cells. We isolated a population of small cells that do not express 
OPN, AP, collagen I and that are enriched with stromal stem cells capable of generating 
bone, fat and cartilage (Zohar et al. 1998; Zohar et al. 1997b). We have isolated BMP-
responsive cells, which will undergo chondrogenic differentiation with continuous 
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stimulation of BMP-7 or osteogenic differentiation with single dose (Zohar et al. 1998). Thus, 
evaluating the expression of matrix proteins can help determine the status of mesenchymal 
stem cells differentiation. 

4.1 Matrix-based grafts can be autologous, allogeneic or biomaterials 

Autologous bone grafts, such as the marrow graft, marrow aspirates,  will contain 
cancellous and/or cortical or blocks such as vascularised Graft and will carry cells, matrix 
and potentially inductive molecules (Friedrich et al. 2009; Sotereanos et al. 1997). A 
vascularised graft will carry blood vessels to enrich the wound with nutrients and soluble 
mediators, which may support or inhibit bone formation and carry periosteum enriched 
with osteoprogenitor cells. There is less necrosis of grafted material during healing and 
vascularised grafts are thought to be a very reliable option for reconstructing non-union or 
osteonecrosis defects (Friedrich et al. 2009; Gaskill et al. 2009; Sotereanos et al. 1997). The 
difficulty with all autogenous grafts is the quantity and morbidity, such as non-stress 
fracture for donor sites (Friedrich et al. 2009). The cancellous or cortical block graft may 
carry cells and cytokines, and their quantity and effectiveness is related to the age and state 
of the donor area. Cortical block graft will contain the least amount of cells and mediators 
and considered to function primarily as scaffolding which is more susceptible to infection 
and necrosis. 

In allogeneic bone matrix grafts, cadaver bone is a common source of allograft. To generate a 

safe allograft, the bone is subjected to irradiation or freeze-drying and is thus devoid of any 

cellular components (Nguyen et al. 2007). Allografts are prepared as particulate, morselized 

or block, with mineralized or demineralized bone particles that are easy to shape and mold. 

Demineralized bone matrix serves as a natural matrix as well as decellularized matrices that 

could derive from dura or intestine of various animals (Costain &Crawford 2009; Kligman et 

al. 2003; Mroz et al. 2006). Allografts have very limited, if any, biological activity and serve 

primarily as osteoconductive and mechanical support. The main advantage is ample supply 

(Hamer et al. 1996). Reports of infection transfer, matrix alteration during processing and 

limited remodelling of the grafted bone reduce the likelihood of full regeneration (Nguyen 

et al. 2007) unless combined with autologous bone (Matejovsky et al. 2006) to add 

osteoprogenitors and mediators that can append biological activity to the dead bone 

particles.  

Matrix proteins-based polymers are very popular, as are collagen, fibrin, hyaluronic acid, 

fibronectin and BSP. These proteins are delivered as membranes, sponges, gels, 

demineralized bone particles, small intestinal submucosa, dura or even urinary bladder 

(Chajra et al. 2008; Smith, I. O. et al. 2009; von der Mark et al. 2010). The problem with 

generating these polymers is fairly low solubility; the organic purified polymers is costly 

and hard to extract, purify and stabilize; risk of immunogenicity; and variations based on 

the batch.  

Biomaterials and synthetic bone substitutes are currently used as fillers and/or scaffolds for 
the missing bone structure (Gosain et al. 2009; Healy et al. 1999; Shekaran &Garcia 2010 ; 
Wojtowicz et al. 2010). The design and fabrication of matrix-based regenerative materials is 
aimed at restoring the natural bone matrix properties as a whole or in part. Reconstruction 
of missing bone using matrices involves the planning of macrostructures as well as 
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microstructure of the engineered matrix (Cholewa-Kowalska et al. 2009; Huang &Miao 2007; 
Vater et al. 2009). Macrostructures to fill and adapt to the space to assure sufficient quantity 
and/or provide mechanical support for the surrounding tissue or cells carried. 
Microstructures of micron or nanotechnology designs of particles or pores are used to 
encourage cell adhesion, colonization and absorption of proteins or required molecules. An 
ideal scaffold will have highly interconnected macroporosity to allow host bone tissue and 
blood vessels to grow into the scaffold (Healy et al. 1999). Popular building blocks are 
hydroxyapatite (HA), calcium phosphates (CP), tricalcium phosphate (TCP) and bioactive 
glasses (Behnamghader et al. 2008; Muschler et al. 1996; Valimaki &Aro 2006). They form a 
carbonated apatite layer when grafted, which is very similar to bone mineral; this will 
attract attachment of collagen fibres and eventually should be replaced by host tissue, 
mineralized matrix and cells. Other scaffolds consist of combinations of poly (lactic-co-
glycolic acid) (PLGA), alginate and chitosan (Huang &Miao 2007; Jose et al. 2009; Liu, X. et 
al. 2009; Mishra et al. 2009; Renghini et al. 2009). These polymers can also be used to carry 
cytokines for controlled release at the wound and/or to carry mesenchymal stem cells. 
Different studies use different mixtures of these materials or different preparation protocols. 
The requirement for most preparations is to offer bioactivity and mechanical support. 
Bioactivity of the scaffold is measured by the number of host cells attached to its surface and 
interaction with the material to transform them into functional osteoblasts. The mineralized 
bone matrix will appose directly onto the surface of the material which ideally will have the 
ability to degrade over time (Holy et al. 2000). It is important that the material will degrade 
at a rate that allows the newly formed tissue to gradually replace the scaffold, both as a 
mechanical structure and in terms of space occupied. Finally, and this is where most current 
materials fail, the material needs mechanical properties that allow the device to be 
implanted without losing mechanical properties, still allowing sufficient loading of the 
newly formed tissue (Au et al. 2007; Smit et al. 2010). As of yet, no one has reported a 
material that fulfills all these requirements. The new scaffolds, usually termed composite 
scaffolds, maybe coated with proteins to increase cell adhesion, carry cells or cytokines with 
sustained release (Ameer et al. 2002; Bueno &Glowacki 2009; Gupta et al. 2011 ; Nie et al. 
2008).  

Bioactivity of biomaterial can be modified through chemical and physical alterations. 

Nanotechnology approaches try to mimic cell surface properties through approaches such 

as controlling space between ligands connected to biomaterials (Smith, I. O. et al. 2009). 

Using the proper spacing will enable, for example, integrin receptor clustering to enable 

propagation of signals through ligation. Another line of research  focuses on molecules that 

work in synergy with receptors to promote cell adhesion and differentiation; for example, 

fibronectin, laminin and BSP contain heparan sulphate binding domains that interact with 

molecules on the cell surface in conjunction to integrin binding. Thus, using cell membrane 

molecule, such as syndecan which has three sites of heparan sulphate, would augment 

ligation of fibronectin or RGD sequence by integrin receptors (Whiteford et al. 2007; Yamada 

et al. 2010). 

5. Cellular grafting 

Cellular grafting for bone regeneration is a rapidly developing area. This approach had been 

used for many years through autologous bone grafting, which contains high numbers of 

www.intechopen.com



 
Bone Regeneration 

 

66

bone-committed cells in marrow aspirates, or in bone particles or blocks containing cells  

embedded in their own matrix (Hak &Pittman 2010; Papakostidis et al. 2008; Tiedeman et al. 

1995). The objective of new approaches is to obtain an unlimited amount of adult stem cells, 

comparing new cellular sources to the gold standard of autogenous bone marrow stromal 

cell, which are considered to be enriched with osteoprogenitors. Notably, the frequency of 

osteoprogenitors in young rodent marrow is about 0.0005% (Falla et al. 1993) and up to 0.3% 

in fetal periosteal tissues. Adult marrow shows a reduction of these precursor cells in 

number and quality (Stolzing et al. 2008). We have used single cell flow cytometric sorting 

to isolate osteoprogenitors from fetal rodent periosteal tissues. These cells when plated and 

stimulated exhibit high proliferative capacity and enhanced osteogenic potential. Notably, 

these cells consisted of only a very small fraction of the fetal bone tissues. Thus, even in 

young fetal tissues osteoprogenitors consist of only a very small fraction of bone tissue and 

usually reside in a well-protected niche. Moreover, during seeding, grafting and transfer of 

cells to the wounded area there is loss of cells through apoptosis or cytotoxic effects  of 

mediators in the wound area (Giannoni et al. 2009). Regeneration efforts focus on the ability 

to deliver mesenchymal stem cells to the wound, which will differentiate to the osteoblastic 

lineage. Differentiation requires the commitment of mesenchymal stem cells to osteoblasts, 

exhibiting bone-specific gene expression. Osteoblast-specific gene expression is a fairly clear 

analysis of proteins like AP, OPN, BSP, OCN that are selectively expressed in bone. For the 

mesenchymal stem cells to form new bone and regenerate the wound, cells need to attach, 

proliferate, differentiate and survive. Mesenchymal stem cells from marrow seem to be the 

most predictable source for osteoprogenitor cells and a safe autologous grafting. 

Unfortunately, bone marrow stromal cell consists of heterogenous population that are 

subject to age changes; not only does their number deplete, but also their quality and ability 

to generate new bone is reduced (Benayahu 2000; Stolzing et al. 2008; Zhou et al. 2008). 

Thus, in the aging population where bone wound healing is compromised, harvesting 

autologous sufficient number of mesenchymal stem cells from marrow may not be that 

predictable.  

Other sources for bone forming cells could be the umbilical cord, peripheral blood, 
adipose tissue, dental pulp or periodontium (Goodwin et al. 2001; Honda et al. 2011; Rhee 
et al. 2010; Yamamoto et al. 2007). Human embryonic stem (hES) cells also being 
considered as an option due to their fast growth and the fact that these cells, if kept as 
undifferentiated cell lines, are pluripotential and capable of differentiating to many tissue 
types under the right conditions (Bahadur et al. 2011; Lerou &Daley 2005). The hES has 
the advantage of unlimited supply, minimal immune response and no need for a second 
surgical site (Watt &Hogan 2000). Ethical dilemmas, as well as work needed to control 
their growth in the targeted tissue, seem to be the main concerns limiting their use. 
Animal experimentations results are inconsistent and complexed by grafted cell death, 
formation of teratomas and tumours have been observed (Blum &Benvenisty 2008; 
Brederlau et al. 2006).   

Autologous mesenchymal stem cells derived from bone marrow is still the preferred cellular 

source and iliac crest harvesting is the most common source. The simple approach could be 

through bone marrow aspirates or the harvest of cancellous bone enriched in 

osteoprogenitors. These cells can sometimes go through in vitro expansion before being 

loaded onto a scaffold or other carrier (Bernardo et al. 2011; Caplan &Correa 2011; Kuo et al. 
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2011). Gene therapy for insertion or activation of selected genes through transfection or 

electroporation is often attempted on mesenchymal stem cells (Stender et al. 2007). Due to 

the morbidity associated with marrow mesenchymal stem cells harvesting, need for a 

second surgical site, limited amounts of grafting material and lack of mechanical stability in 

extensive defects composites of mesenchymal stem cells with non-autologous grafting 

materials are frequently used (Caplan et al. 1997; Dimitriou et al. 2011).  

The question is if delivery of bone marrow stromal cell containing stem cells to different 

wounds will assure a predictable and consistent outcome. Mesenchymal stem cells 

differentiation, proliferation and survival is dependent on their surrounding matrix, signals 

to express receptors and secrete signaling molecules. Large size defects with a potentially 

compromised host may offer a local environment that is not supportive or even inhibitory 

for bone formation. For example, it has been shown that disruption of integrin activity in 

mesenchymal stem cells will result in cell death and lack of differentiation (Popov et al. 

2011). Various combinations have been prepared in an attempt to find a predictable and 

consistent graft (Schofer et al. 2011). Notably, at present, even if the number of mesenchymal 

stem cells is high, without the right matrix and cytokine’s support bone differentiation and 

maturation may not occur.  

6. Inducer molecules 

The ability of demineralized bone matrix to induce bone formation in the subcutaneous sites 

of rodents, as reported by Dr. Urist, revolutionized our approach to bone therapy and 

studies of bone regeneration (Urist 1965; Urist et al. 1967). These studies demonstrated that 

the non-mineralized fraction of the bone stores molecules that can derive osteogenic 

differentiation and initiate bone formation in ectopic sites. Factors such as BMP’s consist of 

only a very small fraction of the bone matrix and cannot be purified from bone for scientific 

or clinical use; however, these factors were cloned and prepared as recombinant molecules 

or peptides with very potent biological activity (Reddi &Cunningham 1993; Sampath et al. 

1992). Inducer molecules can be delivered in a carrier or integrated into expression vehicles 

through ex vivo transfer to grafted cells, or infected through viruses that will target the 

tissues; these approaches fall under the category of gene therapy (Table 1)(Franceschi et al. 

2000; Mason et al. 1998). Transient transfection and conditional expression approaches 

achieved in mice and other animals, thorough adeno and lentiviral, as well as non-viral, 

approaches such as electroporation (Franceschi et al. 2000; Holstein et al. 2009; Kawai et al. 

2006). Gene delivery approaches being used in an ex vivo and in vivo gene delivery can also 

be utilized in humans to deliver genes to marrow stromal cells (Belmokhtar et al. 2011; Chen 

et al. 2011). Expression control modifications at embryo through transgenic animals or 

conditional modifications which, dependent on the initiator or temporary gene alteration in 

adult animals, assist in determining the relative importance of cell, matrix or inducer 

molecules to mineralized tissue healing. Gene therapy is still not available for regular 

clinical use, due to inability to assure target of specific cells only and adequate control over 

the gene transfer transcription, translation and expression in a temporal and spatial manner 

that will support bone regeneration. Other issues limiting clinical use are concern of viral 

vectors, control on the expression, immune response and potential for other non-controlled 

mutations. Moreover, The applications of gene transfer and control in human is not always 
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as efficient or predictable as shown in rodents or primates in animal experiment models 

(Gomes &Fernandes 2011; Sharma et al. 2011). 

 

Matrix grafting Cellular grafting Inducer molecules Techniques 

Vascularised Graft mesenchymal stem 
cells -bone marrow 
aspirate 

(bone morphogenetic 
proteins (BMPs 

Gene therapy- 
transfection, 
Transduction 

Matrix molecules- 
Collagen, fibrin, 
hyaluronic acid, 
BSP,OPN 

Cancellous graft-
iliac, distal femur, 
proximal or distal 
tibia 

platelet-derived 
growth 
factor-PDGF, 
Fibroblast growth 
factor, Vascular 
Endothelial growth 
factor,  

Recombinant 
proteins 

Mineral-
Hydroxyapatite, ┚-
Tricalcium 
phosphate(TCP), 

Other sources of 
adult stem cells- 
peripheral blood 
adipose 

Transforming growth 
factor’s 

Peptides 

Polymers- poly 
(lactic-co-glycolic 
acid) (PLGA), 
alginate and chitosan 

ES-Embryonic stem 
cells 

insulin-like growth 
factor-I,II 

Nanotechnology 

Calcium phosphate or 
sulphate, glass 
ceramics 

Umbilical cord endothelial growth 
factor 

Cellular in-vitro 
expansion, 
differentiation 
induction,  

DBM- Demineralised 
bone matrix 

Dental – follicle, 
pulp, periodontal 

Hormones-
parathyroid 
hormone,  Growth 
Hormone 

Scaffolds- Three-
dimensional 
porous scaffolds, 
coated, 
biodegradable 

cancellous bone 
allograft 

 Pepetides- FHRRIKA, 
FNIII 7-10,P15, 
DGEA (Asp-Gly-Glu-
Ala), RGD, PTH 1-34, 
and PTH 1-84 

Morcellized 
bone grafting, 
freeze-drying 

Cortical  Denosumab-antibody 
to RANKL 

Purified proteins 
Membranes, 
Mesh 

Block graft  agonists of the 
prostaglandin 
receptors EP2 and 
EP4 

Distraction 
osteogenesis 

Table 1. Classification of Grafting  
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At present, about 20 BMPs have been identified, with about eight having osteogenic effects: 

BMP-2, 3, 4, 6, 7, 8, 12, 14. BMP-7 or OP-1 is the subject of many studies approved for clinical 

use and exhibits a very potent osteoinductive effect in vivo and in vitro. BMP-7 effects on 

mesenchymal stem cells include increased migration, differentiation and induction of bone 

formation through endochondral as well as intramembranous ossification (Giannoudis et al. 

2009). Many other cytokines are the subject of ongoing investigations and use such as 

platelet-derived growth factor (PDGF), transforming growth factor-┚ (TGF ┚), insulin-like 

growth factor-I and II (IGF), vascular endothelial growth factor (VEGF), endothelial growth 

factor (EGF), parathyroid hormone (PTH), growth hormone (GH) and fibroblast growth 

factor (FGF). Some are prepared as synthetic peptides where only the active sequence is 

synthesized; often the peptide will be more potent that the whole molecule. Examples of 

these peptides include PTH [PTH(1-34); Forteo (or teriparitide) and PTH 1-84, P24 is a 24-

amino acid peptide derived from BMP2 capable of induction of ectopic bone (Lin et al. 2010; 

Wu et al. 2008). The growth factors that are approved for clinical use in human and received 

the Food and Drug Administration (FDA) approval for bone regeneration are BMP-2, 7 and 

PDGF-BB (Caplan &Correa 2011; Kanakaris et al. 2008; Lynch, S. E. et al. 2006; Mulconrey et 

al. 2008). These growth factors will predictably stimulate bone formation, and when 

compared to the gold standard of autologous bone grafting, these growth factors meet the 

expectations of inducing bone regeneration in a high percentage of the clinical cases 

(Garrison et al. 2011). Advantages include ample supply, convenient grafting carriers, 

osteoinduction, no need for a second surgical site and no significant immune responses. The 

reported concerns are no cellular component, no osteoconduction support, lower 

mechanical strength of the newly formed bone, expensive and variability in induction. 

These growth factors are carried or released by various materials that may alter their effects 

and potency (Nauth et al. 2011). It is beyond the scope of this chapter to describe the 

molecular mechanism known for each of these growth factors or the expression of their 

receptors and associated signaling pathways. Each of these growth factors is a subject of 

numerous clinical trials and reports and suggestions on its most potent use for bone 

regeneration. Their effects are dependent on the availability of cells, the expression of the 

appropriate receptors and biological half-life at the bone defect. 

Bone formation can also be induced by non-growth factor molecules, such as matrix 

components or proteins that will encourage mesenchymal stem cells cell adhesion, 

migration, proliferation, differentiation and survival (Popov et al. 2011). Matrix 

components like collagen will not only induce bone cells directly but also their ability to 

bind other potent molecules, such as growth factors, thrombospondin, decorin, biglycan, 

OPN, OCN, BSP, fibronectin, vitronectin and hydroxyapatite (Bentley &Tralka 1983; Ber 

et al. 1991; Bergmann et al. 1990). Control of expression of receptors to mediate bone 

matrix adhesion would be another approach, through antibodies or fragments that will 

induce their expression; for example, the Denosumab human monoclonal antibody that 

inhibits osteoclastic activity through binding to RANKL and safe even for systemic use 

(Miller 2009). 

Matrix proteins can be used as purified proteins or synthetic peptides. Purified collagen is 

one source of a primary matrix molecule derived from human, bovine or porcine sources 

as purified fibrillar collagen or composite with other minerals that can be use to fill 
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defects or mixed with other grafts (Gleeson et al. 2011; Muschler et al. 1996; Thula et al. 

2011). Proteoglycans, such as hyaluronan, can be purified from the human umbilical cord, 

cultures of cells or bacteria. The non-collagenous proteins of the bone, such as OPN, BSP 

and OCN, can also be purified and used to coat biomaterials, or mixed with grafting 

materials. The use of synthetic peptides as a whole molecule or just active sequence is a 

more accurate approach, as it may may be missing post-translational modifications found 

on the native purified protein. It would be a cleaner and safer product as far as immune 

reactions or carrying impurities for clinical use. Recombinant molecules and synthetic 

peptide technologies are becoming more popular as well as more accurate, pure and have 

reduced variability in mediating osteogenic cell adhesion and bone formation. RGD 

(arginine - glycine - aspartate) is a well-characterized sequence in number of matrix 

proteins including fibronectin, OPN, BSP and vitronectin that mediate attachment of 

osteogenic cells to integrin receptors (Hsiong et al. 2009; Pallu et al. 2009).  RGD will 

usually ligate ┙V┚3-integrin, but also ┙v┚1, ┙8┚1, ┙v┚8, ┙v┚6, ┙v┚5, and ┙IIb┚3. RGD 

being synthesised as linear as well as cyclic peptide as some studies also suggest that the 

cyclic form may offer better presentation that is more potent in inducing osteoblastic 

differentiation (Hsiong et al. 2009). Collagen I adheres to bone cells via ┙2┚1 integrin 

receptor (Mizuno et al. 2000) through DGEA (Asp-Gly-Glu-Ala) motif. Its recognition 

sequences and competition for this association with DGEA peptide could inhibit 

osteoblastic differentiation (Takeuchi et al. 1996). Fibronectin fragments FNIII 7-10, ┙5┚1 

integrin specific enhanced osteoblastic differentiation in bone marrow stromal cells and 

can upregulate adherence to titanium implants (Petrie et al. 2008). P15 is a 15-amino acid 

sequence derived from Collagen I, ┙1 chain and in clinical use (Gomar et al. 2007; 

Pettinicchio et al.). P15 enhances osteoblastic cell adhesion and differentiation to 

osteoblasts. Other peptides will be FHRRIKA, derived from the heparin binding site of 

BSP, human vitronectin peptide HVP (351-359) and osteopontin-derived peptides (Healy 

et al. 1999; von der Mark et al. 2010). 

Most of these peptides and growth factors show great promise in in vitro studies and great 

potential in human trials and therapy (Bosetti et al. 2007; Nauth et al. 2011; Rose et al. 2004). 

Unfortunately, the animal and human analyses seem to exhibit wide variability (Faour et al. 

2011; Giannoudis &Dinopoulos 2010; Papakostidis et al. 2008; Shekaran &Garcia 2011). An 

important factor in the application of these peptides and growth factors is the delivery 

system, as are the biochemical properties of the surrounding matrix and accessibility of the 

cells and the relevant receptors for their signaling. 

The nature of the biomaterial, the surface to be coated or the carrying polymer, scaffold or 

gel will have an impact on the availability of the inducer or the ligand used to attach the 

differentiating bone cells. A common problem will be the hydrophobic surfaces of 

biomaterials, which will be covered by plasma and absorb abundant proteins such as 

albumin. This will make any ligand attached to the biomaterial less accessible, while more 

hydrophilic surfaces, such as culture dishes coated with ECM proteins, will encourage cell 

adhesions. Nanotechnology used to space ligands, such as RGD, affects cells adhesion, 

clustering and increases affinity between ligand and the receptors through both chemical 

and physical modifications. These approaches will enable osteoprogenitors to differentiate 

and migrate in the desired direction (Hirschfeld-Warneken et al. 2008). Designs aimed at 
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creating the right topography of the biomaterial, as well as chemical alteration of serine 

residues or energy molecules such as purines that will change the availability of the inducer, 

will have impact on the ability of osteoprogenitors to differentiate (Costa et al. 2011; Mager 

et al. 2011; Vater et al. 2009).  

7. Concluding remarks 

The number of bone regeneration tools is growing every day, some but not all of which are 

listed above (Table 1). Unfortunately, there is no single tool available that can predictably 

match the gold standard of autologous marrow bone grafting. To restore the missing bone 

matrix, cells and inducer molecules need to act in a synergistic manner. Indeed, the new 

regenerative approaches are based on composite grafting, including matrix replacement, 

mesenchymal stem cells and inducer molecules. Most composites grafts focus on merging 

osteoconductive scaffolds with osteoinductive agents, such as BMP, or with cells (Bueno 

&Glowacki 2009; Lin et al.2010). Nanotechnology improves matrix characteristics for cell 

adherence, survival and differentiation, delivery vehicle for cell, proteins or gene carriers 

also improve macro mechanical properties (Shekaran &Garcia 2010; Smith, I. O. et al. 2009; 

Zhang et al. 2007). The research of forming a scaffold with organic and non-organic parts, 

which is mechanically strong, bioresorbable, carries inducer molecules and cells, and will 

adhere to the newly forming bone and still be affordable, is challenging. These are hard 

objectives to achieve. At present, a composite graft that can match the success of autologous 

marrow bone grafting does not exist. 

The question is whether our quest for an ideal composite graft that will fit and regenerate 

most, if not all, bone wounds in every host is a realistic one. This chapter classified the three 

main components needed to restore missing bone tissue and outlined some of the tools and 

techniques(Figure 1). It is unlikely that composite grafts will be successful as autogenous 

grafting without having individual “custom made composite graft”. We can mix 

autogenous marrow aspirates with the scaffold, but still most of the grafted components will 

not derive from the host. Host factor variables should dictate our regenerative approach for 

supplementing either matrix, cellular and inductive molecules at the right composition to 

increase our success. Bony defects are rarely uniform and healing patterns may vary, 

especially in human subjects. Other than local factors, host factors such as age, medications 

and chronic conditions may impact wound healing in general. Our future ability to design 

and adapt our regenerative tools may aid in boosting critical wound healing factors required 

in a compromised site or individual. 

A different approach is suggested, in which the clinical team will be able to identify the 

difficulties associated with particular wounds, such as size, mechanics, blood supply and 

whether or not the bone is load bearing. Host factors to be considered include age, 

medications and other systemic conditions that may compromise wound healing. Based on 

these analyses of the available tools (Table 1), a list will be presented to the lab with 

physical, chemical and inductive requirements. An individual composite graft will be 

constructed for the wound that will meet and boost the particular requirements of the 

specific wound. With advancement of clinical diagnosis and scientific and biotechnological 

tools, this approach may be more predictable in achieving bone regeneration. 
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