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1. Introduction 

ZnS-capped CdSe semiconductor nanocrystals (quantum-dots, QDs) provide size-tunable 
optical properties. QDs show shifted luminescent peaks due to crystal size. They exhibit 
strong and stable luminescence with a 50 % quantum yield at room temperature [1]. Walker 
et al. used QDs as a global temperature probe [2]. They used a polymer support of 
poly(lauryl methacrylate) to create a global temperature sensor. This type of sensor, called a 
temperature-sensitive paint (TSP), has been widely used in aerospace measurements [3]. 
Conventional TSP uses a phosphorescent molecule as a temperature probe. This type of 
molecule has a relatively wide FWHM (full width at half maximum), which is roughly 100 
nm. When applying a QD as a temperature probe, the FWHM is narrower than that of 
phosphorescent probes and is roughly 40 nm [1]. A low FWHM will widen the selection of 
probe molecules to prepare multi-color sensors in the visible wavelength range. In addition, 
a high quantum yield of QDs can be beneficial as an optical temperature sensing probe to 
increase the signal-to-noise ratio. 

The material properties of polymers change the glass-transition temperature. These 
temperatures for TSPs are roughly 400 K [4, 5, and 6]. To use polymers as a QD support, the 
resultant TSP can be sprayed on a testing article. However, the measurement range is 
limited by these temperatures. Even for low temperature measurements, a polymer may 
show physical defects such as cracks at cryogenic temperatures. In aerospace engineering, 
anodized aluminum has been applied as a support for pressure probes. The resultant sensor, 
called anodized-aluminum pressure-sensitive paint, has been used in wind tunnel 
measurements [7]. With aluminum, which has a melting point of 930 K, as a probe support, 
the anodized aluminum retains its material properties at cryogenic temperatures as well as 
at temperatures higher than glass-transition temperatures of TSP polymers. By using 
anodized aluminum as a support for a temperature sensing probe, a global temperature 
sensor with a wide range can be created. 

TSP gives global temperature information related to its luminescent output. The TSP 
measurement system consists of a TSP coated model, an image acquisition unit, and an 
image processing unit (Fig. 1). For image acquisition, an illumination source and a photo-
detector are required. To separate the illumination and the TSP emission detected by a 
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photo-detector, appropriate band-pass filters are placed in front of an illumination and a 
photo-detector. The image processing unit includes calibration and computation. The 
calibration relates the luminescent signal to temperatures. Based on these calibrations, 
luminescent images are converted to a temperature map using a PC. 

 

 

 

Fig. 1. Schematic of TSP measurement system 

In this chapter, the development of a QD-based anodized aluminum temperature sensor is 
discussed. The temperature sensitivity of this sensor is characterized in the temperature 
range from 100 K to 500 K. An application of this sensor as a global temperature 
measurement is included, which is focused on a hypersonic flow where an aerodynamic 
heating is a critical issue. 

2. Development of quantum-dot based anodized-aluminum temperature-
sensitive paint (AA-TSP) 

2.1 Materials and dipping deposition method 

A temperature probe of QDs was applied on an anodized-aluminum surface by the dipping 
deposition method [8]. QDs of birch yellow from Evident Technologies (ED-C11-TOL-0580) 
were used. These QDs are called QDBY in this chapter. The dipping deposition method 
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requires a temperature probe of QDBY, a solvent, and an anodized aluminum coating. The 
application procedure is schematically shown in Fig. 2. QDBY was dissolved in eight 
different solvents, which varied according to their polarity index (Table 1). A concentration 
of 15 μM was adjusted to create these solutions or mixtures. 

anodized-aluminum 
coated model

AA-TSP modelaluminum model

dipping deposition
anodization

sulfuric acid

V

+-

QDBY solution 
or mixture

 

Fig. 2. Schematic description of dipping deposition method 

 

AA-TSP Solvent Polarity Index 

AATSPind00 hexane 0.1 
AATSPind02 toluene 2.4 
AATSPind03 dichloromethane 3.1 
AATSPind04 chloroform 4.1 
AATSPind05 acetone 5.1 
AATSPind06 N,N-dimethylformamide 6.4 
AATSPind07 dimethylsulfoxide 7.2 
AATSPind10 water 10.2 

Table 1. List of solvent conditions 

Depending on the polarity index of solvents, differences in dissolution can be seen. Solvents 

with a lower polarity index up to 4.1 could dissolve QDBY, while solvents with a higher 

polarity index created mixtures. These are seen in luminescence from the QDBY solutions 

and mixtures (Fig. 3). Luminescent images were acquired using the camera system 

discussed in section 2.2. Solvents with a lower polarity index up to 4.1 showed relatively 

bright luminescence, while solvents with a higher polarity index showed dim luminescence 

or luminescence in spots. The anodized-aluminum coating was dipped in these solutions or 

mixtures for one hour at room conditions. The AA-TSPs developed were identified by the 

solvents used, which are listed in Table 1. We coated QDBY with some of these solutions. Fig. 

4 shows luminescent images of AA-TSPs, which were acquired using the camera system 

discussed in section 2.2. We can see uniform coatings using AATSPind00, AATSPind02, 

AATSPind03, and AATSPind04. Because of the effects of mixtures, QDBY were coated in spots 

with AATSPind05, AATSPind06, AATSPind07, and AATSPind10. Except for these spots, QDBY 

were not coated as shown in the dark luminescent signal in Fig. 4. The signal level was 

determined from the averaged luminescent signal of each sample. A luminescent signal 

from a 5-mm2 area was averaged. The signal levels were normalized based on the signal of 
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AATSPind04, which is also shown in Fig. 4. The maximum luminescent signal was obtained 

from AATSPind04. Based on the coating uniformity and the signal level, AATSPind00, 

AATSPind02, AATSPind03, and AATSPind04 were selected for temperature calibration. 

 

 

 

Fig. 3. Luminescence from QDBY solutions and mixtures. (Figures obtained from Sakaue et 
al. [9]) 
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Fig. 4. Luminescent image and signal level of developed AA-TSPs. (Figures obtained from 
Sakaue et al. [9]) 
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2.2 AA-TSP characterization method 

Fig. 5 schematically describes the calibration setup, which combined a camera system and a 

spectrometer system. Both systems used a temperature-controlled chamber. The 

temperature could be controlled from 100 K to 500 K. The chamber was filled with dry air at 

100 kPa. An AA-TSP sample was placed on the test section in the chamber. Both systems 

used a 407-nm laser (NEO ARK, DPS-5001) to illuminate the sample. 

407nm

temperature controller

spectrometer
14-bit CCD 

camera

407nm laser

500nm High-Pass filter

620±50nm
filter

AA-TSP
heating/cooling unit

vacuum insulation space
 

Fig. 5. Schematic of AA-TSP calibration setup 

The camera system used a 14-bit CCD camera (Hamamatsu, C4880). A 620 ± 50 nm filter 

was placed in front of the camera lens to acquire only the luminescent signal from AA-TSPs, 

QDBY solutions, and mixtures. The camera system was used to characterize the signal level 

and temperature sensitivity. For the camera system, a reference luminescent image, Iref, was 

obtained. This image was compared with the luminescent image at a given temperature to 

decouple the non-temperature induced luminescence, such as illumination variation and/or 

coating non-uniformity. Iref was used as an image at a reference temperature of 298 K. The 

spectrometer system used a USB4000 spectrometer from Oceanoptics. It was connected to an 

optical fiber with a 500-nm high-pass filter in front of the fiber end. This system was used to 

characterize the luminescent spectrum of the AA-TSPs. 

2.3 Characterization results: Solvent dependency 

Fig. 6 shows the temperature calibrations of selected AA-TSPs obtained from the camera 

system. The reference temperature was 298 K. The temperature calibrations decreased 

monotonically with increasing temperature. The temperature calibration of a relatively 

small temperature range, such as 30 degrees, could be assumed to be linear for engineering 

applications. The first-order polynomial was fitted to the calibration results. 
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Where cs0 and cs1 were calibration constants. The temperature sensitivity, δT, is defined as the 

slope of the temperature calibration at the reference temperature, Tref, which is described as 

the percent change in luminescent signal, I/Iref, over a given temperature in Kelvin. 
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The δT is large if its absolute value is large because a high signal change over a given 

temperature can be obtained. Based on equations (1) and (2), the δTs of selected AA-TSPs 

was determined: the δTs are listed in Table 2. It also lists the signal levels of selected AA-

TSPs. The best δT of -1.1 %/K was obtained for AATSPind04, which gave the maximum signal 

level. Based on these characterizations, using chloroform as a dipping solvent resulted in the 

application of QDBY on the anodized-aluminum coating. 
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Fig. 6. Temperature calibrations of AATSPind00, AATSPind02, AATSPind03, and AATSPind04 
obtained from the camera system. The reference temperature was 298 K. (Figures obtained 
from Sakaue et al. [9]) 
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AA-TSP 
Temperature Dependency 

(%/K) 
Signal Level 
(normalized) 

AATSPind00 -0.6 0.87 
AATSPind02 -0.7 0.65 
AATSPind03 -0.8 0.73 
AATSPind04 -1.1 1.00 

Table 2. Temperature sensitivity and the signal level of AATSPind00, AATSPind02, AATSPind03, 
and AATSPind04. The reference temperature was 298 K [9] 

2.4 Characterization results: Temperature calibration from 100 K to 500 K 

Based on the solvent dependency discussed in the previous section, AATSPind04, which used 
chloroform as a solvent, was calibrated for a wide temperature range. Fig. 7 shows 
temperature spectra of AATSPind04, obtained from the spectrometer system. The temperature 
was varied from a cryogenic temperature of 100 K up to a high temperature of 500 K. A total  
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Fig. 7. The temperature spectra of AATSPind04 at temperature ranges from 100 K to 500 K. 
Each spectrum was normalized by the luminescent peak at 298 K. Thirteen temperature 
spectra were measured: 100 K, 150 K, 200 K, 250 K, 278 K, 288 K, 298 K, 308 K, 313 K, 350 K, 
400 K, 450 K, and 500 K. (Figures obtained from Sakaue et al. [9]) 
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of thirteen temperature spectra were measured. Each spectrum was normalized by the 
luminescent peak at 298 K. As temperatures increased, the luminescent spectra decreased. A 
red-shift of the luminescent peak occurred with increasing temperature. A maximum 
change of at least 20 nm was observed. Luminescent peaks at 450 K and 500 K were not 
clearly identified. Thus, the luminescent peak at 400 K was used as the maximum red-shift 
wavelength of AATSPind04 to determine the peak location. 

Fig. 8 shows the temperature calibration of AATSPind04 from 100 K to 500 K, obtained using 
the camera system. The plot was fitted with a four-parameter sigmoid. 
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Where c0, c1, c2, and c3 were calibration constants. The reference temperature was 298 K. The 
temperature calibration showed a monotonic decrease in luminescent signal with increasing 
temperature. 
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Fig. 8. Temperature calibration of AATSPind04 at temperature ranges from 100 to 500 K 
obtained from the camera system. The reference temperature was 298 K. A four-parameter 
sigmoid as well as the first-order polynomial was fitted. The first-order fitting was applied 
at three temperature regions: low-temperature region from 100 K to 200 K, middle-
temperature region from 250 K to 350 K, and high-temperature region from 400 K to 500 K. 
(Figures obtained from Sakaue et al. [9]) 
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The first-order fitting of equation (1) was also applied to three temperature regions: a low-
temperature region from 100 K to 200 K, a middle-temperature region from 250 K to 350 K, 
and a high-temperature region from 400 K to 500 K. These regions are shown in Fig. 7. 
Although fewer calibration points were used, linear fits gave single δTs that are useful for 
engineering application. 

Because of the non-linear calibration, δT varied with the reference temperature, Tref, for the 
sigmoidal fitting, which can be derived as a derivative of equation (3) at Tref. For linear 
fittings, equation (2) can be used to determine δT in the three temperature regions. 
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Fig. 9 shows δT as a function of Tref. It varied with Tref when the sigmoidal fitting was used. 
The best δT of -1.3 %/K could be obtained at a Tref of 245 K. By using linear fits, three δTs 
could be obtained at the low-, the middle-, and the high-temperature regions, respectively. 
These fittings gave single values of δTs of -0.9 %/K, -1.1 %/K, and -0.1 %/K, respectively. 
For a Tref at 298 K, which was the representative reference temperature, δT was -1.1 %/K as 
determined from both fits. 
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Fig. 9. The temperature sensitivity, δT, as a function of reference temperature, Tref. (Figures 
obtained from Sakaue et al. [9]) 
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2.5 Discussion: Repeatability 

Fig. 10 shows the repeatability of the temperature calibration. Mean values and error bars 
are shown. The calibration was repeated five times and averaged for each temperature. The 
standard deviation is shown as an error bar. The temperature calibration showed a 
relatively large error at cryogenic temperatures, which may be due to the uncertainty of the 
temperature control of the chamber as well as the hysteresis of our AA-TSP. Because the 
coating provided a micro-porous structure, which was on the order of ten nanometers in 
diameter and ten micrometer in depth, the solvent used for dipping deposition tended to 
remain in the pores. This remaining solvent might have caused the hysteresis at cryogenic 
temperatures. The calibration results in Figures 6 and 8 are shown as mean values of five 
repeated calibrations. 
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Fig. 10. Repeatability of the temperature calibration obtained from the camera system. Mean 
values and error bars are shown. Calibrations were repeated five times. (Figures obtained 
from Sakaue et al. [9]) 
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3. Hypersonic wind tunnel application 

To reveal the aerodynamic heating, hypersonic wind tunnels are used. To apply a TSP to a 
hypersonic flow, the heating causes a material defects to a conventional TSP, which uses a 
polymer as a supporting matrix. Because a supporting matrix is aluminum instead of a 
polymer, we can expect AA-TSP to hold its material properties at higher temperatures as 
that in the hypersonic application. 

3.1 Compression corner model 

Fig. 11 showed a photograph of wind tunnel model. Referring from Nakakita et al. [11] and 

Ishiguro et al. [12], a compression corner model was used. It has a 30 compression corner 

with its dimension shown in the figure. A thermocouple was used for the temperature 

measurement, which was placed on the surface of the model. AATSPind04 was applied onto 

the model surface by the dipping deposition method discussed in section 2.1. 

 

 

 

 

Fig. 11. Photograph of a compression corner model 

3.2 Wind tunnel measurement setup 

Fig. 12 shows a schematic description of The Hypersonic and High Enthalpy Wind Tunnel 

at The University of Tokyo, Kashiwa Campus. The flow conditions set in our TSP 

measurements are summarized in Table 3. Fig. 13 shows a schematic description of a model 

location and an optical setup. A compression corner model was placed in Mach 7.1 flow 

after the flow stabilization period. We received a signal when placing the model into the test 

section. This was used to trigger the image acquisition and reference temperature 

measurement. A model stabilization period is needed after placing the model, which was 2.5 
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s. The model was then released from the flow after 6.5 s. Three xenon lamp sources were 

used to illuminate the AATSPind04 coated model. Band-pass filters of 340 ± 50 nm were 

placed in front of the illumination to give UV excitation. A 12-bit high-speed CCD camera 

(Phantom v12.1) was used to acquire AATSPind04 images. An optical filter of 620 ± 50 nm 

was placed in front of the camera. Camera frame rate was set at 25 Hz. 

 

 

 

Fig. 12. Schematic description of Hypersonic and High Enthalpy Wind Tunnel at UT 
Kashiwa. (Figures obtained from http://daedalus.k.u-tokyo.ac.jp/wt/WTpamphE.pdf) 

 

 conditions 

mach number 7.1 

stagnation pressure 0.95 MPa 

static pressure 200 Pa 

stagnation temperature 900 K 

test duration 6.5 s 

Table 3. Flow conditions of TSP measurement 
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Fig. 13. Schematic of AA-TSP measurement setup 

3.3 Global temperature measurement 

Fig. 14 shows the insitu temperature calibration. Temperature data was monitored from the 
thermocouple, and the luminescent signal at the corresponding location was related. The  
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Fig. 14. The insitu temperature calibration. (Figures obtained from Kuriki et al. [10]) 
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reference condition was a wind-off condition whose temperature and pressure were 20 C 
and 0.18 kPa, respectively. The first order polynomial was used for fitting the calibration 
points. Based on this calibration, we can convert the luminescent images to the temperature 

distribution. The temperature sensitivity of the calibration was -0.82%/C. 

Fig. 15 shows a temperature map and cross sectional distribution obtained from AATSPind04. 
Results are shown in every 1 s. We can see that the front edge of the model was heated the 

most. After 4 s of the measurement duration, this area was heated up to 413 K (140 C). 
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Fig. 15. Temperature map and cross sectional distribution in every 1 s. (Figures obtained 
from Kuriki et al. [10]) 

www.intechopen.com



 
Quantum Dots as Global Temperature Measurements 

 

151 

4. Conclusion 

We have developed a quantum dot-based anodized aluminum temperature-sensitive 
paint for global temperature measurement. Based on the solvent study for applying 
quantum dots on an anodized aluminum coating, we found that chloroform as a dipping 
solvent gave the best signal level and temperature sensitivity. The resultant sensor 
provided temperature sensitivities from 100 K to 500 K. A total of thirteen temperature 
points were measured. By using a four-parameter sigmoidal fit to the temperature 
calibration, the best temperature sensitivity of -1.3 %/K was obtained at 245 K. By 
separating three temperature regions for engineering applications, three constant 
temperature sensitivities were obtained. The regions were separated into a low-
temperature region of 100 K to 200 K, a middle- temperature region of 250 K to 350 K, and 
a high-temperature region of 400 K to 500 K. The temperature sensitivities of these regions 
were -0.9 %/K, -1.1 %/K, and -0.1 %/K, respectively. 

The best AA-TSP was used in hypersonic wind tunnel application. It gave the global 
temperature measurement on a compression corner model at the hypersonic flow of Mach 
7.1. The global temperature measurements related to the running time were obtained. The 
front edge of the model was most heated, and its temperature was raised up to 413 K for 4 s 
of measurement time. 
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provides three examples of using quantum dot system for biological applications. This is a collaborative book

sharing and providing fundamental research such as the one conducted in Physics, Chemistry, Biology,

Material Science, Medicine with a base text that could serve as a reference in research by presenting up-to-

date research work on the field of quantum dot systems.
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